首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
《Insect Biochemistry》1989,19(6):573-579
The synthetic peptide Gly-Arg-Gly-Asp-Ser (GRGDS) (which corresponds to a fragment of fibronectin and contains its cell adhesion sequence RGD) caused degranulation and spreading of monolayers of isolated granular haemocytes of the crayfish Pacifastacus leniusculus in vitro. When coated on glass coverslips, this RGD-containing peptide could mediate cell attachment of granular cells in vitro. A control peptide, Gly-Arg-Gly-Glu-Ser (GRGES), did not have these activities.Thus, GRGDS imitates the biological activities in vitro of the cell adhesion factor recently purified from crayfish haemocytes. This suggests that the sequence Arg-Gly-Asp (RGD), which is responsible for the cell adhesion activities of a number of vertebrate proteins, may also be involved in degranulation and cell adhesion of arthropod haemocytes.This is the first report describing direct activities by an RGD-containing peptide towards invertebrate cells in vitro, and the first indication of the presence of an RGD-recognizing receptor on invertebrate haemocytes.  相似文献   

2.
Effect of cyclic RGD peptide on cell adhesion and tumor metastasis.   总被引:20,自引:0,他引:20  
Several kinds of cyclic peptides containing an L-arginine-glycine-L-aspartic acid RGD sequence were synthesized by the liquid phase method, and we investigated their effects on the attachment of mouse B16 melanoma cells onto fibronectin-coated well. Cyclo (GRGDSPA) inhibited the cell attachment at a 20-fold lower concentration than the linear form. The cell adhesion was inhibited by the synthetic peptides with the following relative order of activity: cyclo (GRGDSPA) much greater than cyclo (GRGD) greater than cyclo (RGDS), cyclo (GRGDSP) greater than cyclo (GRGDS) greater than cyclo (RGDSP), cyclo (RGDSPA). Cyclo (GRGDSPA) was more effective at inhibiting cell attachment to vitronectin than it was at competing with fibronectin attachment, as reported in the case of GRGDSP. Moreover, cyclo (GRGDSPA) significantly reduced the formation of colonies in mice injected with B16-FE7 melanoma cells.  相似文献   

3.
EphA2, a member of the Eph receptor family, is frequently overexpressed in a variety of human cancers, including breast cancers, and promotes cancer cell motility and invasion independently of its ligand ephrin stimulation. In this study, we identify Ephexin4 as a guanine nucleotide exchange factor (GEF) for RhoG that interacts with EphA2 in breast cancer cells, and knockdown and rescue experiments show that Ephexin4 acts downstream of EphA2 to promote ligand-independent breast cancer cell migration and invasion toward epidermal growth factor through activation of RhoG. The activation of RhoG recruits its effector ELMO2 and a Rac GEF Dock4 to form a complex with EphA2 at the tips of cortactin-rich protrusions in migrating breast cancer cells. In addition, the Dock4-mediated Rac activation is required for breast cancer cell migration. Our findings reveal a novel link between EphA2 and Rac activation that contributes to the cell motility and invasiveness of breast cancer cells.  相似文献   

4.
During Xenopus laevis gastrulation, the basic body plan of the embryo is generated by movement of the marginal zone cells of the blastula into the blastocoel cavity. This morphogenetic process involves cell adhesion to the extracellular matrix protein fibronectin (FN). Regions of FN required for the attachment and migration of involuting marginal zone (IMZ) cells were analyzed in vitro using FN fusion protein substrates. IMZ cell attachment to FN is mediated by the Arg-Gly-Asp (RGD) sequence located in the type III-10 repeat and by the Pro-Pro-Arg- Arg-Ala-Arg (PPRRAR) sequence in the type III-13 repeat of the Hep II domain. IMZ cells spread and migrate persistently on fusion proteins containing both the RGD and synergy site sequence Pro-Pro-Ser-Arg-Asn (PPSRN) located in the type III-9 repeat. Cell recognition of the synergy site is positionally regulated in the early embryo. During gastrulation, IMZ cells will spread and migrate on FN whereas presumptive pre-involuting mesoderm, vegetal pole endoderm, and animal cap ectoderm will not. However, animal cap ectoderm cells acquire the ability to spread and migrate on the RGD/synergy region when treated with the mesoderm inducing factor activin-A. These data suggest that mesoderm induction activates the position-specific recognition of the synergy site of FN in vivo. Moreover, we demonstrate the functional importance of this site using a monoclonal antibody that blocks synergy region-dependent cell spreading and migration on FN. Normal IMZ movement is perturbed when this antibody is injected into the blastocoel cavity indicating that IMZ cell interaction with the synergy region is required for normal gastrulation.  相似文献   

5.
Selenium is an essential dietary element with antioxidant roles in immune regulation, but there is little understanding of how this element acts at the molecular level in host defense and inflammatory disease. Selenium is incorporated into the amino acid selenocysteine (Sec), which in turn is inserted into selenoproteins in a manner dependent on Sec tRNA([Ser]Sec). To investigate the molecular mechanism that links selenium to T cell immunity, we generated mice with selenoprotein-less T cells by cell type-specific ablation of the Sec tRNA([Ser]Sec) gene (trsp). Herein, we show that these mutant mice exhibit decreased pools of mature T cells and a defect in T cell-dependent antibody responses. We also demonstrate that selenoprotein deficiency leads to oxidant hyperproduction in T cells and thereby suppresses T cell proliferation in response to T cell receptor stimulation. These findings offer novel insights into immune function of selenium and physiological antioxidants.  相似文献   

6.
Arginyl-glycyl-aspartic acid (RGD): a cell adhesion motif   总被引:34,自引:0,他引:34  
The tripeptide Arg-Gly-Asp (RGD) was originally identified as the sequence within fibronectin that mediates cell attachment. The RGD motif has now been found in numerous other proteins and supports cell adhesion in many, but not all, of these. The integrins, a family of cell-surface proteins, act as receptors for cell adhesion molecules. A subset of the integrins recognize the RGD motif within their ligands, the binding of which mediates both cell-substratum and cell-cell interactions. RGD peptides and mimetics, in addition to providing insights into the fundamental mechanisms of cell adhesion, are potential therapeutic agents for the treatment of diseases such as thrombosis and cancer.  相似文献   

7.
A synthetic oligopeptide, composed of Arg-Gly-Asp (RGD) and its synergistic Pro-His-Ser-Arg-Asn (PHSRN) motifs and a six glycines (G6) linker, promoted human osteoblast-like cell (MG-63) adhesion, spreading and mitogen-activated protein kinase (MAPK) activity in a similar manner to a positive fibronectin control. This synthetic oligopeptide may therefore be a useful osteo-inductive material.  相似文献   

8.
Lactoferrin (LF) is an iron-binding secretory protein, which is distributed in the secondary granules of polynuclear lymphocytes as well as in the milk produced by female mammals. Although it has multiple functions, for example antimicrobial, immunomodulatory, antiviral, and anti-tumor metastasis activities, the receptors responsible for these activities are not fully understood. In this study, the binding epitopes for human LF were first isolated from a hexameric random peptide library displayed on T7 phage. Interestingly, two of the four isolated peptides had a representative cell adhesion motif, Arg-Gly-Asp (RGD), implying that human LF interacts with proteins with the RGD motif. We found that human LF bound to the RGD-containing human extracellular matrix proteins, fibronectin and vitronectin. Furthermore, human LF inhibited cell adhesion to these matrix proteins in a concentration-dependent manner but not to the RGD-independent cell adhesion molecule like laminin or collagen. These results indicate that a function of human LF is to block the various interactions between the cell surface and adhesion molecules. This may explain the multifunctionality of LF.  相似文献   

9.
The morphology and function of endothelial cells depends on the physical and chemical characteristics of the extracellular environment. Here, we designed silicon surfaces on which topographical features and surface densities of the integrin binding peptide arginine-glycine-aspartic acid (RGD) could be independently controlled. We used these surfaces to investigate the relative importance of the surface chemistry of ligand presentation versus surface topography in endothelial cell adhesion. We compared cell adhesion, spreading and migration on surfaces with nano- to micro-scaled pyramids and average densities of 6×10(2)-6×10(11) RGD/mm(2). We found that fewer cells adhered onto rough than flat surfaces and that the optimal average RGD density for cell adhesion was 6×10(5) RGD/mm(2) on flat surfaces and substrata with nano-scaled roughness. Only on surfaces with micro-scaled pyramids did the topography hinder cell migration and a lower average RGD density was optimal for adhesion. In contrast, cell spreading was greatest on surfaces with 6×10(8) RGD/mm(2) irrespectively of presence of feature and their size. In summary, our data suggest that the size of pyramids predominately control the number of endothelial cells that adhere to the substratum but the average RGD density governs the degree of cell spreading and length of focal adhesion within adherent cells. The data points towards a two-step model of cell adhesion: the initial contact of cells with a substratum may be guided by the topography while the engagement of cell surface receptors is predominately controlled by the surface chemistry.  相似文献   

10.
Binding of type‐1 plasminogen activator inhibitor (PAI‐1) to cell surface urokinase (uPA) promotes inactivation and internalization of adhesion receptors (e.g., urokinase receptor (uPAR), integrins) and leads to cell detachment from a variety of extracellular matrices. In this report, we begin to examine the mechanism of this process. We show that neither specific antibodies to uPA, nor active site inhibitors of uPA, can detach the cells. Thus, cell detachment is not simply the result of the binding of macromolecules to uPA and/or of the inactivation of uPA. We further demonstrate that another uPA inhibitor, protease nexin‐1 (PN‐1), also stimulates cell detachment in a uPA/uPAR‐dependent manner. The binding of both inhibitors to uPA leads to the specific inactivation of the matrix‐engaged integrins and the subsequent detachment of these integrins from the underlying extracellular matrix (ECM). This inhibitor‐mediated inactivation of integrins requires direct interaction between uPAR and those integrins since cells attached to the ECM through integrins incapable of binding uPAR do not respond to the presence of either PAI‐1 of PN‐1. Although both inhibitors initiate the clearance of uPAR, only PAI‐1 triggers the internalization of integrins. However, cell detachment by PAI‐1 or PN‐1 does not depend on the endocytosis of these integrins since cell detachment was also observed when clearance of these integrins was blocked. Thus, PAI‐1 and PN‐1 induce cell detachment through two slightly different mechanisms that affect integrin metabolism. These differences may be important for distinct cellular processes that require controlled changes in the subcellular localization of these receptors. J. Cell. Physiol. 220: 655–663, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

11.
Disintegrins are a family of small proteins containing an Arg-Gly-Asp (RGD) sequence motif that binds specifically to integrin receptors. Since the integrin is known to serve as the final common pathway leading to aggregation via formation of platelet-platelet bridges, disintegrins act as fibrinogen receptor antagonists. Here, we report the first crystal structure of a disintegrin, trimestatin, found in snake venom. The structure of trimestatin at 1.7A resolution reveals that a number of turns and loops form a rigid core stabilized by six disulfide bonds. Electron densities of the RGD sequence are visible clearly at the tip of a hairpin loop, in such a manner that the Arg and Asp side-chains point in opposite directions. A docking model using the crystal structure of integrin alphaVbeta3 suggests that the Arg binds to the propeller domain, and Asp to the betaA domain. This model indicates that the C-terminal region is another potential binding site with integrin receptors. In addition to the RGD sequence, the structural evidence of a C-terminal region (Arg66, Trp67 and Asn68) important for disintegrin activity allows understanding of the high affinity and selectiveness of snake venom disintegrin for integrin receptors. The crystal structure of trimestatin should provide a useful framework for designing and developing more effective drugs for controlling platelet aggregation and anti-angiogenesis cancer.  相似文献   

12.
Recombinant human tenascin peptide (hTNCIII3) that includes the Arg-Gly-Asp (RGD) cell recognition site was expressed in Escherichia coli using a prokaryotic expression system. Addition of recombinant hTNCIII3 peptide enhanced cell adhesion and survival of human chondrocytes by about 3-fold in each case.  相似文献   

13.
Components of the plasminogen activation system including urokinase (uPA), its inhibitor (PAI‐1) and its cell surface receptor (uPAR) have been implicated in a wide variety of biological processes related to tissue homoeostasis. Firstly, the binding of uPA to uPAR favours extracellular proteolysis by enhancing cell surface plasminogen activation. Secondly, it promotes cell adhesion and signalling through binding of the provisional matrix protein vitronectin. We now report that uPA and plasmin induces a potent negative feedback on cell adhesion through specific cleavage of the RGD motif in vitronectin. Cleavage of vitronectin by uPA displays a remarkable receptor dependence and requires concomitant binding of both uPA and vitronectin to uPAR. Moreover, we show that PAI‐1 counteracts the negative feedback and behaves as a proteolysis‐triggered stabilizer of uPAR‐mediated cell adhesion to vitronectin. These findings identify a novel and highly specific function for the plasminogen activation system in the regulation of cell adhesion to vitronectin. The cleavage of vitronectin by uPA and plasmin results in the release of N‐terminal vitronectin fragments that can be detected in vivo, underscoring the potential physiological relevance of the process.  相似文献   

14.
Interactions between Schwann cells and axons are critical for the development and function of myelinated axons. Two recent studies (see Maurel et al. on p. 861 of this issue; Spiegel et al., 2007) report that the nectin-like (Necl) proteins Necl-1 and -4 are internodal adhesion molecules that are critical for myelination. These studies suggest that Necl proteins mediate a specific interaction between Schwann cells and axons that allows proper communication of the signals that trigger myelination.  相似文献   

15.
Beta(1) integrins play a crucial role in supporting tumor cell attachment to and invasion into the extracellular matrix. Endotoxin/LPS introduced by surgery has been shown to enhance tumor metastasis in a murine model. Here we show the direct effect of LPS on tumor cell adhesion and invasion in extracellular matrix proteins through a beta(1) integrin-dependent pathway. The human colorectal tumor cell lines SW480 and SW620 constitutively expressed high levels of the beta(1) subunit, whereas various low levels of alpha(1), alpha(2), alpha(4), and alpha(6) expression were detected. SW480 and SW620 did not express membrane-bound CD14; however, LPS in the presence of soluble CD14 (sCD14) significantly up-regulated beta(1) integrin expression; enhanced tumor cell attachment to fibronectin, collagen I, and laminin; and strongly promoted tumor cell invasion through the Matrigel. Anti-beta(1) blocking mAbs (4B4 and 6S6) abrogated LPS- plus sCD14-induced tumor cell adhesion and invasion. Furthermore, LPS, when combined with sCD14, resulted in NF-kappaB activation in both SW480 and SW620 cells. Inhibition of the NF-kappaB pathway significantly attenuated LPS-induced up-regulation of beta(1) integrin expression and prevented tumor cell adhesion and invasion. These results provide direct evidence that although SW480 and SW620 cells do not express membrane-bound CD14, LPS in the presence of sCD14 can activate NF-kappaB, up-regulate beta(1) integrin expression, and subsequently promote tumor cell adhesion and invasion. Moreover, LPS-induced tumor cell attachment to and invasion through extracellular matrix proteins is beta(1) subunit-dependent.  相似文献   

16.
Extraordinarily high concentrations of Zn (300-500 microg/[g fresh tissue]) are often found in the digestive tract tissue of common carp Cyprinus carpio, and most of the Zn is bound to membrane protein located on plasma membranes that are attached to basal laminae. To isolate the Zn-binding protein, the basolateral plasma membranes were separated from the extracellular matrix by treating the nuclei/cell debris fraction of the tissue with collagenase type IV and Arg-Gly-Asp (RGD) peptide. The Zn-binding protein was isolated from the separated plasma membranes by immobilized metal affinity chromatography and affinity chromatography on laminin-Sepharose. A 43 kDa protein was bound by the laminin-Sepharose and specifically eluted with tirofiban (a mimic of RGD). Affinity chromatography on wheat germ agglutinin and concanavalin A-Sepharose showed that the 43 kDa protein is a glycoprotein. The 43 kDa protein was labelled with 65Zn and became incorporated into liposomes at a high efficiency. Liposomes containing this protein were bound to laminin-Sepharose or reconstituted basement membrane. We propose that the Zn-binding protein is a cell surface receptor involved in the adhesion of cells to laminin.  相似文献   

17.
The movement of cells up an adhesive substratum gradient has been proposed as a mechanism for directing cell migration during development and metastasis. Critical evaluation of this hypothesis (haptotaxis) benefits from the use of quantifiable, stable substratum gradients of biologically relevant adhesion molecules. We report covalent derivatization of polyacrylamide surfaces with quantifiable gradients of a nonapeptide containing the adhesive Arg-Gly-Asp sequence. Cell migration was studied by seeding derivatized surfaces evenly with B16F10 murine melanoma cells. Within 8 hr, cells on gradients redistributed markedly; higher cell densities were found at gel positions having higher immobilized peptide densities. In contrast, cells seeded on control gels with uniform concentrations of adhesive peptide did not redistribute. Redistribution occurred on gradients in both serum-free and serum-containing media. Experiments with uniform density peptide-derivatized gels demonstrated that redistribution on gradients was not due to preferential initial cell attachment or preferential growth on the higher density of immobilized peptide, but must have been due to cell translocation. Cells on exponential gradients of immobilized peptide migrated to a position on the gel surface corresponding to the highest immobilized peptide density, while cells on linear gradients of the same peptide migrated to a position of intermediate peptide density. These data suggest that the B16F10 cells respond to proportional changes in immobilized peptide density rather than to absolute changes, implying a sensing mechanism which utilizes adaptation. These results demonstrate that (1) a gradient of a small adhesive peptide is sufficient to generate redistribution of cell populations and (2) controlled quantifiable substratum gradients can be produced and used to probe the underlying cellular mechanisms of this behavior.  相似文献   

18.
Type XVII collagen (BP180) is a keratinocyte transmembrane protein that exists as the full-length protein in hemidesmosomes and as a 120-kDa shed ectodomain in the extracellular matrix. The largest collagenous domain of type XVII collagen, COL15, has been described previously as a cell adhesion domain (Tasanen, K., Eble, J. A., Aumailley, M., Schumann, H., Baetge, J, Tu, H., Bruckner, P., and Bruckner-Tuderman, L. (2000) J. Biol. Chem. 275, 3093-3099). In the present work, the integrin binding of triple helical, human recombinant COL15 was tested. Solid phase binding assays using recombinant integrin alpha(1)I, alpha(2)I, and alpha(10)I domains and cell spreading assays with alpha(1)beta(1)- and alpha(2)beta(1)-expressing Chinese hamster ovary cells showed that, unlike other collagens, COL15 was not recognized by the collagen receptors. Denaturation of the COL15 domain increased the spreading of human HaCaT keratinocytes, which could migrate on the denatured COL15 domain as effectively as on fibronectin. Spreading of HaCaT cells on the COL15 domain was mediated by alpha(5)beta(1) and alpha(V)beta(1) integrins, and it could be blocked by RGD peptides. The collagen alpha-chains in the COL15 domain do not contain RGD motifs but, instead, contain 12 closely related KGD motifs, four in each of the three alpha-chains. Twenty-two overlapping, synthetic peptides corresponding to the entire COL15 domain were tested; three peptides, all containing the KGD motif, inhibited the spreading of HaCaT cells on denatured COL15 domain. Furthermore, this effect was lost by mutation from D to E (KGE instead of KGD). We suggest that the COL15 domain of type XVII collagen represents a specific collagenous structure, unable to interact with the cellular receptors for other collagens. After being shed from the cell surface, it may support keratinocyte spreading and migration.  相似文献   

19.
Highly selective molecular binding and the subsequent dynamic protein assemblies control the adhesion of mammalian cells. Molecules that inhibit cell adhesion have the therapeutic potential for a wide range of diseases. Here, we report an efficient synthesis (2–4 steps) of a class of squaramide molecules that mimics the natural tripeptide ligand Arg-Gly-Asp (RGD) that mediates mammalian cell adhesion through binding with membrane protein integrin. In solution, this class of squaramides exhibits a higher potency at inhibiting mammalian cell adhesion than RGD tripeptides. When immobilized on a bio-inert background formed by self-assembled monolayers of alkanethiols on gold films, squaramide ligands mediate vastly different intracellular structures than RGD ligands. Immunostaining revealed that the focal adhesions are smaller, but with a larger quantity, for cells adhered on squaramides than that on RGD ligands. Furthermore, the actin filaments are also more fibrous and well distributed for cell adhesion mediated by squaramide than that by RGD ligands. Quantification reveal that squaramide ligands mediate about 1.5 times more total focal adhesion (measured by the summation of the area of all focal adhesions) than that by natural RGD ligands. This result suggests that cell adhesion inhibitors, while blocking the attachment of cells to surfaces, may induce more focal adhesion proteins. Finally, this work demonstrates that immobilizing new ligands on bioinert surfaces provide a powerful tool to study mammalian cell adhesion.  相似文献   

20.
Restricted expression of activated leukocyte cell adhesion molecule (ALCAM) by hematopoietic cells suggests an important role in the immune system and hematopoiesis. To get insight into the mechanisms that control ALCAM-mediated adhesion we have investigated homotypic ALCAM-ALCAM interactions. Here, we demonstrate that the cytoskeleton regulates ALCAM-mediated cell adhesion because inhibition of actin polymerization by cytochalasin D (CytD) strongly induces homotypic ALCAM-ALCAM interactions. This induction of cell adhesion is likely due to clustering of ALCAM at the cell surface, which is observed after CytD treatment. Single-particle tracking demonstrated that the lateral mobility of ALCAM in the cell membrane is increased 30-fold after CytD treatment. In contrast, both surface distribution and adhesion of a glycosylphosphatidylinositol (GPI)-anchored ALCAM mutant are insensitive to CytD, despite the increase in lateral mobility of GPI-ALCAM upon CytD treatment. This demonstrates that clustering of ALCAM is essential for cell adhesion, whereas enhanced diffusion of ALCAM alone is not sufficient for cluster formation. In addition, upon ligand binding, both free diffusion and the freely dragged distance of wild-type ALCAM, but not of GPI-ALCAM, are reduced over time, suggesting strengthening of the cytoskeleton linkage. From these findings we conclude that activation of ALCAM-mediated adhesion is dynamically regulated through actin cytoskeleton-dependent clustering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号