首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The kinetics of the decomposition reactions of the CO(py)3(CO3)(H2O)+ ion have been investigated in aqueous perchloric acid solutions over a range of hydrogen ion concentrations (0.10 to 5.0 M) and at two ionic strengths (I = 1.0 and 5.0 M). At the lower ionic strength, plots of ln (AtA versus time show a nonlinearity that is consistent with that expected for consecutive first-order reactions. The rates of the faster reaction are similar to those reported for the spontaneous reduction of aquopyridine-cobalt(III) cations. At the higher ionic strength, the above noted curvature is not apparent and the decarboxylation kinetics of the title complex may be described by a pseudo-first-order rate constant: kobs = k[H3O+]. At 20°C, k = (1.75−+0.09) s−1 M−1 with activation parameters ofΔH = (97 −+ 4) kJ mol−1 and ΔS = −(54 −+ 32) J deg−1 mol−1. These kinetic parameters are compared with those previously reported for the similar complexes, Co(py)4CO3+ and Co(py)2(CO3)(H2O)2+.  相似文献   

2.
Abundance, isotopic composition and morphological imprints of the planktonic foraminifera Globorotalia scitula (Brady) were closely examined for possible use as a novel reconstruction tool of chemical environments in sub-intermediate depth seawater in the past. Based on the MOCNES plankton tow observation of dwelling depths of G. scitula and the isotopic compositions together with hydrochemistry data, the empirical relations between isotopic disequilibria in carbon (Δδ13C=δ13CG. scitulaδ13CDIC) and oxygen (Δδ18O=δ18OG. scitulaδ18Ow) isotopes in the carbonate tests and the seawater δ18O and δ13C of dissolved inorganic carbon (DIC), respectively, are introduced. The morphological information such as pore density and porosity is also examined for significant relations to carbonate chemistry. Shell porosity is strongly correlated saturation state of calcite. The dissolution of living G. scitula tests may promote the observed isotopic differences as well as the increases in porosity. Δδ18O of G. scitula is found effectively to be linear function of both water temperature and calcite saturation state (Ω), and thereby temperature equation for G. scitula is provided, while Δδ13C of G. scitula is a linear function of only calcite saturation state.The equation was validated by using Globorotalia scitula collected by a sediment trap in intermediate water depths. Satisfactory agreements were found between observed and calculated Δδ18O from the empirical equations based on temperature and hydrochemistry data at sediment trap deployment site, indicating that the equation may be useful in paleo-environmental reconstruction of sub-intermediate water. The sediment trap observation further suggests that the abundance of G. scitula does not necessarily correspond to surface water productivity and to POC flux, but instead, it correlates well with the supply of fine organic matter, which appears to be a result of water convection. Thus, G. scitula may be an unambiguous and excellent paleo-environmental recorder for carbonate chemistry and for fine organic matter transport to the depths, if isotopic and morphological observations are combined.  相似文献   

3.
The kinetics of substitution reactions of [η-CpFe(CO)3]PF6 with PPh3 in the presence of R-PyOs have been studied. For all the R-PyOs (R = 4-OMe, 4-Me, 3,4-(CH)4, 4-Ph, 3-Me, 2,3-(CH)4, 2,6-Me2, 2-Me), the reactions yeild the same product [η5-CpFe(CO)2PPh3]PF6, according to a second-order rate law that is first order in concentrations of [η5-CpFe(CO)3]PF6 and of R-PyO but zero order in PPh3 concentration. These results, along with the dependence of the reaction rate on the nature of R-PyO, are consistent with an associative mechanism. Activation parameters further support the bimmolecular nature of the reactions: ΔH = 13.4 ± 0.4 kcal mol−1, ΔS = −19.1 ± 1.3 cal k−1 mol−1 for 4-PhPyO; ΔH = 12.3 ± 0.3 kcal mol−1, ΔS = 24.7 ±1.0 cal K−1 mol−1 for 2-MePyO. For the various substituted pyridine N-oxides studied in this paper, the rates of reaction increase with the increasing electron-donating abilities of the substituents on the pyridine ring or N-oxide basicities, but decrease with increasing 17O chemical shifts of the N-oxides. Electronic and steric factors contributing to the reactivity of pyridine N-oxides have been quantitatively assessed.  相似文献   

4.
Deuterium to hydrogen ratios of 14 plant species from a salt marsh and lagoon were 55‰ depleted in deuterium relative to the environmental water. Carbon tetrachloride-extractable material from these plants was another 92‰ depleted in deuterium. This gave a fractionation factor from water to CCl4 extract of 1.147. This over-all fractionation was remarkably constant for all species analyzed. Plants also discriminate against 13C, particularly in the lipid fraction. Data suggest that different mechanisms for carbon fixation result in different fractionations of the carbon isotopes. Herbivore tissues reflected the isotopic ratios of plants ingested. Apparently different metabolic processes are responsible for the different degrees of fractionation observed for hydrogen and carbon isotopes.  相似文献   

5.
We investigate the effect of the prostaglandin D2 metabolite Δ12−PGD2 (9−Deoxy−Δ9, Δ12−13,14-dihydroprostaglandin D2) on collagen synthesis in human osteoblast. Δ12-PGJ2 at 10−5M enhanced collagen synthesis in the presence of 2 mM α-glycerophosphate-2Na. The stimulative effect appeared as early as 3 days after addition and continued until 22 days. The enhancement of type I collagen synthesis was confirmed by polyacrylamide gel electrophoresis. The potency was the same as 101t-8M 1 α, 25 dihydroxy vitamine D3 (1,25(OH)2D3). Northern blot analysis showed that 10−5M Δ 12-PGD2 and 10−8M 1,25(OH)2D3 enhanced the transcribtion of type 1 procollagen (α1) mRNA levels in osteoblasts.  相似文献   

6.
The rate constants k12n for isomerization of the E1H isomer (pKa 8 in H2O) of ribonuclease-A to the E2H isomer (pKa = 6.1 in H2O), determined from proton-uptake measurements by the temperature-jump technique, in mixtures of protium and deuterium oxides (atom fraction of deuterium n), are described by the equation k12n = (733 ± 16)(1 − n + [0.46 ± 0.04]n)(1 − n + 0.69n)2sec−1 at 25°C. On the basis of the absolute magnitude of the rate constant, the magnitude of the solvent isotope effect and the proton inventory, it appears that the rate-determining step is proton transfer to a water molecule from the imidazolium form of a histidine residue, with a product-like activated complex resembling a hydronium ion. The subsequent motion of the protein structure to generate the new isomer (conformation change) must then occur in a time approaching a vibrational period. Alternative but less likely mechanisms include rate-limiting protein reorganization concerted with proton transfer to water, rate-limiting diffusion of hydronium ion away from the enzyme, or “solvation catalysis” of protein reorganization.  相似文献   

7.
Rate constants for C(α)-proton transfer from racemic 2-(1-hydroxyethyl)-3,4-dimethylthi-oazolium ion catalyzed by lyoxide ion and various oxygen-containing and amine buffers were determined by iodination at 25°C and ionic strength 1.0 in H2O. Thermodynamically unfavorable C(α)-proton transfer to oxygen-containing and amine bases shows general base catalysis with a Brønsted β value of ≥0.92 for bases of pKa ≤ 15; this indicates that the thermodynamically favorable protonation reaction in the reverse direction has a Brønsted α value ≤0.08, which is consistent with diffusion-controlled reprotonation of the C(α)-enamine by most acids. General base catalysis is detectable because there is an 85-fold negative deviation from the Brønsted correlation by hydroxide ion. Primary kinetic isotope effects of (kH/kD)obsd = 1.0 for thermodynamically unfavorable proton transfer to buffer bases and hydroxide ion (ΔpKa ≤ −6) and a secondary solvent isotope effect of kDO/kHO = 2.3 for C(α)-proton transfer are consistent with a very late, enamine-like transition state and rate-limiting diffusional separation of buffer acids from the C(α)-enamine in the rate-limiting step, as expected for a “normal” acid. The second-order rate constants for catalysis by buffer bases were used to calculate a pKa of 21.8 for the C(α)-proton assuming a rate constant of 3 × 109 −1 s−1 for the diffusion-controlled reprotonation of the C(α)-enamine by buffer acids in the reverse direction. It is concluded (i) that C(α)-proton removal occurs at the maximum possible rate for a given equilibrium constant, and (ii) that C(α)-enamines can have a significant lifetime in aqueous solution and on thiamin diphosphate-dependent enzymes.  相似文献   

8.
We report for the first time abnormalities in cardiac ventricular electrophysiology in a genetically modified murine model lacking the Scn3b gene (Scn3b−/−). Scn3b−/− mice were created by homologous recombination in embryonic stem (ES) cells. RT-PCR analysis confirmed that Scn3b mRNA was expressed in the ventricles of wild-type (WT) hearts but was absent in the Scn3b−/− hearts. These hearts also showed increased expression levels of Scn1b mRNA in both ventricles and Scn5a mRNA in the right ventricles compared to findings in WT hearts. Scn1b and Scn5a mRNA was expressed at higher levels in the left than in the right ventricles of both Scn3b−/− and WT hearts. Bipolar electrogram and monophasic action potential recordings from the ventricles of Langendorff-perfused Scn3b−/− hearts demonstrated significantly shorter ventricular effective refractory periods (VERPs), larger ratios of electrogram duration obtained at the shortest and longest S1–S2 intervals, and ventricular tachycardias (VTs) induced by programmed electrical stimulation. Such arrhythmogenesis took the form of either monomorphic or polymorphic VT. Despite shorter action potential durations (APDs) in both the endocardium and epicardium, Scn3b−/− hearts showed ΔAPD90 values that remained similar to those shown in WT hearts. The whole-cell patch-clamp technique applied to ventricular myocytes isolated from Scn3b−/− hearts demonstrated reduced peak Na+ current densities and inactivation curves that were shifted in the negative direction, relative to those shown in WT myocytes. Together, these findings associate the lack of the Scn3b gene with arrhythmic tendencies in intact perfused hearts and electrophysiological features similar to those in Scn5a+/− hearts.  相似文献   

9.
The aim of this study was to determine whether hyperreninemia in the adrenalectomized (ADX) rat is dependent on renal prostaglandin synthesis, as has been suggested for two other hyperreninemic conditions, Bartter's syndrome and chronic liver disease.Plasma renin concentration (PRC) in anesthetized, ADX rats was significantly increased (Δ +480%; p < 0.001) compared to sham-operated controls. , indomethacin (10 mg/kg i.v.) significantly reduced PRC of anesthetized, ADX rats after both 45 min (Δ −34%; p < 0.05) and 90 min (Δ −47%; p < 0.05). renin release from renal cortical slices of ADX rats was also significantly greater (Δ +130%; p < 0.05) than from sham-operated control cortical slices. Renin release from cortical slices of ADX rats given dexamethasone (10 μg/kg/day) for 4 days prior to sacrifice did not differ from sham-operated control values.Prostaglandin E2 (PGE2) release from cortical slices of ADX rats did not differ significantly from controls. However, PGE2 synthesis in glomeruli microdissected from ADX rats was significantly increased (Δ +110%; p < 0.001) compared to controls. PGE2 synthesis in glomeruli of dexamethasone-treated ADX rats remained significantly elevated compared to controls. Ibuprofen (10−6 M) decreased PGE2 synthesis in cortical slices by 80%. However, prostaglandin synthesis inhibition had no effect on renin release from either ADX or control renal cortical slices.These results suggest that despite increased glomerular synthesis, prostaglandins do not directly influence renin release in the ADX rat.  相似文献   

10.
The chloroimide 3,3-dichloro-4-(dichloromethylene)-2,5-pyrrolidinedione, a tetrachloroitaconimide, is the principal mutagen produced by chlorination of simulated poultry chiller water. It is the second most potent mutagenic disinfection by-product of chlorination ever reported. Six of seven new synthetic analogs of this compound are direct-acting mutagens in Ames tester strain TA-100. Computed energies of the lowest unoccupied molecular orbital (ELUMO) and of the radical anion stability (ΔHfrad−ΔHf) from MNDO-PM3 for the chloroimides show a quantitative correlation with the Ames TA-100 bacterial mutagenicity values. The molar mutagenicities of these direct acting mutagenic imides having an exocyclic double bond fit the same linear correlation (ln Mm vs. ELUMO; ln Mm vs. ΔHfrad−ΔHf) as the chlorinated 2(5H)-furanones, including the potent mutagen MX, 3-chloro-4-(dichloro-methyl)-5-hydroxy-2(5H)-furanone, a by-product of water chlorination and paper bleaching with chlorine. Mutagenicity data for related haloimides having endocyclic double bonds are also given. For the same number of chlorine atoms, the imides with endocyclic double bonds have significantly higher Ames mutagenicity compared to their structural analogs with exocyclic double bonds, but do not follow the same ELUMO or ΔHfrad−ΔHf correlation as the exocyclic chloroimides and the chlorinated 2(5H)-furanones.  相似文献   

11.
The kinetics of formation of the complex ion, μ-carbonato-di-μ-hydroxo-bis((1,5-diamino-3-aza-pentane) cobalt(III), from the tri-μ-hydroxo-bis((1,5-diamino-3-aza-pentane(III)cobalt(III)) ion in aqueous buffered carbonate solution have been studied spectrophotometrically at 295 nm over the ranges 20.0θ°C34.8, 8.03pH9.44, 5 mM [CO32−35 mM and at an ionic strength of 0.1 M (LiClO4). On the basis of the kinetic results a mechanism, involving rapid cleavage of an hydroxo bridge followed by carbon dioxide uptake with subsequent bridge formation, has been proposed. At 25 °C, the rate of the carbon dioxide uptake is 0.58 M−1 s−1 with ΔH≠ = (13.2±0.7) kcal mol−1 and ΔS≠ = (−15.1 ± 0.7) cal deg−1 mol−1. The results are composed with those obtained for several mononuclear cobalt(III) and one dinuclear cobalt(III) complexes.  相似文献   

12.
Lipid phase transitions in Escherichia coli membranes and in dispersions of the extracted lipids were studied using the negatively charged fluorescence probe 1-anilinonaphthalene-8-sulfonate (ANS) and the hydrophobic fluorescence probe N-phenyl-1-naphthylamine (NPN). The fluorescence change, ΔI, at the phase transition approaches a limiting value (ΔI)lim with increasing dye concentration. A comparison of the limiting values (Δ)limNPN obtained for membranes and the lipid standard allows us to estimate the lipid fraction, ρ, in the membrane that takes part in the phase transition (ρ = 80%). The same procedure carried out with ANS yields a value of 42.5% for the lipid fraction that is accessible from the aqueous phase. These values, combined with published freeze-etching data for the particle density within the fracture plane of membranes are used to quantify the Davson-Danielli-Robertson-Benson-Singer membrane model which assumes a fluid lipid bilayer with “integral” proteins embedded in the lipid matrix and surface proteins attached to the lipid head groups. It appears that on the average one “integral” membrane protein is surrounded by about 600 lipid molecules and that about 130 of these molecules are closely coupled to the protein molecule, forming an halo in which the chain-chain interaction between the lipids is disturbed. About half of the bilayer surface is covered with proteins; part of these seem to be stacked.  相似文献   

13.
The gain-of-function Scn5a+/ΔKPQ mutation in the cardiac Na+ channel causes human long QT type 3 syndrome (LQT3) associated with ventricular arrhythmogenesis. The KATP channel-opener nicorandil (20 μM) significantly reduced arrhythmic incidence in Langendorff-perfused Scn5a+/Δ hearts during programmed electrical stimulation; wild-types (WTs) showed a total absence of arrhythmogenicity. These observations precisely correlated with alterations in recently established criteria for re-entrant excitation reflected in: (1) shortened left-ventricular epicardial but not endocardial monophasic action potential durations at 90% repolarization (APD90) that (2) restored transmural repolarization gradients, ΔAPD90. Scn5a+/Δ hearts showed longer epicardial but not endocardial APD90s, giving shorter ΔAPD90s than WT hearts. Nicorandil reduced epicardial APD90 in both Scn5a+/Δ and WT hearts thereby increasing ΔAPD90. (3) Reduced epicardial critical intervals for re-excitation; Scn5a+/Δ hearts showed greater differences between APD90 and ventricular effective refractory period than WT hearts that were reduced by nicorandil. (4) Reduced APD90 alternans. Scn5a+/Δ hearts showed greater epicardial and endocardial alternans than WTs, which increased with pacing rate. Nicorandil reduced these in Scn5a+/Δ hearts to levels indistinguishable from untreated WTs. (5) Flattened restitution curves. Scn5a+/Δ hearts showed larger epicardial and endocardial critical diastolic intervals than WT hearts. Nicorandil decreased these in Scn5a+/Δ and WT hearts. The presence or absence of arrhythmogenesis in Scn5a+/Δ and WT hearts thus agreed with previously established criteria for re-entrant excitation, and alterations in these precisely correlated with the corresponding antiarrhythmic effects of nicorandil. Together these findings implicate spatial and temporal re-entrant mechanisms in arrhythmogenesis in LQT3 and their reversal by nicorandil.  相似文献   

14.
The synthesis and pharmacology of 15 1-deoxy-Δ8-THC analogues, several of which have high affinity for the CB2 receptor, are described. The deoxy cannabinoids include 1-deoxy-11-hydroxy-Δ8-THC (5), 1-deoxy-Δ8-THC (6), 1-deoxy-3-butyl-Δ8-THC (7), 1-deoxy-3-hexyl-Δ8-THC (8) and a series of 3-(1′,1′-dimethylalkyl)-1-deoxy-Δ8-THC analogues (2, n=0–4, 6, 7, where n=the number of carbon atoms in the side chain−2). Three derivatives (1719) of deoxynabilone (16) were also prepared. The affinities of each compound for the CB1 and CB2 receptors were determined employing previously described procedures. Five of the 3-(1′,1′-dimethylalkyl)-1-deoxy-Δ8-THC analogues (2, n=1–5) have high affinity (Ki=<20 nM) for the CB2 receptor. Four of them (2, n=1–4) also have little affinity for the CB1 receptor (Ki=>295 nM). 3-(1′,1′-Dimethylbutyl)-1-deoxy-Δ8-THC (2, n=2) has very high affinity for the CB2 receptor (Ki=3.4±1.0 nM) and little affinity for the CB1 receptor (Ki=677±132 nM).
Scheme 3. (a) (C6H5)3PCH3+ Br, n-BuLi/THF, 65°C; (b) LiAlH4/THF, 25°C; (c) KBH(sec-Bu)3/THF, −78 to 25°C then H2O2/NaOH.  相似文献   

15.
Long-lived metastable states involving multiple binding sites of a protein ligand with immobilized alkyl residues on a solid phase can be observed at high ionic strength between butyl agaroses (5.21 μ mol/ml packed gel) and phosphorylase b by perturbations enforcing either the on-reaction (adsorption) or the off-reaction (desorption). These apparent equilibrium states are suggested because the adsorption isotherms of phosphorylase b on butyl agaroses are not retraced by the desorption isotherms. In this first example of macromolecular adsorption hysteresis on immobilized alkyl residues, it can be shown that the irreversible entropy (ΔiS) produced in an adsorption-desorption cycle lies between 6 (5 μ mol/ml packed gel) and 40 (21 μ mol/ml packed gel) J mol 1 K−1. For the latter gel the apparent standard entropy of adsorption (ΔaSi0′) is 160 J mol−1 K−1. The metastable state observed during adsorption is probably due to an energy barrier which must be overcome for the nucleation of protein binding on the matrix. Other metastable states may possibly be encountered during desorption when the adsorbed enzyme resists the breakage of hydrophobic interactions. In the transition from the adsorption branch to the desorption branch of the hysteresis loop, the apparent affinity of the enzyme-matrix interaction is enhanced. For the desorption branch, the apparent association constant of half-maximal saturation corresponds to Kd,0.5′ = 4.2 × 109 ]m−1 as compared to the respective constant of adsorption Ka, 0.5′ = 1.6 × 105m−1 (gel: 21μ mol/ml packed gel). Since the area of the hysteresis loops (see also ΔiS) depends strongly on the density of butyl residues on the gel, it is concluded that the number of alkyl residues interacting with the protein molecule is crucial for the metastable states and hysteresis. It is unlikely that hysteresis is due to the pore structure of the agarose or to nearest neighbour interactions of ligand molecules. Since thermodynamic irreversibility and hysteresis may be encountered when macromolecules, such as proteins, are adsorbed to cell membranes or cell organelles: an analysis and understanding of these phenomena should be of general biological significance.  相似文献   

16.
Reaction between lanthanum nitrate hexahydrate and a macrobicyclic polyether in ethanol has yielded a product of overall stoichiometry 3:2. The ligand, 21R, 26S, 29R, 34S-21, 22, 23, 24, 25, 26, 29, 30, 31,32,33, 34-dodecahydro-1,4,7,14,17,20,28,35-octaoxa (23,29syn218,34syn) (7.7) orthocyclophane, L, provides 8 oxygen donor atoms. Crystals were obtained from MeOH/EtOH (50/50). Crystal structure determination on 9590 observations, R=0.059, has shown the triclinic unit cell, a = 26.562(6), b = 13.486(3), c = 12.154(3) Å, α=63.9(1), β = 100.0(1), γ = 102.0(1)° space group P , V = 3806 Å to contain, as the asymmetric unit, two complex cations (La(NO3)2L)+ and one complex anion (La- (NO3)5MeOH)2−. The lanthanum is 11-coordinated in the anion and one of the cations, in which there is one bidentate and one monodentate nitrate anion and 12-coordinated in the other cation. For the monodentate nitrate La---O = 2.448(9) Å, all other nitrate ions are bidentate (La---O = 2.594(9)−2.743(10) Å). Most La---O bonds are shorter in the 11 than in the 12-coordinated cation. There are large differences in La---O bond lengths according to the nature of the carbon atoms to which the oxygen is attached. The methanol molecule forms a hydrogen bond to one oxygen atom of the monodentate nitrate group.  相似文献   

17.
OH…N ? O?…H+N hydrogen bonds formed between N-all-transretinylidene butylamine (Schiff base) and phenols (1:1) are studied by IR spectroscopy. It is shown that both proton limiting structures of these hydrogen bonds have the same weight with Δ pKa (50%) = (pKa protonated Schiff base minus pKa phenol) = 5.5. With the largely symmetrical systems, continua demonstrate that these hydrogen bonds show great proton polarizability. In the Schiff base + tyrosine system in a non-polar solvent the residence time of the proton at the tyrosine residue is much larger than that at the Schiff base. In CH2CCl2 these hydrogen bonds show, however, still proton polarizability, i.e., the position of the proton transfer equilibrium OH…N ? O?…H+N is shifted to and fro as function of the nature of the environment of this hydrogen bond. Consequences regarding bacteriorhodopsin are discussed.  相似文献   

18.
The seasonal variability of specific growth rate and the carbon stable isotope ratio (δ13C) of leaf blades (δ13Cleaf) of a temperate seagrass, Zostera marina (within 10 days old) were measured simultaneously, together with the δ13C of dissolved inorganic carbon (δ13CDIC) at three sites in the semi-closed Akkeshi estuary system, northeastern Japan, in June, September, and November 2004. The δ13Cleaf ranged from −16.2 to −6.3‰ and decreased from summer to winter. The simultaneous measurement of the δ13Cleaf, growth rate, and morphological parameters (mean leaf length and width, mean number of leaves per shoot, and sheath length) of the seagrass and δ13CDIC in the surrounding water allowed us to compare directly the δ13Cleaf and specific growth rate of seagrass. The difference in the δ13C of seagrass leaves relative to the source DIC (Δδ13Cleaf − DIC) was the least negative (−11 to −7‰) in June at all three sites and became more negative (−17 to −8‰) as the specific growth rate decreased. This positive correlation between Δδ13Cleaf − DIC and specific growth rate can be used to diagnose the growth of seagrasses. Δδ13Cleaf − DIC changed by −1.7 ± 0.2‰ when the leaf specific growth rate decreased by 1% d−1.  相似文献   

19.
Proton motive force (pmf) is physiologically stored as either a ΔpH or a membrane potential (Δψ) across bacterial and mitochondrial energetic membranes. In the case of chloroplasts, previous work (Cruz et al. 2001, Biochemistry 40: 1226–1237) indicates that Δψ is a significant fraction of pmf, in vivo, and in vitro as long as the activities of counterions are relatively low. Kinetic analysis of light-induced changes in the electrochromic shift (ECS) in intact leaves was consistent with these observations. In this work, we took advantage of the spectroscopic properties of the green alga, Chlamydomonas reinhardtii, to demonstrate that light-driven Δψ was stored in vivo over the hours time scale. Analysis of the light-induced ECS kinetics suggested that the steady-state Δψ in 400 μmol photons m−2 s−1 red light was between 20 and 90 mV and that this represented about 60% of the light-induced increase in pmf. By extrapolation, it was surmised that about half of total (basal and light-induced) pmf is held as Δψ. It is hypothesized that Δψ is stabilized either by maintaining low chloroplast ionic strength or by active membrane ion transporters. In addition to the strong implications for regulation of photosynthesis by the xanthophyll cycle, these results imply that pmf partitioning is important across a wide range of species.  相似文献   

20.
Aqueous biphasic systems (ABS) are suitable for the separation of small organic molecules in industrial and environmental applications and thus, it is important to correlate partitioning behavior of model organic solutes with their structure in order to develop predictive models. The partitioning behavior of five, uncharged, substituted benzenes (benzene, toluene, chlorobenzene, 1,4-dichlorobenzene and 1,2,4-trichlorobenzene) were studied in ABS prepared from stock solutions of 40% (w/w) PEG-2000 and increasing concentrations of four water-structuring salts (K3PO4, K2CO3, (NH4)2SO4 and NaOH). For a given solute and a defined concentration of salt, the partition coefficients increase as the ΔGhyd value of the salt anion becomes more negative (e.g., Dbenzene increases in the order OH<SO42<CO32<PO43). In a given salt, the distribution ratios increase in the order benzene<toluene<chlorobenzene<1,4-dichlorobenzene<1,2,4-trichlorobenzene. The partitioning behavior of the solutes in PEG–salt ABS was found to be strongly correlated with their partitioning coefficients in 1-octanol–water biphasic systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号