首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects on CTL recognition of individual amino acid substitutions within epitopes I, II, and III of SV40 tumor Ag (T Ag) were examined. Epitope I spans amino acids 207 to 215, and epitope II/III is within residues 223 to 231 of SV40 T Ag. An amino acid substitution at position 207 (Ala----Val) or 214 (Lys----Glu) of SV40 T Ag expressed in transformed cells resulted in loss of epitope I, recognized by CTL clone Y-1. The amino acid substitution at residue 214 in the corresponding synthetic peptide, LT207-215(214-Lys----Glu), also led to loss of recognition by CTL clone Y-1. The recognition, by CTL clone Y-1, of peptides LT207-215 and LT207-217 with an Ala----Val substitution at position 207 was severely affected. Peptides LT205-215 and LT205-219 with the Ala----Val substitution at residue 207 were, however, recognized by CTL clone Y-1, suggesting that residues 205 and 206 may be involved in presentation of site I. Alteration of residue 224 (Lys----Glu) in the native T Ag resulted in loss of recognition by both CTL clones Y-2 and Y-3. However, a peptide corresponding to epitope II/III with an identical amino acid substitution at residue 224 provided a target for CTL clone Y-3 but not clone Y-2. A change of Lys----Gln at residue 224 in both the native protein and a synthetic peptide caused loss of recognition by CTL clone Y-2 but not CTL clone Y-3. Further, an amino acid substitution of Lys----Arg at position 224 of the native T Ag decreased recognition of epitope II/III by CTL clones Y-2 and Y-3 but had no effect on recognition of a synthetic peptide bearing the same substitution. These results indicate that the mutagenesis approach, resulting in identical amino acid substitutions in the native protein and in the synthetic peptides, may provide insight into the role of individual residues in the processing, presentation, and recognition of CTL recognition epitopes.  相似文献   

2.
SV40-transformed cells of C57BL/6 (B6) mouse origin (H-2b) express four distinct predominant antigenic sites, I, II, III, and IV, on SV40 large tumor (T) Ag that are recognized by SV40 T Ag-specific CTL clones. In this study, we selected SV40 T Ag-positive cell lines which had lost one or more of the antigenic sites, by in vitro cocultivation of a SV40-transformed B6 mouse kidney cell line (K-0) with SV40 T Ag site-specific CTL clones, Y-1 (site I specific), Y-2 (site II specific), Y-3 (site III specific), and Y-4 (site IV specific). All of the CTL-resistant cell lines expressed large quantities of cell surface H-2 class I Ag. K-1 cells selected by CTL clone Y-1 lost the expression of antigenic sites I, II, and III, but not site IV. K-2 and K-3 cells selected by CTL clones Y-2 and Y-3, respectively, were found to be negative for sites II and III but expressed sites I and IV. K-4 cells selected by CTL clone Y-4 lost the expression of only site IV. K-1,4 cells (sites I-, II-, III-, IV-) were selected from K-1 cells by cocultivation with CTL clone Y-4, K-2,4 cells (sites I+, II-, III-, IV-) were selected from K-2 cells by CTL clone Y-4. K-3,1 cells (sites I-, II-, III-, IV+) were selected from K-3 cells by CTL clone Y-1, and K-3,1,4 cells (sites I-, II-, III-, IV-) were selected from K-3,1 cells by CTL clone Y-4. From K-4 cells, K-4,1 cells (sites I-, II-, III-, IV-) and K-4,3 cells (sites I+, II-, III-, IV-) were selected by CTL clone Y-1 and Y-3, respectively. The antigenic site loss variant cell lines K-1, K-1,4, K-3,1 K-3,1,4, K-4,1, and K-4,3 synthesized SV40 T Ag molecules of 75, 75, 78, 78, 81, and 88 kDa, respectively. Expression of wild-type SV40 T Ag in the antigenic site loss variants by infection with SV40 or transfection with cloned SV40 DNA restored the CTL recognition sites on the variant cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Simian virus 40 (SV40) tumor (T) antigen expressed in H-2b SV40-transformed cells induces the generation of Lyt-2+ (CD8+) cytotoxic T lymphocytes (CTL), which are involved in tumor rejection, in syngeneic mice. Five CTL recognition sites on T antigen have been described by using mutant T antigens. Four of the sites (I, II, III, and V) are H-2Db restricted and have been broadly mapped with synthetic peptides of 15 amino acids in length overlapping by 5 residues at the amino and carboxy termini. The goal of this study was to define the minimal and optimal amino acid sequences of T antigen which would serve as recognition elements for the H-2Db-restricted CTL clones Y-1, Y-2, Y-3, and Y-5, which recognizes sites I, II, III, and V, respectively. The minimal and optimal residues of T antigen recognized by the four CTL clones were determined by using synthetic peptides truncated at the amino or carboxy terminus and an H-2Db peptide-binding motif. The minimal site recognized by CTL clone Y-1 was defined as amino acids 207 to 215 of SV40 T antigen. However, the optimal sequence recognized by CTL clone Y-1 spanned T-antigen amino acids 205 to 215. The T-antigen peptide sequence LT223-231 was the optimal and minimal sequence recognized by both CTL clones Y-2 and Y-3. Site V was determined to be contained within amino acids 489 to 497 of T antigen. The lytic activities of CTL clones Y-2 and Y-3, which recognize a single nonamer peptide, LT223-231, were affected differently by anti-Lyt-2 antibody, suggesting that the T-cell receptors of these two CTL clones differ in their avidities. As the minimal and optimal H-2Db-restricted CTL recognition sites have been defined by nonamer synthetic peptides, it is now possible to search for naturally processed H-2Db-restricted epitopes of T antigen and identify critical residues involved in processing, presentation, and recognition by SV40-specific CTL.  相似文献   

4.
Five distinct cytotoxic T-lymphocyte (CTL) recognition sites were identified in the simian virus 40 (SV40) T antigen by using H-2b cells that express the truncated T antigen or antigens carrying internal deletions of various sizes. Four of the CTL recognition determinants, designated sites I, II, III, and V, are H-2Db restricted, while site IV is H-2Kb restricted. The boundaries of CTL recognition sites I, II, and III, clustered in the amino-terminal half of the T antigen, were further defined by use of overlapping synthetic peptides containing amino acid sequences previously determined to be required for recognition by T-antigen site-specific CTL clones by using SV40 deletion mutants. CTL clone Y-1, which recognizes epitope I and whose reactivity is affected by deletion of residues 193 to 211 of the T antigen, responded positively to B6/PY cells preincubated with a synthetic peptide corresponding to T-antigen amino acids 205 to 219. CTL clones Y-2 and Y-3 lysed B6/PY cells preincubated with large-T peptide LT220-233. To distinguish further between epitopes II and III, Y-2 and Y-3 CTL clones were reacted with SV40-transformed cells bearing mutations in the major histocompatibility complex class I antigen. Y-2 CTL clones lysed SV40-transformed H-2Dbm13 cells (bm13SV) which carry several amino acid substitutions in the putative antigen-binding site in the alpha 2 domain of the H-2Db antigen but not bm14SV cells, which contain a single amino acid substitution in the alpha 1 domain. Y-3 CTL clones lysed both mutant transformants. Y-1 and Y-5 CTL clones failed to lyse bm13SV and bm14SV cells; however, these cells could present synthetic peptide LT205-219 to CTL clone Y-1 and peptide SV26(489-503) to CTL clone Y-5, suggesting that the endogenously processed T antigen yields fragments of sizes or sequences different from those of synthetic peptides LT205-219 and SV26(489-503).  相似文献   

5.
Simian virus 40 (SV40) large T antigen can immortalize a wide variety of mammalian cells in culture. We have taken advantage of this property of T antigen to use it as a carrier for the expression of cytotoxic T-lymphocyte (CTL) recognition epitopes. DNA sequences corresponding to an H-2Db-restricted SV40 T-antigen site I (amino acids 205 to 215) were translocated into SV40 T-antigen DNA at codon positions 350 and 650 containing EcoRI linkers. An H-2Kb-restricted herpes simplex virus glycoprotein B epitope (amino acids 498 to 505) was also expressed in SV40 T antigen at positions 350 and 650. Primary C57BL/6 mouse kidney cells were immortalized by transfection with the recombinant and wild-type T-antigen DNA. Clonal isolates of cells expressing chimeric T antigens were shown to be specifically susceptible to lysis by CTL clones directed to SV40 T-antigen site I and herpes simplex virus glycoprotein B epitopes, indicating that CTL epitopes restricted by two different elements can be processed, presented, and recognized by the epitope-specific CTL clones. Our results suggest that SV40 T antigen can be used as a carrier protein to express a wide variety of CTL epitopes.  相似文献   

6.
Multiple antigenic sites on the simian virus 40 (SV40) tumor-specific transplantation antigen (TSTA) were detected by the use of cytotoxic T lymphocyte (CTL) clones isolated from continuous cultures of SV40-specific CTL (H-2b). Two independently derived clones, K11 and K19, specific for the SV40 TSTA in association with H-2Db, each recognized a different antigenic determinant of the SV40 TSTA. This conclusion was based on the observation that a human papovavirus BK virus (BKV) transformed cell line, which possesses a T antigen serologically cross-reactive with that of SV40, was lysed by a heterogeneous population of SV40-immune lymphocytes and by clone K19 but not by K11. Therefore, these CTL clones must recognize two different antigenic determinants of the SV40 TSTA:K19 recognizes a cross-reactive determinant of the SV40 and BKV TSTA, whereas K11 is reactive against an SV40-specific determinant.  相似文献   

7.
The existence of two distinct antigenic sites at the surface of simian virus 40 (SV40)-transformed H-2b cells has been previously demonstrated (A. E. Campbell, L. F. Foley, and S. S. Tevethia, J. Immunol. 130:490-492, 1983) by using two independently isolated SV40-specific cytotoxic T-lymphocyte (CTL) clones, K11 and K19. We identified amino acids in the amino-terminal half of SV40 T antigen that are essential for the recognition of antigenic sites by these CTL clones by using H-2b cells transformed by mutants that produce T antigen truncated from the amino-terminal or carboxy-terminal end or carrying overlapping internal deletions in the amino-terminal regions of SV40 T antigen. The results show that CTL clone K11 failed to recognize and lyse target cells missing SV40 T-antigen amino acids 189 to 211, whereas CTL clone K19 lysed these cells. The cell lines missing SV40 T-antigen amino acids 220 to 223 and 220 to 228 were not lysed by CTL clone K19 but were susceptible to lysis by CTL clone K11. Two other cell lines missing amino acids 189 to 223 and 189 to 228 of SV40 T antigen were not lysed by either of the CTL clones but were lysed by SV40-specific bulk-culture CTL if sufficient amounts of relevant restriction elements were expressed at the cell surface. The SV40 T-antigen amino acids critical for the recognition of an antigenic site by CTL clone K11 were identified to be 193 to 211; 220 to 223 were identified as critical for recognition by CTL clone K19. The deletion of these amino acids from the T antigen resulted in the loss of antigenic sites specific for CTL clones K11 and K19.  相似文献   

8.
Cytotoxic T-lymphocyte (CTL) clones specific for the influenza A/PR/8/34 virus hemagglutinin (HA) were isolated by priming CBA mice with a recombinant vaccinia virus expressing the HA molecule. The epitopes recognized by two of these clones, which were CD8+, Kk restricted, and HA subtype specific, were defined by using a combination of recombinant vaccinia viruses expressing HA fragments and synthetic peptides. One epitope is in the HA1 subunit at residues 259 to 266 (numbering from the initiator methionine), amino acid sequence FEANGNLI, and the other epitope is in the HA2 subunit at residues 10 to 18 (numbering from the amino terminus of the HA2 subunit), sequence IEGGWTGMI. These two peptides are good candidates for naturally processed HA epitopes presented during influenza infection, as they are the same length (eight and nine residues) as other naturally processed viral peptides presented to CTL. A comparison of the sequences of these two new epitopes with those of the three previously published Kk-restricted T-cell epitopes showed some homology among all of the epitopes, suggesting a binding motif. In particular, an isoleucine residue at the carboxy-terminal end is present in all of the epitopes. On the basis of this homology, we predicted that the Kk-restricted epitope in influenza virus nucleoprotein, previously defined as residues 50 to 63, was contained within residues 50 to 57, sequence SDYEGRLI. This shorter peptide was found to sensitize target cells at a 200-fold lower concentration than did nucleoprotein residues 50 to 63 when tested with a CTL clone, confirming the alignment of Kk-restricted epitopes.  相似文献   

9.
C3H fibroblasts transformed in vitro with SV40 were adapted to in vivo growth. Several clones were isolated from a single, highly oncogenic tumor and those that displayed oncogenic potential also no longer expressed the H-2Kk molecule. Using the technique of Southern blot hybridization, the H-2 genes and integrated SV40 sequences present in the genomic DNA of several of these clones have been examined and compared with both the parent line and normal liver genomic DNA from C3H mice. All H-2Kk negative clones had altered H-2 genes that appeared as a gain and, depending on the restriction endonuclease, loss of hybridizing fragments compared to normal C3H DNA. A 5.5-kb fragment missing from the Sstl digests of the H-2Kk negative variants was mapped to the H-2Kk region of the major histocompatability complex with the use of congenic mice. This provided direct evidence that a mutation had occurred in the H-2Kk region. The integrated SV40 sequences were similar to those already seen in other SV40 transformed cells and not closely linked to any of the H-2 genes. There was no indication that the H-2 mutation was caused by integration of SV40.  相似文献   

10.
HLA-A2.1 and HLA-A2.3, which differ from one another at residues 149, 152, and 156, can be distinguished by the mAb CR11-351 and many allogeneic and xenogeneic CTL. Site-directed mutagenesis was used to incorporate several different amino acid substitutions at each of these positions in HLA-A2.1 to evaluate their relative importance to serologic and CTL-defined epitopes. Recognition by mAb CR11-351 was completely lost when Thr but not Pro was substituted for Ala149. A model to explain this result based on the 3-dimensional structure of HLA-A2.1 is presented. In screening eight other mAb, only the substitutions of Pro for Val152 or Gly for Leu156 led to the loss of mAb binding. Because other non-conservative substitutions at these same positions had no effect, these results suggest that the loss of serologic epitopes is in many cases due to a more indirect effect on molecular conformation. Specificity analysis using 28 HLA-A2.1-specific alloreactive and xenoreactive CTL clones showed 19 distinct patterns of recognition. The epitopes recognized by alloreactive CTL clones demonstrated a pronounced effect by all substitutions at residue 152, including the very conservation substitution of Ala for Val. Overall, the most disruptive substitution at amino acid residue 152 was Pro, followed by Glu, Gln, and then Ala. In contrast, substitutions at 156 had little or no effect on allogeneic CTL recognition, and most clones tolerated either Gly, Ser, or Trp at this position. Similar results were seen using a panel of murine HLA-A2.1-specific CTL clones, except that substitutions at position 156 had a greater effect. The most disruptive substitution was Trp, followed by Ser and then Gly. In addition, when assessed on the entire panel of CTL, the effects of Glu and Gln substitutions at position 152 demonstrated that the introduction of a charge difference is no more disruptive than a comparable change in side chain structure that does not alter charge. Taken together, these results indicate that the effect of amino acid replacements at positions 152 and 156 on CTL-defined epitopes depends strongly on the nature of the substitution. Thus, considerable caution must be exercised in evaluating the significance of particular positions on the basis of single mutations. Nonetheless, the more extensive analysis conducted here indicates that there are differences among residues in the class I Ag "binding pocket," with residue 152 playing a relatively more important role in formation of allogeneic CTL-defined epitopes than residue 156.  相似文献   

11.
BALB/c-H-2dm2 mice (H-2KdI-AdI-EdDd), a congenic strain of BALB/c mice, have a deletion of the class I MHC Ag, H-2Ld. This gene encodes the exclusive class I MHC-restricting gene product for vesicular stomatitis virus-specific cytolytic T lymphocytes. When dm2 mice were immunized with infectious vesicular stomatitis virus, a specific CTL response was generated. These CTL lysed VSV-infected targets that expressed Iad gene products, but not VSV-infected Iad- targets. The CTL were used initially as long term cytolytic lines; 13 CTL clones were derived by limit dilution. All of the clones expressed the phenotype CD3+, CD4+, CD8-; some clones expressed TCR that are members of the V beta 8 family, others did not. The clones were restricted by class II MHC Ag, both I-Ad and I-Ed serving as restricting elements for individual clones of the panel. All of the clones derived from dm2 mice were specific for the immunizing serotype, Indiana, of VSV and did not lyse syngeneic cells infected with VSV of the New Jersey serotype. Studies using defective interfering virus particles, UV light-inactivated virus, and purified micelles of the viral glycoprotein indicated that infectious virus was not required for sensitization of target cells for immune recognition by the class II MHC-restricted CTL clones. Additional studies using recombinant vaccinia virus vectors to sensitize targets confirmed the specificity of the clones for the viral glycoprotein. These studies also demonstrated a cryptic population of class II-restricted CTL in BALB/c lines specific for VSV G. Naturally occurring variant viruses and mutant viruses, selected for escape from neutralization by mAb, were used in an effort to map the determinant(s) recognized; on the basis of patterns of target cell lysis, three groups of epitopes recognized by the clones were defined. Therefore, in the absence of the class I MHC Ag required for a CTL response to VSV, dm2 mice generated CTL with the CD4+ phenotype that recognized different epitopes on the viral glycoprotein, and lysed cells in a class II-MHC restricted, Ag-specific manner.  相似文献   

12.
DNA rearrangements in the form of deletions and duplications are found within and near integrated simian virus 40 (SV40) DNA in nonpermissive cell lines. We have found that rearrangements also occur frequently with integrated pSV2neo plasmid DNA. pSV2neo contains the entire SV40 control region, including the origin of replication, both promoters, and the enhancer sequences. Linearized plasmid DNA was electroporated into X1, an SV40-transformed mouse cell line that expresses SV40 large T antigen (T Ag) and shows very frequent rearrangements at the SV40 locus, and into LMtk-, a spontaneously transformed mouse cell line that contains no SV40 DNA. Stability was analyzed by subcloning G-418-resistant clones and examining specific DNA fragments for alterations in size. Five independent X1 clones containing pSV2neo DNA were unstable at both the neo locus and the T Ag locus. By contrast, four X1 clones containing mutants of pSV2neo with small deletions in the SV40 core origin and three X1 clones containing a different neo plasmid lacking SV40 sequences were stable at the neo locus, although they were still unstable at the T Ag locus. Surprisingly, five independent LMtk- clones containing pSV2neo DNA were unstable at the neo locus. LMtk- clones containing origin deletion mutants were more stable but were not as stable as the X1 clones containing the same plasmid DNA. We conclude that the SV40 origin of replication and early control region are sufficient viral components for the genomic instability at sites of SV40 integration and that SV40 T Ag is not required.  相似文献   

13.
Hemi-exon shuffling and site-directed mutagenesis have been used to determine which amino acid differences between HLA-A2.1 and HLA-A2.2 alter the CTL-defined epitopes on these two molecules. Two genes were constructed that encode novel molecules in which the effect of amino acid differences at residues 9, 43, and 95, or at residue 156 could be separately evaluated. Using both human and murine CTL that were specific for either HLA-A2.1 or HLA-A2.2, four types of epitopes were identified: 1) epitopes that were insensitive to substitutions at either residues 9, 43, and 95, or residue 156 but were lost when all four positions were changed; 2) epitopes that were dependent on the residues 9, 43, 95, but not residue 156; 3) epitopes that were dependent on residue 156, but not amino acid residues 9, 43, and 95; and 4) epitopes that were dependent on residues 9, 43, and 95, as well as amino acid residue 156. Overall, there was a roughly equal distribution of clones recognizing each of these types of epitopes. Additional molecules were constructed by hemi-exon shuffling between the HLA-A2.2 and HLA-A2.3 genes, and by site-directed mutagenesis, to analyze the epitopes recognized by two HLA-A2.2/A2.1 cross-reactive murine CTL that do not recognize HLA-A2.3. Although the epitopes recognized by these CTL were unaffected by changes occurring at residues 9, 43, and 95, or at residues 149, 152, and 156 alone, simultaneous changes in both of these regions acted in concert to destroy the epitopes. Both of the CTL recognized epitopes that were lost when substitutions were made at residues 9, 43, 95, 149, and 152. The epitope recognized by one of the CTL was also destroyed by the substitution of residues 9, 43, 95, 152, and 156. Overall, these results indicate that residues 9, 43, and 95, as well as residues in the alpha-helical region of the molecule, are all capable of contributing to the definition of the epitopes recognized by HLA-A2.1- and HLA-A2.2-specific CTL. They further indicate that some epitopes can be mapped to a particular region of the molecule, whereas other epitopes are formed through a complex interaction of residues in distant regions of the molecule.  相似文献   

14.
We established rat T cell lines expressing human T cell leukemia virus type I (HTLV-I) Ag from inbred strains of rats, WKA/H, DA, and F344, to study CTL response against the HTLV-I-infected cells. HTLV-I-specific Ag expressed in these rat cells were HTLV-I gag Ag, p19, p24, and p15, and pX Ag, p40tax and p27rex, but not env Ag, as determined by immunofluorescence and immunoblot assays. By immunization of rats with syngeneic HTLV-I-infected cells, CTL against syngeneic HTLV-I-infected cells and antibodies to HTLV-I Ag were generated in WKA/H and DA rats. The bulk CTL cultures from WKA/H and DA rats lysed specifically syngeneic SV40-transformed kidney cells infected with recombinant vaccinia viruses (RVV) expressing HTLV-I gag and pX Ag, but not those infected with RVV expressing HTLV-I env Ag or a control vaccinia virus. From WKA/H rat CTL cultures, four CTL clones reactive with syngeneic HTLV-I-infected cells were isolated, three of which were specific for p27rex/p21x, but the Ag recognized by the other CTL clone was not defined with any RVV used. These results indicate that HTLV-I gag and pX gene products are recognized by MHC-restricted rat CTL specific for syngeneic HTLV-I-infected cells.  相似文献   

15.
Therapeutic vaccination against cutaneous T cell lymphoma (CTCL) requires the characterization of cancer cell-specific CTL epitopes. Despite reported evidence for tumor-reactive cytotoxicity in CTCL patients, the nature of the recognized determinants remains elusive. The clonotypic TCR of CTCL cells is a promising candidate tumor-specific Ag. In this study, we report that the clonotypic and framework regions of the TCRs expressed in the malignant T cell clones of six CTCL patients contain multiple peptides with anchor residues fitting the patients' MHC class I molecules. We demonstrate that TCR peptide-specific T cells from the blood of healthy donors and patients can be induced to become cytotoxic effectors after repeated stimulation with 6 of 11 selected peptides with experimentally proven affinity for HLA-A*0201. Importantly, 4 of these 6 CTL lines reproducibly recognize and lyse autologous primary CTCL cells in MHC class I/CD8-dependent fashion. These tumoricidal CTL lines are directed against epitopes from V, hypervariable, and C regions of TCRalpha. We therefore conclude that recombined as well as V framework regions of the tumor cell TCRs contain predictable epitopes for CTL-mediated attack of CTCL cells. Our data further suggest that such peptides represent valuable tools for future anti-CTCL vaccination approaches.  相似文献   

16.
HLA-B27 subtype polymorphism is amenable to differential recognition by CTL. Site-directed mutagenesis was used to construct a series of HLA-B27 mutants reproducing most of the changes occurring in the natural subtypes. The reactivity of 21 anti-HLA-B27 CTL clones was examined with these mutants to address three issues concerning the alloreactive response against HLA-B27: 1) diversity of clonotypic specificities, 2) structural features of the epitopes recognized by these clones, and 3) role of individual positions in the differential recognition of HLA-B27 subtypes. Virtually all CTL clones displayed unique reaction patterns with the mutants, indicating a corresponding diversity of epitopes. However, these share some molecular features, such as certain amino acid residues and related locations. Individual mutations induced complex effects on multiple B27-specific CTL epitopes, revealing some of their very precise stereochemical constrains. An important feature of HLA-B27 subtype polymorphism is that every individual change was relevant, altering recognition by many CTL clones. Although the specific set affected by each mutation was partially different, the global number of clones affected by most changes was very similar. This suggests that the antigenic profile of any given subtype is not dominated by one particular change but is uniquely defined by its corresponding set of changes. An exception was the change at position 152, which totally abrogated recognition by all 20 anti-B*2705 CTL clones. This effect decisively influences the profound differences in T cell recognition between B*2705 and the two subtypes, B*2704 and B*2706, carrying this change. The results are compatible with the idea that HLA-B27 allorecognition may involve multiple peptides bound to the alloantigen on the cell surface.  相似文献   

17.
Site-directed mutagenesis of HLA-A2.1 has been used to identify the amino acid substitutions in HLA-A2.3 that are responsible for the lack of recognition of the latter molecule by the HLA-A2/A28 specific antibody, CR11-351, and by HLA-A2.1 specific CTL. Three genes were constructed that encoded HLA-A2 derivatives containing one of the amino acids known to occur in HLA-A2.3: Thr for Ala149, Glu for Val152, and Trp for Leu156. Three additional genes were constructed that encoded the different possible combinations of two amino acid substitutions at these residues. Finally, a gene encoding all three substitutions and equivalent to HLA-A2.3 was constructed. These genes were transfected into the class I negative, human cell line Hmy2.C1R. Analysis of this panel of cells revealed that recognition by the antibody CR11-351 was completely lost when Thr was substituted for Ala149, whereas substitutions at amino acids 152 and 156, either singly or in combination, had no effect on the binding of this antibody. The epitopes recognized by the allogeneic and xenogeneic HLA-A2.1 specific CTL clones used in this study were all affected by either one or two amino acid substitutions. Of those epitopes sensitive to single amino acid changes, none were affected by the substitution of Thr for Ala149, whereas all of them were affected by at least one of the substitutions of Glu for Val 152 or Trp for Leu156. Overall, amino acid residue 152 exerted a stronger effect on the epitopes recognized by HLA-A2.1 specific CTL than did residue 156. Of those epitopes affected only by multiple amino acid substitutions, double substitutions at residues 149 and 152 or at 152 and 156 resulted in a loss of recognition, whereas a mutant with substitutions at residues 149 and 156 was recognized normally. This reemphasizes the importance of residue 152 and indicates that residue 149 can affect epitope formation in conjunction with another amino acid substitution. These results are discussed in the context of current models for the recognition of alloantigens and in light of the recently published three-dimensional structure of the HLA-A2.1 molecule.  相似文献   

18.
During tumor development in mice and humans, oncofetal Ag/immature laminin receptor (OFA/iLRP)-specific Th1, CTL, and IL-10-secreting T (Ts) cells are induced. The presence of too many Ts or too few effector T cells appears to predict a poor prognosis. We established clones of OFA/iLRP-specific splenic Th1, CTL, and Ts cells from the OFA/iLRP+ MCA1315 fibrosarcoma-bearing BALB/c mice or from BALB/c mice vaccinated with 1 or 10 microg of rOFA/iLRP. The MCA1315 tumor cell-reactive T cell clones were characterized as to surface Ag phenotype, cytokine secretion profile, and specificity for OFA/iLRP presented by syngeneic splenic APC. OFA/iLRP-specific Th1 and Ts clones were established from all mice. OFA/iLRP-specific CTL could be established from all mice except for mice immunized with 10 microg of rOFA/iLRP. Analysis of the proliferation profile of the OFA/iLRP-specific clones to overlapping OFA/iLRP 12-mer peptides that spanned the OFA/iLRP protein sequence defined the epitopes to which the T cell clones responded. There was a similar spatial distribution of the epitopes to which the two types of CD8 T cell clones responded. The nonapeptide epitopes of the Ts clones were located between aa 36 and 147 of OFA/iLRP, while the epitopes of the CTL clones were located between aa 52 and 163. Even though the CTL and Ts epitopes shared part of the protein, all of the CD8 CTL epitopes were distinct and separable from those of CD8 Ts cells.  相似文献   

19.
The androgen receptor (AR) is a hormone receptor that plays a critical role in prostate cancer, and depletion of its ligand has long been the cornerstone of treatment for metastatic disease. Here, we evaluate the AR ligand-binding domain (LBD) as an immunological target, seeking to identify HLA-A2-restricted epitopes recognized by T cells in prostate cancer patients. Ten AR LBD-derived, HLA-A2-binding peptides were identified and ranked with respect to HLA-A2 affinity and were used to culture peptide-specific T cells from HLA-A2+ prostate cancer patients. These T-cell cultures identified peptide-specific T cells specific for all ten peptides in at least one patient, and T cells specific for peptides AR805 and AR811 were detected in over half of patients. Peptide-specific CD8+ T-cell clones were then isolated and characterized for prostate cancer cytotoxicity and cytokine expression, identifying that AR805 and AR811 CD8+ T-cell clones could lyse prostate cancer cells in an HLA-A2-restricted fashion, but only AR811 CTL had polyfunctional cytokine expression. Epitopes were confirmed using immunization studies in HLA-A2 transgenic mice, in which the AR LBD is an autologous antigen with an identical protein sequence, which showed that mice immunized with AR811 developed peptide-specific CTL that lyse HLA-A2+ prostate cancer cells. These data show that AR805 and AR811 are HLA-A2-restricted epitopes for which CTL can be commonly detected in prostate cancer patients. Moreover, CTL responses specific for AR811 can be elicited by direct immunization of A2/DR1 mice. These findings suggest that it may be possible to elicit an anti-prostate tumor immune response by augmenting CTL populations using AR LBD-based vaccines.  相似文献   

20.
Induction of antitumor immunity involves the presence of both CD8(+) CTLs and CD4(+) Th cells specific for tumor-associated Ags. Attempts to eradicate cancer by adoptive T cell transfer have been limited due to the difficulty of generating T cells with defined Ag specificity. The current study focuses on the generation of CTL and Th cells against the tumor-associated Ag HER2 using autologous dendritic cells (DC) derived from CD34(+) hematopoietic progenitor cells which have been retrovirally transduced with the human epidermal growth factor receptor 2 (HER2) gene. HER2-transduced DC elicited HER2-specific CD8(+) CTL that lyse HER2-overexpressing tumor cells in context of distinct HLA class I alleles. The induction of both HLA-A2 and -A3-restricted HER2-specific CTL was verified on a clonal level. In addition, retrovirally transduced DC induced CD4(+) Th1 cells recognizing HER2 in context with HLA class II. HLA-DR-restricted CD4(+) T cells were cloned that released IFN-gamma upon stimulation with DC pulsed with the recombinant protein of the extracellular domain of HER2. These data indicate that retrovirally transduced DC expressing the HER2 molecule present multiple peptide epitopes and subsequently elicit HER2-specific CTL and Th1 cells. The method of stimulating HER2-specific CD8(+) and CD4(+) T cells with retrovirally transduced DC was successfully implemented for generating HER2-specific CTL and Th1 clones from a patient with HER2-overexpressing breast cancer. The ability to generate and expand HER2-specific, HLA-restricted CTL and Th1 clones in vitro facilitates the development of immunotherapy regimens, in particular the adoptive transfer of both autologous HER2-specific T cell clones in patients with HER2-overexpressing tumors without the requirement of defining immunogenic peptides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号