首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ca2+-dependent activator protein for secretion (CAPS) is a cytosolic protein essential for the Ca2+-dependent fusion of dense-core vesicles (DCVs) with the plasma membrane and the regulated secretion of a subset of neurotransmitters. The mechanism by which CAPS functions in exocytosis and the means by which it associates with target membranes are unknown. We identified two domains in CAPS with distinct membrane-binding properties that were each essential for CAPS activity in regulated exocytosis. The first of these, a centrally located pleckstrin homology domain, exhibited three properties: charge-based binding to acidic phospholipids, binding to plasma membrane but not DCV membrane, and stereoselective binding to phosphatidylinositol 4,5-bisphosphate. Mutagenesis studies revealed that the former two properties but not the latter were essential for CAPS function. The central pleckstrin homology domain may mediate transient CAPS interactions with the plasma membrane during Ca2+-triggered exocytosis. The second membrane association domain comprising distal C-terminal sequences mediated CAPS targeting to and association with neuroendocrine DCVs. The CAPS C-terminal domain was also essential for optimal activity in regulated exocytosis. The presence of two membrane association domains with distinct binding specificities may enable CAPS to bind both target membranes to facilitate DCV-plasma membrane fusion.  相似文献   

2.
The “Ca2+-dependent activator protein for secretion” (CAPS) is a protein which reconstitutes regulated secretion in permeabilized neuroendocrine cells. It is generally accepted that CAPS plays an important role in the release of the contents of dense core vesicles in the nervous system as well as in a variety of other secretory tissues. At which step in the exocytotic process CAPS functions as well as its role in the fusion of synaptic vesicles is still under dispute. A recent growth spurt in the CAPS field has been fueled by genetic approaches in Caenorhabditis elegans and Drosophila as well as the application of knockout and knockdown approaches in mouse cells and in cell lines, respectively. We have attempted to review the body of work that established CAPS as an important regulator of secretion and to describe new information that has furthered our understanding of how CAPS may function. We discuss the conclusions, point out areas where controversy remains, and suggest directions for future experiments.  相似文献   

3.
Regulated exocytosis involves the Ca(2+)-triggered fusion of secretory vesicles with the plasma membrane, by activation of vesicle membrane Ca(2+)-binding proteins [1]. The Ca(2+)-binding sites of these proteins are likely to lie within 30 nm of the vesicle surface, a domain in which changes in Ca2+ concentration cannot be resolved by conventional fluorescence microscopy. A fluorescent indicator for Ca2+ called a yellow 'cameleon' (Ycam2) - comprising a fusion between a cyan-emitting mutant of the green fluorescent protein (GFP), calmodulin, the calmodulin-binding peptide M13 and an enhanced yellow-emitting GFP - which is targetable to specific intracellular locations, has been described [2]. Here, we generated a fusion between phogrin, a protein that is localised to secretory granule membranes [3], and Ycam2 (phogrin-Ycam2) to monitor changes in Ca2+ concentration ([Ca2+]) at the secretory vesicle surface ([Ca2+]gd) through alterations in fluorescence resonance energy transfer (FRET) between the linked cyan and yellow fluorescent proteins (CFP and YFP, respectively) in Ycam2. In both neuroendocrine PC12 and MIN6 pancreatic beta cells, apparent resting values of cytosolic [Ca2+] and [Ca2+](gd) were similar throughout the cell. In MIN6 cells following the activation of Ca2+ influx, the minority of vesicles that were within approximately 1 microm of the plasma membrane underwent increases in [Ca2+](gd) that were significantly greater than those experienced by deeper vesicles, and greater than the apparent cytosolic [Ca2+] change. The ability to image both global and compartmentalised [Ca2+] changes with recombinant targeted cameleons should extend the usefulness of these new Ca2+ probes.  相似文献   

4.
Neuropeptide and peptide hormone secretion from neural and endocrine cells occurs by Ca(2+)-triggered dense-core vesicle exocytosis. The membrane fusion machinery consisting of vesicle and plasma membrane SNARE proteins needs to be assembled for Ca(2+)-triggered vesicle exocytosis. The related Munc13 and CAPS/UNC31 proteins that prime vesicle exocytosis are proposed to promote SNARE complex assembly. CAPS binds SNARE proteins and stimulates SNARE complex formation on liposomes, but the relevance of SNARE binding to CAPS function in cells had not been determined. Here we identify a core SNARE-binding domain in CAPS as corresponding to Munc13 homology domain-1 (MHD1). CAPS lacking a single helix in MHD1 was unable to bind SNARE proteins or to support the Ca(2+)-triggered exocytosis of either docked or newly arrived dense-core vesicles. The results show that MHD1 is a SNARE-binding domain and that SNARE protein binding is essential for CAPS function in dense-core vesicle exocytosis.  相似文献   

5.
J H Walent  B W Porter  T F Martin 《Cell》1992,70(5):765-775
The regulated secretory pathway is activated by elevated cytoplasmic Ca2+; however, the components mediating Ca2+ regulation have not been identified. In semi-intact neuroendocrine cells, Ca(2+)-activated secretion is ATP- and cytosol protein-dependent. We have identified a novel brain protein, p145, as a cytosolic factor that reconstitutes Ca(2+)-activated secretion in two neuroendocrine cell types. The protein is a dimer of 145 kd subunits, exhibits Ca(2+)-dependent interaction with a hydrophobic matrix, and binds phospholipid vesicles, suggesting a membrane-associated function. A p145-specific antibody inhibits the reconstitution of Ca(2+)-activated secretion by cytosol, indicating an essential role for p145. The restricted expression of p145 in tissues exhibiting a regulated secretory pathway suggests a key role for this protein in the transduction of Ca2+ signals into vectorial membrane fusion events.  相似文献   

6.
The effect of inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) and calcium ionophore A23187 on Ca2+ release from bovine adrenal medullary secretory vesicles and microsomes was examined. Ins(1,4,5)P3 released 3.5 nmol of Ca2+/mg protein from secretory vesicles and 1.5 nmol of Ca2+/mg protein from microsomes as measured by a Ca2(+)-selective electrode. However, A23187 promoted Ca2+ uptake into vesicles while releasing Ca2+ from microsomes. Ins(1,4,5)P3-induced Ca2+ release from secretory vesicles was rapid, but the released Ca2+ was absorbed within 3 min during which the Ins(1,4,5)P3-releasable pools were refilled. The in situ calcium content of secretory vesicle measured by atomic absorption spectrometry was 112 +/- 6.3 nmol/mg protein indicating the potential importance of secretory vesicles as an intracellular Ca2+ store. The high Ca2(+)-buffering capacity of secretory vesicles is presumed to be due to the high Ca2(+)-binding capacity of chromogranin A, the major intravesicular protein, which has calsequestrin-like properties.  相似文献   

7.
The Ca2+-dependent exocytosis of dense-core vesicles in neuroendocrine cells requires a priming step during which SNARE protein complexes assemble. CAPS (aka CADPS) is one of several factors required for vesicle priming; however, the localization and dynamics of CAPS at sites of exocytosis in live neuroendocrine cells has not been determined. We imaged CAPS before, during, and after single-vesicle fusion events in PC12 cells by TIRF micro­scopy. In addition to being a resident on cytoplasmic dense-core vesicles, CAPS was present in clusters of approximately nine molecules near the plasma membrane that corresponded to docked/tethered vesicles. CAPS accompanied vesicles to the plasma membrane and was present at all vesicle exocytic events. The knockdown of CAPS by shRNA eliminated the VAMP-2–dependent docking and evoked exocytosis of fusion-competent vesicles. A CAPS(ΔC135) protein that does not localize to vesicles failed to rescue vesicle docking and evoked exocytosis in CAPS-depleted cells, showing that CAPS residence on vesicles is essential. Our results indicate that dense-core vesicles carry CAPS to sites of exocytosis, where CAPS promotes vesicle docking and fusion competence, probably by initiating SNARE complex assembly.  相似文献   

8.
CAPS1 and CAPS2 regulate dense-core vesicle release of transmitters and hormones in neuroendocrine cells, but their precise roles in the secretory process remain enigmatic. Here we show that CAPS2(-/-) and CAPS1(+/-);CAPS2(-/-) mice, despite having increased insulin sensitivity, are glucose intolerant and that this effect is attributable to a marked reduction of glucose-induced insulin secretion. This correlates with diminished Ca(2+)-dependent exocytosis, a reduction in the size of the morphologically docked pool, a decrease in the readily releasable pool of secretory vesicles, slowed granule priming, and suppression of second-phase (but not first-phase) insulin secretion. In beta cells of CAPS1(+/-);CAPS2(-/-) mice, the lowered insulin content and granule numbers were associated with an increase in lysosome numbers and lysosomal enzyme activity. We conclude that although CAPS proteins are not required for Ca(2+)-dependent exocytosis to proceed, they exert a modulatory effect on insulin granule priming, exocytosis, and stability.  相似文献   

9.
Actin has been suggested as an essential component in the membrane fusion stage of exocytosis. In some model systems disruption of the actin filament network associated with exocytotic membranes results in a decrease in secretion. Here we analyze the fast Ca2+-triggered membrane fusion steps of regulated exocytosis using a stage-specific preparation of native secretory vesicles (SV) to directly test whether actin plays an essential role in this mechanism. Although present on secretory vesicles, selective pharmacological inhibition of actin did not affect the Ca2+-sensitivity, extent, or kinetics of membrane fusion, nor did the addition of exogenous actin or an anti-actin antibody. There was also no discernable affect on inter-vesicle contact (docking). Overall, the results do not support a direct role for actin in the fast, Ca2+-triggered steps of regulated membrane fusion. It would appear that actin acts elsewhere within the exocytotic cycle.  相似文献   

10.
Calcium-activated protein for secretion (CAPS) is proposed to play an essential role in Ca2+-regulated dense-core vesicle exocytosis in vertebrate neuroendocrine cells. Here we report the cloning, mutation, and characterization of the Drosophila ortholog (dCAPS). Null dCAPS mutants display locomotory deficits and complete embryonic lethality. The mutant NMJ reveals a 50% loss in evoked glutamatergic transmission, and an accumulation of synaptic vesicles at active zones. Importantly, dCAPS mutants display a highly specific 3-fold accumulation of dense-core vesicles in synaptic terminals, which was not observed in mutants that completely arrest synaptic vesicle exocytosis. Targeted transgenic CAPS expression in identified motoneurons fails to rescue dCAPS neurotransmission defects, demonstrating a cell nonautonomous role in synaptic vesicle fusion. We conclude that dCAPS is required for dense-core vesicle release and that a dCAPS-dependent mechanism modulates synaptic vesicle release at glutamatergic synapses.  相似文献   

11.
CAPS1 regulates catecholamine loading of large dense-core vesicles   总被引:8,自引:0,他引:8  
CAPS1 is thought to play an essential role in mediating exocytosis from large dense-core vesicles (LDCVs). We generated CAPS1-deficient (KO) mice and studied exocytosis in a model system for Ca2+-dependent LDCV secretion, the adrenal chromaffin cell. Adult heterozygous CAPS1 KO cells display a gene dosage-dependent decrease of CAPS1 expression and a concomitant reduction in the number of docked vesicles and secretion. Embryonic homozygous CAPS1 KO cells show a strong reduction in the frequency of amperometrically detectable release events of transmitter-filled vesicles, while the total number of fusing vesicles, as judged by capacitance recordings or total internal reflection microscopy, remains unchanged. We conclude that CAPS1 is required for an essential step in the uptake or storage of catecholamines in LDCVs.  相似文献   

12.
Ca(2+)-dependent fusion of transport vesicles at their target can be enhanced by intracellular Ca2+ and diacylglycerol. Diacylglycerol induces translocation of the vesicle priming factor Munc13 and association of the secretory vesicle protein DOC2B to the membrane. Here we demonstrate that a rise in intracellular Ca2+ is sufficient for a Munc13-independent recruitment of DOC2B to the target membrane. This novel mechanism occurred readily in the absence of Munc13 and was not influenced by DOC2B mutations that abolish Munc13 binding. Purified DOC2B (expressed as a bacterial fusion protein) bound phospholipids in a Ca(2+)-dependent way, suggesting that the translocation is the result of a C2 domain activation mechanism. Ca(2+)-induced translocation was also observed in cultured neurons expressing DOC2B-enhanced green fluorescent protein. In this case, however, various degrees of membrane association occurred under resting conditions, suggesting that physiological Ca2+ concentrations modulate DOC2B localization. Depolarization of the neurons induced a complete translocation of DOC2B-enhanced green fluorescent protein to the target membrane within 5 s. We hypothesize that this novel Ca(2+)-induced activity of DOC2B functions synergistically with diacylglycerol-induced Munc13 binding to enhance exocytosis during episodes of high secretory activity.  相似文献   

13.
Voets T 《Neuron》2000,28(2):537-545
In neurosecretory cells, intracellular Ca2+ ([Ca2+]i) not only acts as the trigger for secretion but also regulates earlier steps in the secretory pathway. Here, a novel approach was developed to control [Ca2+]i over a broad concentration range, which allowed the quantification of three distinct actions of [Ca2+]i on large dense-core vesicle (LDCV) fusion in chromaffin cells from mouse adrenal slices. Basal [Ca2+]i regulated the transfer of vesicles toward a slowly releasable state, whereas further maturation to the readily releasable state was Ca2+ independent. [Ca2+]i levels above 3 microM triggered exocytosis of all readily and slowly releasable vesicles in two parallel, kinetically distinct fusion reactions. In a molecular context, these results suggest that Ca2+ acts both before and after trans-SNARE complex formation to regulate fusion competence and fusion kinetics of LDCVs.  相似文献   

14.
CAPS (Ca2+-dependent activator protein for secretion) functions in priming Ca2+-dependent vesicle exocytosis, but the regulation of CAPS activity has not been characterized. Here we show that phosphorylation by protein kinase CK2 is required for CAPS activity. Dephosphorylation eliminated CAPS activity in reconstituting Ca2+-dependent vesicle exocytosis in permeable and intact PC12 cells. Ser-5, -6, and -7 and Ser-1281 were identified by mass spectrometry as the major phosphorylation sites in the 1289 residue protein. Ser-5, -6, and -7 but not Ser-1281 to Ala substitutions abolished CAPS activity. Protein kinase CK2 phosphorylated CAPS in vitro at these sites and restored the activity of dephosphorylated CAPS. CK2 is the likely in vivo CAPS protein kinase based on inhibition of phosphorylation by tetrabromo-2-benzotriazole in PC12 cells and by the identity of in vivo and in vitro phosphorylation sites. CAPS phosphorylation by CK2 was constitutive, but the elevation of Ca2+ in synaptosomes increased CAPS Ser-5 and -6 dephosphorylation, which terminates CAPS activity. These results identify a functionally important N-terminal phosphorylation site that regulates CAPS activity in priming vesicle exocytosis.Regulated neurotransmitter secretion is central to intercellular communication in the nervous system. Two types of secretory vesicles mediate neurotransmitter release; that is, synaptic vesicles that release transmitters such as glutamate at synapses and dense-core vesicles that release modulatory transmitters and neuropeptides at non-synaptic sites. Both types of secretory vesicles are recruited to docking sites on the plasma membrane where they are primed to a ready release state to undergo fusion in response to Ca2+ elevations. Many of the proteins that mediate the targeting, docking, priming, and Ca2+-dependent fusion of vesicles with the plasma membrane function in both synaptic vesicle and dense-core vesicle pathways (1). CAPS-12 (also known as Cadps1) is a 1289-residue protein that reconstitutes Ca2+-triggered dense-core vesicle exocytosis in permeable neuroendocrine cells at a priming step (24). CAPS is required for secretion of a subset of transmitters in Caenorhabditis elegans (5) and Drosophila melanogaster (6) and for priming dense-core vesicle exocytosis in neuroendocrine cells (7) and synaptic vesicle exocytosis in neurons (8). Vesicle priming reactions are extensively modulated during physiological demand (9), but mechanisms that regulate CAPS function remain to be identified.Reversible protein phosphorylation is a major mechanism for the regulation of cellular processes including vesicle exocytosis. Many proteins that function in evoked vesicle exocytosis are phosphoproteins (10, 11). The neuronal SNARE proteins syntaxin 1A, VAMP-2, and SNAP-25 are phosphorylated by several protein kinases in vitro (1214). Protein kinase C and protein kinase A sites on SNAP-25 affect refilling rates and size, respectively, of the primed pool of vesicles in chromaffin cells (15, 16). Several SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor)-binding proteins such as munc18, RIM1, and rabphilin undergo regulated phosphorylation, but it is not known whether phosphorylation affects function (10, 11, 17).Because the function of CAPS at a priming step in vesicle exocytosis may be regulated, we determined whether CAPS is phosphorylated. We show that CAPS is a phosphoprotein with functionally essential N-terminal phosphorylated Ser residues. Ser-5, -6, and -7 in CAPS were substrates for protein kinase CK2 in vitro and in vivo as well as for a Ca2+-dependent dephosphorylation mechanism. The results indicate that phosphorylation by protein kinase CK2 is necessary for CAPS activity in priming vesicle exocytosis and that regulated dephosphorylation may constitute a mechanism for terminating CAPS activity.  相似文献   

15.
Priming of large dense-core vesicles (LDCVs) is a Ca2+-dependent step by which LDCVs enter a release-ready pool, involving the formation of the soluble N-ethyl-maleimide sensitive fusion protein attachment protein (SNAP) receptor complex consisting of syntaxin, SNAP-25, and synaptobrevin. Using mice lacking both isoforms of the calcium-dependent activator protein for secretion (CAPS), we show that LDCV priming in adrenal chromaffin cells entails two distinct steps. CAPS is required for priming of the readily releasable LDCV pool and sustained secretion in the continued presence of high Ca2+ concentrations. Either CAPS1 or CAPS2 can rescue secretion in cells lacking both CAPS isoforms. Furthermore, the deficit in the readily releasable LDCV pool resulting from CAPS deletion is reversed by a constitutively open form of syntaxin but not by Munc13-1, a priming protein that facilitates the conversion of syntaxin to the open conformation. Our data indicate that CAPS functions downstream of Munc13s but also interacts functionally with Munc13s in the LDCV-priming process.  相似文献   

16.
Priming in exocytosis: attaining fusion-competence after vesicle docking   总被引:5,自引:0,他引:5  
Klenchin VA  Martin TF 《Biochimie》2000,82(5):399-407
Membrane contact established by tethering or docking mechanisms is not a sufficient condition for membrane fusion. In neural and neuroendocrine cells, only a small fraction of secretory vesicles docked at the plasma membrane are fusion-competent and undergo rapid ATP-independent fusion in response to Ca(2+) elevations. Additional biochemical events termed 'priming' are essential to render vesicles competent for Ca(2+)-triggered fusion. The priming of vesicles is ATP-dependent and a number of ATP-dependent priming reactions have been characterized in permeable neuroendocrine cells. These involve NSF-mediated priming of SNARE protein complexes, the ATP-dependent synthesis of phosphoinositides, and protein kinase-mediated protein phosphorylation. In addition, munc13 is an important protein involved in priming synaptic vesicles. An emphasis in this review is on recent work indicating that priming events identified in the pathways of regulated exocytosis share many features with pre-fusion processes characterized in constitutive fusion pathways.  相似文献   

17.
Chromaffin cell secretion requires cortical F-actin disassembly and it has been suggested that scinderin, a Ca2+ dependent F-actin severing protein, controls cortical actin dynamics. An antisense oligodeoxynucleotide targeting the scinderin gene was used to decrease the expression of the protein and access its role in secretion. Treatment with 2 microM scinderin antisense oligodeoxynucleotide for 4 days produced a significant decrease in scinderin expression and its mRNA levels. The expression of gelsolin, another F-actin severing protein, was not affected. Scinderin decrease was accompanied by concomitant and parallel decreases in depolarization-evoked cortical F-actin disassembly and exocytosis. Similar treatment with a mismatched oligodeoxynucleotide produced no effects. Scinderin antisense oligodeoxynucleotide treatment was also a very effective inhibitor of exocytosis in digitonin-permeabilized cells stimulated with increasing concentrations of Ca2+. This ruled out scinderin antisense interference with stimulation-induced depolarization or Ca2+ channel activation. Scinderin antisense treatment decreased the maximum (B(max)) secretory response to Ca2+ without modifying the affinity (K(m)) of the cation for the exocytotic machinery. Moreover, the antisense treatment did not affect norepinephrine uptake or the expression of dopamine ss-hydroxylase, suggesting that the number and function of chromaffin vesicles was not modified. In addition, scinderin antisense treatment did not alter the expression of proteins involved in vesicle-plasma membrane fusion, such as synaptophysin, synaptotagmin or syntaxin, indicating a lack of effects on the fusion machinery components. These observations strongly suggest that scinderin is a key player in the events involved in the secretory process.  相似文献   

18.
Kinetic diversity in the fusion of exocytotic vesicles.   总被引:9,自引:0,他引:9  
The speed at which secretory vesicles fuse with the plasma membrane is a key parameter for neuronal and endocrine functions. We determined the precise time courses for fusion of small clear and large dense-core vesicles in PC12 and chromaffin cells by simultaneously measuring both plasma membrane areas and release of vesicular contents. We found that instantaneous increases in cytosolic Ca2+ concentration evoked vesicle fusion, but with time constants that varied over four orders of magnitude among different types of vesicles and cells. This indicates that the molecular machinery for the final Ca2+-dependent fusion steps of exocytosis is highly variable and is as critical as Ca2+ signalling processes in determining the speed and amount of secretion of neurotransmitters and hormones. Our results suggest a new possibility that the molecules responsible for the final fusion reaction that leads to vesicle fusion are key determinants for neuronal plasticity and hormonal disorders.  相似文献   

19.
Docking to the plasma membrane prepares vesicles for rapid release. Here, we describe a mechanism for dense core vesicle docking in neurons. In Caenorhabditis elegans motor neurons, dense core vesicles dock at the plasma membrane but are excluded from active zones at synapses. We have found that the calcium-activated protein for secretion (CAPS) protein is required for dense core vesicle docking but not synaptic vesicle docking. In contrast, we see that UNC-13, a docking factor for synaptic vesicles, is not essential for dense core vesicle docking. Both the CAPS and UNC-13 docking pathways converge on syntaxin, a component of the SNARE (soluble N-ethyl-maleimide-sensitive fusion protein attachment receptor) complex. Overexpression of open syntaxin can bypass the requirement for CAPS in dense core vesicle docking. Thus, CAPS likely promotes the open state of syntaxin, which then docks dense core vesicles. CAPS function in dense core vesicle docking parallels UNC-13 in synaptic vesicle docking, which suggests that these related proteins act similarly to promote docking of independent vesicle populations.  相似文献   

20.
Calcium sensors in regulated exocytosis   总被引:8,自引:0,他引:8  
Burgoyne RD  Morgan A 《Cell calcium》1998,24(5-6):367-376
Neurotransmitter release, hormone secretion and a variety of other secretory process are tightly regulated with exocytotic fusion of secretory vesicles being triggered by a rise in cytosolic Ca2+ concentration. A series of proteins that act as part of a conserved core machinery for vesicle docking and fusion throughout the cell have been identified. In regulated exocytosis this core machinery must be controlled by Ca(2+)-sensor proteins that allow rapid activation of the fusion process following elevation of cytosolic Ca2+ concentration. The properties of such Ca2+ sensors are known from physiological studies but their molecular identity remains to be unequivocally established. The multiple Ca(2+)-dependent steps in the exocytotic pathway suggest the likely involvement of several Ca(2+)-binding proteins with distinct properties. Functional evidence for the role of various Ca(2+)-binding proteins and their possible sites of action is accumulating but a definitive identification of the major Ca(2+)-sensor in the final step of Ca(2+)-triggered membrane fusion in different cell types awaits further analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号