首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
陈利锋  Thomas  M  HOHN 《菌物学报》2001,20(3):330-336
为研究禾谷镰孢菌Fusarium graminearum Schw.单端孢霉烯族毒素生物合成基因(产毒基因)在寄主体内的表达,作者构建了带报告基因GUS((-葡糖苷酸酶基因)的质粒pGUSTRI6P5,并通过对野生型菌株的转化获得禾谷镰孢高产毒菌株。该质粒含有由TRI5(禾谷镰孢单端孢霉二烯合酶基因)启动子(TRI5 Prom)驱动的GUS基因编码区、潮霉素B抗性基因和拟枝孢镰孢F. sporotrichioides的产毒调控基因TRI6(FSTRI6)。用pGUSTRI6P5转化野生型菌株GZ3639后,在含潮霉素 B的培养基上选取抗性菌落,单孢分离获单孢菌株(转化子)。在GYEP(葡萄糖-酵母粉-蛋白胨)液体培养基上,转化子B4-1和B16-1的GUS比活力强,15-AcDON(15-乙酰脱氧雪腐镰刀菌烯醇)产量高,且两者呈正相关(相关系数(r)分别为0.9839和0.9523)。B4-1和B16-1两个转化子可作为研究禾谷镰孢与其寄主相互作用的工具菌株。  相似文献   

2.
We screened a Fusarium sporotrichioides NRRL 3299 cDNA expression library in a toxin-sensitive Saccharomyces cerevisiae strain lacking a functional PDR5 gene. Fourteen yeast transformants were identified as resistant to the trichothecene 4,15-diacetoxyscirpenol, and each carried a cDNA encoding the trichothecene 3-O-acetyltransferase that is the F. sporotrichioides homolog of the Fusarium graminearum TRI101 gene. Mutants of F. sporotrichioides NRRL 3299 produced by disruption of TRI101 were altered in their abilities to synthesize T-2 toxin and accumulated isotrichodermol and small amounts of 3, 15-didecalonectrin and 3-decalonectrin, trichothecenes that are not observed in cultures of the parent strain. Our results indicate that TRI101 converts isotrichodermol to isotrichodermin and is required for the biosynthesis of T-2 toxin.  相似文献   

3.
We report for the first time the complete structure and sequence of the trichothecene biosynthesis gene cluster (i.e. Tri5-cluster) from Fusarium graminearum F15, a strain that produces 3-acetyldeoxynivalenol (3-ADON). A putative tyrosinase and polysaccharide deacetylase gene flank the Tri5-cluster: the number of pathway genes between them is less than half the total number of steps necessary for 3-ADON biosynthesis. In comparison with partial Tri5-cluster sequences of strains with 15-acetyldeoxynivalenol and 4-acetylnivalenol chemotypes, the Tri5-cluster from strain F15 contains three genes that are apparently unnecessary for the biosynthesis of 3-ADON (i.e. Tri8 and Tri3, which are expressed, and pseudo-Tri13, which is not expressed). In addition, the Tri7 gene was missing from the cluster. Recombinant TRI3 protein showed limited trichothecene C-15 acetylase activity. In contrast, recombinant TRI8 protein displayed no C-3 deacetylase activity, suggesting that the loss or alteration of function contribute directly to the chemotype difference.  相似文献   

4.
Certain Fusarium species cause head blight of wheat and other small grains worldwide and produce trichothecene mycotoxins. These mycotoxins can induce toxicoses in animals and humans and can contribute to the ability of some fusaria to cause plant disease. Production of the trichothecene 3-acetyldeoxynivalenol (3-ADON) versus 15-acetyldeoxynivalenol (15-ADON) is an important phenotypic difference within and among some Fusarium species. However, until now, the genetic basis for this difference in chemotype has not been identified. Here, we identified consistent DNA sequence differences in the coding region of the trichothecene biosynthetic gene TRI8 in 3-ADON and 15-ADON strains. Functional analyses of the TRI8 enzyme (Tri8) in F. graminearum, the predominant cause of wheat head blight in North America and Europe, revealed that Tri8 from 3-ADON strains catalyzes deacetylation of the trichothecene biosynthetic intermediate 3,15-diacetyldeoxynivalenol at carbon 15 to yield 3-ADON, whereas Tri8 from 15-ADON strains catalyzes deacetylation of 3,15-diacetyldeoxynivalenol at carbon 3 to yield 15-ADON. Fusarium strains that produce the trichothecene nivalenol have a Tri8 that functions like that in 15-ADON strains. TRI3, which encodes a trichothecene carbon 15 acetyltransferase, was found to be functional in all three chemotypes. Together, our data indicate that differential activity of Tri8 determines the 3-ADON and 15-ADON chemotypes in Fusarium.  相似文献   

5.
Fusarium spp. are economically important crop pathogens and causal agents of Fusarium head blight (FHB) of cereals worldwide. Of the FHB pathogens, Fusarium graminearum 3-acetyldeoxynivalenol (3-ADON) and 15-acetyldeoxynivalenol (15-ADON) are the most aggressive mycotoxigenic chemotypes, threatening food and feed quality as well as animal and human health. The objective of the study was to evaluate host specificity and fungal-fungal interactions of Sphaerodes mycoparasitica- a recently described mycoparasite - with F. graminearum 3- and 15-ADON strains by employing in vitro, microscopic and PCR techniques. Results obtained in this study show that the germination of mycoparasite ascospore in the presence of F. graminearum 3- and 15-ADON filtrates was greatly improved compared with Fusarium proliferatum and Fusarium sporotrichioides filtrates, suggesting a compatible interaction. Using quantitative real-time PCR with Fusarium-specific (Fg16N) and trichothecene Tri5 (Tox5-1/2)-specific primer sets, S. mycoparasitica was found to reduce the amount of F. graminearum 3-ADON and 15-ADON DNAs under separate coinoculation assays. Sphaerodes mycoparasitica was not only able to germinate in the presence of F. graminearum filtrates, but also established biotrophic mycoparasitic relations with two F. graminearum chemotypes and suppressed Fusarium growth.  相似文献   

6.
Species of the genus Fusarium produce a great diversity of agriculturally important trichothecene toxins that differ from each other in their pattern of oxygenation and esterification. T-2 toxin, produced by Fusarium sporotrichioides, and nivalenol (NIV), produced by some strains of F. graminearum, contain an oxygen at the C-4 position. Deoxynivalenol (DON), produced by other strains of F. graminearum, lacks a C-4 oxygen. NIV and DON are identical except for this difference, whereas T-2 differs from these trichothecenes at three other carbon positions. Sequence and Northern analyses of the F. sporotrichioides genomic region upstream of the previously described core trichothecene gene cluster have extended the cluster by two genes: TRI13 and TRI14. TRI13 shares significant similarity with the cytochrome P-450 class of enzymes, but TRI14 does not share similarity with any previously characterized proteins. Gene disruption and fermentation studies in F. sporotrichioides indicate that TRI13 is required for the addition of the C-4 oxygen of T-2 toxin, but that TRI14 is not required for trichothecene biosynthesis. PCR and sequence analyses indicate that the TRI13 homolog is functional in NIV-producing strains of F. graminearum but nonfunctional in DON-producing strains of the fungus. These genetic observations are consistent with chemical observations that biosynthesis of T-2 toxin and NIV requires a C-4 hydroxylase while biosynthesis of DON does not.  相似文献   

7.
The trichothecenes T-2 toxin and deoxynivalenol (DON) are natural fungal products that are toxic to both animals and plants. Their importance in the pathogenicity of Fusarium spp. on crop plants has inspired efforts to understand the genetic and biochemical mechanisms leading to trichothecene synthesis. In order to better understand T-2 toxin biosynthesis by Fusarium sporotrichioides and DON biosynthesis by F. graminearum, we compared the nucleotide sequence of the 23-kb core trichothecene gene cluster from each organism. This comparative genetic analysis allowed us to predict proteins encoded by two trichothecene genes, TRI9 and TRI10, that had not previously been described from either Fusarium species. Differences in gene structure also were correlated with differences in the types of trichothecenes that the two species produce. Gene disruption experiments showed that F. sporotrichioides TRI7 (FsTRI7) is required for acetylation of the oxygen on C-4 of T-2 toxin. Sequence analysis indicated that F. graminearum TRI7 (FgTRI7) is nonfunctional. This is consistent with the fact that the FgTRI7 product is not required for DON synthesis in F. graminearum because C-4 is not oxygenated.  相似文献   

8.
9.
Trichothecene biosynthetic pathway genes are localized within a gene cluster in Fusarium sporotrichioides and require the zinc-finger containing protein, TRI6, for expression. We show here that TRI6 is able to bind within the promoter regions of nine different pathway genes and that TRI6 binding is involved in pathway gene activation. TRI6 binding occurs at three distinct sites in the TRI5 promoter, all of which contain the sequence TNAGGCCT. DNA fragments from the promoter regions of six other pathway genes containing this sequence are also substrates for TRI6 binding. Specific nucleotide changes in the TNAGGCCT sequence dramatically reduced TRI6 binding. Analysis of TRI6 binding within the TRI3 and TRI11 promoters and the TRI4-TRI6 intergenic region which do not contain the TNAGGCCT motif suggests that the minimum sequence required for TRI6 binding is YNAGGCC. Two potential TRI6 binding sites, T4A and T4B, were identified within the intergenic region for the divergently transcribed TRI4 and TRI6 genes. Alteration or deletion of the T4A site resulted in the loss of nearly all in vitro TRI6 binding and was correlated with the loss of promoter activity in vivo as measured by the expression of mutant TRI4(p)/GUS fusions. This establishes a physiological role for TRI6 binding and demonstrates that TRI6 is directly involved in the regulation of pathway gene expression. To determine if a predicted Cys2His2 zinc-finger motif at the C-terminus of TRI6 is involved in DNA binding, a C187A mutant was constructed in TRI6 using site-directed mutagenesis. The C187A mutant did not bind promoter DNA fragments, supporting the role of C187 in DNA binding. In addition, a TRI6 homologue in the distantly related macrocyclic trichothecene pathway of Myrothecium roridum (MRTRI6) was also shown to bind to the same TRI5 and TRI4 promoter fragments bound by TRI6. Together, these data confirm our previous proposal that TRI6 is an activator of trichothecene pathway gene expression and that DNA binding employs the C-terminal region of TRI6 containing three predicted Cys2His2 zinc fingers.  相似文献   

10.
11.
The trichothecene mycotoxin deoxynivalenol (DON) is a common contaminant of small grains, such as wheat and barley, in the United States. New strategies to mitigate the threat of DON need to be developed and implemented. TRI101 and TRI201 are trichothecene 3-O-acetyltransferases that are able to modify DON and reduce its toxicity. Recent work has highlighted differences in the activities of TRI101 from two different species of Fusarium (F. graminearum and F. sporotrichioides), but little is known about the relative activities of TRI101/TRI201 enzymes produced by other species of Fusarium. We cloned TRI101 or TRI201 genes from seven different species of Fusarium and found genetic identity between sequences ranging from 66% to 98%. In vitro feeding studies using transformed yeast showed that all of the TRI101/TRI201 enzymes tested were able to acetylate DON; conversion of DON to 3-acetyl-deoxynivalenol (3ADON) ranged from 50.5% to 100.0%, depending on the Fusarium species from which the gene originated. A time course assay showed that the rate of acetylation varied from species to species, with the gene from F. sporotrichioides having the lowest rate. Steady-state kinetic assays using seven purified enzymes produced catalytic efficiencies for DON acetylation ranging from 6.8 × 10(4) M(-1)·s(-1) to 4.7 × 10(6) M(-1)·s(-1). Thermostability measurements for the seven orthologs ranged from 37.1°C to 43.2°C. Extended sequence analysis of portions of TRI101/TRI201 from 31 species of Fusarium (including known trichothecene producers and nonproducers) suggested that other members of the genus may contain functional TRI101/TRI201 genes, some with the potential to outperform those evaluated in the present study.  相似文献   

12.
13.
Fusarium graminearum and Fusarium sporotrichioides produce the trichothecene mycotoxins 15-acetyldeoxynivalenol and T-2 toxin, respectively. In both species, disruption of the P450 monooxygenase-encoding gene, Tri4, blocks production of the mycotoxins and leads to the accumulation of the trichothecene precursor trichodiene. To further characterize its function, the F. graminearum Tri4 (FgTri4) was heterologously expressed in the trichothecene-nonproducing species Fusarium verticillioides. Transgenic F. verticillioides carrying the FgTri4 converted exogenous trichodiene to the trichothecene biosynthetic intermediates isotrichodermin and trichothecene. Conversion of trichodiene to isotrichodermin requires seven biochemical steps. The fifth and sixth steps can occur nonenzymatically. Precursor feeding studies done in the current study indicate that wild-type F. verticillioides has the enzymatic activity necessary to carry out the seventh step, the C-3 acetylation of isotrichodermol to form isotrichodermin. Together, the results of this study indicate that the Tri4 protein catalyzes the remaining four steps and is therefore a multifunctional monooxygenase required for trichothecene biosynthesis.  相似文献   

14.
We screened a Fusarium sporotrichioides NRRL 3299 cDNA expression library in a toxin-sensitive Saccharomyces cerevisiae strain lacking a functional PDR5 gene. Fourteen yeast transformants were identified as resistant to the trichothecene 4,15-diacetoxyscirpenol, and each carried a cDNA encoding the trichothecene 3-O-acetyltransferase that is the F. sporotrichioides homolog of the Fusarium graminearum TRI101 gene. Mutants of F. sporotrichioides NRRL 3299 produced by disruption of TRI101 were altered in their abilities to synthesize T-2 toxin and accumulated isotrichodermol and small amounts of 3,15-didecalonectrin and 3-decalonectrin, trichothecenes that are not observed in cultures of the parent strain. Our results indicate that TRI101 converts isotrichodermol to isotrichodermin and is required for the biosynthesis of T-2 toxin.  相似文献   

15.
16.
Species identity and trichothecene toxin potential of 560 members of the Fusarium graminearum species complex (FGSC) collected from diseased wheat, barley and maize in South Africa was determined using a microsphere-based multilocus genotyping assay. Although three trichothecene types (3-ADON, 15-ADON and NIV) were represented among these isolates, strains with the 15-ADON type predominated on all three hosts. A significant difference, however, was identified in the composition of FGSC pathogens associated with Gibberella ear rot (GER) of maize as compared to Fusarium head blight (FHB) of wheat or barley (P<0.001). F. graminearum accounted for more than 85% of the FGSC isolates associated with FHB of wheat and barley (N=425), and was also the dominant species among isolates from maize roots (N=35). However, with the exception of a single isolate identified as an interspecific hybrid between Fusariumboothii and F. graminearum, GER of maize (N=100) was exclusively associated with F. boothii. The predominance of F. graminearum among FHB isolates, and the near exclusivity of F. boothii among GER isolates, was observed across all cultivars, collection dates, and provinces sampled. Because these results suggest a difference in host preference among species of the FGSC, we hypothesize that F. graminearum may be less well adapted to infect maize ears than other members of the FGSC.  相似文献   

17.
18.
19.
The essential oil of German chamomile showed specific inhibition toward aflatoxin G(1) (AFG(1)) production, and (E)- and (Z)-spiroethers were isolated as the active compounds from the oil. The (E)- and (Z)-spiroethers inhibited AFG(1) production of Aspergillus parasiticus with inhibitory concentration 50% (IC(50)) values of 2.8 and 20.8 microM, respectively, without inhibiting fungal growth. Results of an O-methylsterigmatocystin (OMST) conversion study indicated that the spiroethers specifically inhibited the OMST to AFG(1) pathway. A cytochrome P450 monooxygenase, CYPA, is known as an essential enzyme for this pathway. Because CYPA has homology with TRI4, a key enzyme catalyzing early steps in the biosynthesis of trichothecenes, the inhibitory actions of the two spiroethers against TRI4 reactions and 3-acetyldeoxynivalenol (3-ADON) production were tested. (E)- and (Z)-spiroethers inhibited the enzymatic activity of TRI4 dose-dependently and interfered with 3-ADON production by Fusarium graminearum, with IC(50) values of 27.1 and 103 microM, respectively. Our results suggest that the spiroethers inhibited AFG(1) and 3-ADON production by inhibiting CYPA and TRI4, respectively.  相似文献   

20.
禾谷镰刀菌是小麦赤霉病的主要致病菌,其真菌次生代谢产生的单端孢霉烯类B型毒素,如雪腐镰刀菌烯醇(nivalenol,NIV)、脱氧雪腐镰刀菌烯醇(deoxynivalenol,DON)和其它乙酰化衍生物等污染小麦籽粒后对人畜健康构成威胁。综述了近年来国内外对小麦赤霉病镰孢菌单端孢霉烯类B型毒素生物合成的主要途径及分子调控研究进展,对毒素合成过程中的重要调控基因如TRI5、TRI7和TRI13在农业中的应用进行了阐述。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号