首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Caffeine alone causes DNA damage in Chinese hamster ovary cells   总被引:1,自引:0,他引:1  
Caffeine has been shown to enhance the lethal effect of DNA-damaging agents in mammalian cells, and the potentiation by caffeine of this effect is generally interpreted as the result of inhibition by caffeine of the repair of damaged DNA. However, the mechanism by which caffeine enhances the lethal effect of DNA-damaging agents has not yet been elucidated. During studies on the effect of caffeine on DNA repair, we found by alkaline elution analysis that caffeine alone produced DNA strand breaks or alkali labile sites in Chinese hamster ovary cells. The amount of DNA breakage or alkali labile sites depended on the concentration of caffeine. We propose that DNA breakage induced by caffeine may be involved in the enhancement of the lethal effect of DNA-damaging agents.  相似文献   

2.
The effect of exposure to elevated temperatures (41-45 degrees C) on the repair of radiation-induced DNA strand breaks was measured in monolayer cultured Chinese hamster ovary (CHO) cells. Prior exposure of cells to temperatures between 43 and 45 degrees C resulted in significant decreases in the rate of repair of DNA damage. Exposure to 45 degrees C for 15 min slowed the rate of DNA repair to 0.17 of the control repair rate. The To for inactivation of DNA repair was observed to be 34, 13 and 6 min at 43, 44 and 45 degrees C, respectively. Stepdown-heating (45 degrees C for 15 min followed by repair at 41 degrees C) resulted in greater inhibition of DNA repair (0.11 of the control rate) than was observed after acute heating alone. Repair at 41 degrees C was observed to proceed in unheated cells at a faster rate than at 37 degrees C. An Arrhenius analysis of the inactivation kinetics of DNA repair between 43 and 45 degrees C indicated an activation energy of 140 kcal mol-1 of protein for the inhibition of DNA repair. In general, the results were inconsistent with either a retardation of the DNA repair rate or an increase in unrepaired DNA lesions being responsible for heat-induced radiosensitization.  相似文献   

3.
We here present a general method to detect alkylation damage in specific genomic regions. Cells are treated with nitrogen mustard or dimethyl sulfate; the DNA is extracted and restricted, and the parental DNA is separated. Strand breaks are created at sites of N-alkylpurines by neutral depurination followed by alkaline hydrolysis. The DNA is then separated on alkaline agarose gels and transferred, and gene fragments are detected after hybridization with specific probes. Using this approach, we have examined damage formation and repair in the active genes dihydrofolate reductase and adenosine phosphoribosyltransferase, in a fragment containing the inactive c-fos gene and in a nontranscribed region downstream from the dihydrofolate reductase gene in Chinese hamster ovary cells. We find variations in the formation of nitrogen mustard adducts in these different regions. Nitrogen mustard adducts are preferentially repaired from the active genes as compared to the inactive gene and the noncoding region. However, we find no preferential damage or repair in these regions of the N7-methylpurines after dimethyl sulfate damage. Thus, there are significant differences in the repair mechanisms for two alkylating agents; this may implicate that there are important differences in the structural alterations in chromatin invoked by these agents. As a comparison to the studies of adduct levels in specific genomic regions, we have examined the overall genome, average adduct formation, and repair by these agents in the hamster cells. We used alkaline sucrose gradient sedimentation, and also a novel approach: quantitation of the DNA smears stained by ethidium bromide in the alkaline gels (used in the gene-selective repair analysis). Both these techniques gave similar data for adduct formation and repair; there was less initial damage formation and repair in the average genome than in specific genomic regions.  相似文献   

4.
Six X-ray-sensitive (xrs) strains of the CHO-K1 cell line were shown to revert at a very high frequency after treatment with 5-azacytidine. This suggested that there was a methylated xrs+ gene in these strains which was structurally intact, but not expressed. The xrs strains did not complement one another, and the locus was autosomally located. In view of the frequency of their isolation and their somewhat different phenotypes, we propose that the xrs strains are mutants derived from an active wild-type gene. However, there is in addition a methylated silent gene present in the genome. Azacytidine treatment reactivated this gene. We present a model for the functional hemizygosity of mammalian cell lines, which is based on the inactivation of genes by de novo hypermethylation. In contrast to results with xrs strains, other repair-defective lines were found not to be reverted by azacytidine.  相似文献   

5.
The interaction of haematoporphyrin derivative (HPD) photosensitization and gamma-irradiation was studied with regard to clonogenicity of Chinese hamster ovary (CHO) fibroblasts. Exposure to either treatment alone resulted in shouldered response curves. Exposure to 4.2 Gy gamma-radiation immediately before graded doses of visible light had no effect on the shape of the visible-light survival curve; similarly, exposure to 8.75 kJ/m2 light immediately before graded doses of gamma-radiation had no effect on the shape of the gamma-radiation response curve. These data indicate that damage due to gamma-radiation and HPD photosensitization did not interact, suggesting that the mechanisms of cell killing are different.  相似文献   

6.
7.
R G Hards  D Patterson 《Enzyme》1986,35(3):117-126
An intact cell assay system based on Tween 80 permeabilization was used to investigate glycinamide ribonucleotide (GAR) synthetase activity in human fibroblasts and Chinese hamster ovary cells. Optimal conditions for the assay of the enzyme were determined with regards to ATP, MgCl2, NH4Cl and ribose-5'-phosphate concentrations as well as pH. Using the optimal assay conditions, the Vmax values as determined by Lineweaver-Burke double reciprocal plots were found to be 5.19 nmol GAR formed/5 X 10(5) cells/30 min for the fibroblasts and 13.4 nmol GAR formed/5 X 10(5) cells/30 min for the Chinese hamster ovary cells.  相似文献   

8.
Summary A total of 3000 men living in Yamaguchi were screened for glucose-6-phosphate dehydrogenase (G6PD) deficiency using Beutler's spot test and three types of starch gel electrophoresis. These electrophoresis used a phosphate buffer system at pH 7.0, a TRIS-EDTA-borate buffer system at pH 8.6, and a TRIS-hydrochloride buffer system at pH 8.8. Fifteen G6PD-deficient variants were found at the rate of 0.5% and classified into four groups. As new variants, G6PD Konan, Kamiube, and Kiwa were identified. These three variants had a mild to moderate G6PD deficiency and were not associated with any clinical signs. G6PD Konan had fast electrophoretic mobility as compared with normal levels, G6PD Kiwa had slightly elevated electrophoretic mobility, and G6PD Kamiube had normal electrophoretic mobility. These three variants had normal levels of Km G6P, Km NADP, and Ki NADPH, normal utilizations of both 2-deoxy-G6P and deamino-NAPD, normal heat stability, and a normal pH curve. The other variant was G6PD Ube, which we had previously found in Yamaguchi (Nakashima et al., 1977). One boy with G6PD Ube was Korean.  相似文献   

9.
Using the in vitro human diploid fibroblast model, we tested theories of aging which hypothesize that either accumulation of DNA damage or decreased DNA repair capacity is causally related to cellular senescence. Between population doubling level (PDL) 32 and 71, fetal lung-derived normal diploid human fibroblasts (IMR 90) were assayed for both DNA single-strand breaks (SSBs, spontaneous and induced by 6 Gy) and DNA double-strand breaks (DSBs, spontaneous and induced by 100 Gy). After gamma-irradiation cells were kept on ice unless undergoing repair incubation at 37 degrees C for 7.5-120 min or 18-24 h. To assay DNA strand breaks we used the filter elution technique in conjunction with a fluorometric determination of DNA which is not biased in favor of proliferating aging cells as are radioactive labelling methods. We found no change with in vitro age in the accumulation of spontaneous SSBs or DSBs, nor in the kinetics or completeness of DNA strand rejoining after gamma-irradiation. Cells at varying PDLs rejoined approx. 90% of SSBs and DSBs after 60 min repair incubation and 100% after 18-24 h repair incubation. We conclude that aging and senescence as measured by proliferative lifespan in IMR 90 cells are neither accompanied nor caused by accumulation of DNA strand breaks or by diminished capacity to rejoin gamma-radiation-induced SSBs or DSBs in DNA.  相似文献   

10.
Untransformed Syrian hamster fibroblasts in exponential growth were exposed to a pulse of [3H]-thymidine for 5 min, followed immediately by bromodeoxyuridine, and serial samples were taken up to 16 h. Preparations were autoradiographed and stained for replication banding. No cell with replication bands was found without significant [3H]-thymidine uptake, although the extent of uptake varied between sub-phases of S. Thus there is no indication of a total cessation of synthesis at any period during S-phase.  相似文献   

11.
The photodynamic effect of the dye acridine orange (AO) in combination with visible light (400-700 nm) was studied in Chinese hamster ovary (CHO) cells, the endpoints investigated being induction, as well as repair, of DNA strand breaks. Cells were treated for 20 min with AO (0.1-3.0 micrograms/ml), washed free of excess dye and subsequently exposed to low doses of visible light (2 x 40 W/8 W/m2) for 5-15 min. AO proved to be an efficient sensitizer for light-induced DNA strand breaks, detected with the DNA precipitation assay, and expressed as percentage of DNA precipitated. The induction of breaks was linear up to 0.5 micrograms/ml AO + 10 min of light, which corresponds to 55% precipitated DNA, and was dependent on the concentration of AO as well as on the dose of light delivered. As a comparison, 18 Gy of X-rays was required to yield an equivalent amount of induced DNA strand breaks. The rejoining of the light-induced DNA strand breaks was studied by incubating the AO-sensitized cells for 30-120 min at 37 degrees C directly after light exposure. A fast recover of 67-91% of the damage (compared to initial damage, recovery time = 0, and dependent on the concentration of AO) was observed during the first 30 min of incubation. However, a significant amount of DNA damage remained after 2 h of recovery. These remaining, long-lived lesions might be involved in the photoinduced and acridine-sensitized chromosomal aberrations and sister-chromatid exchanges (SCE). The significance of these observations is discussed in relation to AO-sensitized and photoinduced DNA damage and chromosomal alterations.  相似文献   

12.
The formation and removal of UV-induced pyrimidine dimers were measured in restriction fragments near and within the essential dihydrofolate reductase (DHFR) gene in Chinese hamster ovary cells in order to map the genomic fine structure of DNA repair. Dimer frequencies were determined at 0, 8, and 24 h after irradiating the cells with 20 J/m2 UV light (254 nm). Within 8 h, the cells had removed more than 40% of the dimers from sequences near the 5' end of the gene, somewhat fewer from the 3' end, but only 2% from the 3' flanking region and 10% from a region upstream from the gene. The corresponding extent of repair in the genome as a whole is 5-10% in the 8-h period. Isoschizomeric restriction enzyme analysis was used to detect the level of methylation in the fragments in which repair was measured. We found that the only hypomethylated sites in and around the DHFR gene were in the fragment near its 5' end, which displayed maximal DNA repair efficiency. The size of the region of preferential DNA repair at the DHFR locus appears to be in the range of 50-80 kilobases, and this finding is discussed in relation to genomic domains and the structure of mammalian chromatin.  相似文献   

13.
The cytochemical study of DNA damage and repair in a Chinese hamster fibroblast culture exposed to gamma-rays and secondary radiation from 70 GeV protons showed no significant differences between the two types of radiation.  相似文献   

14.
DNA-repair endonuclease activity in response to UV-induced DNA damage was quantified in diploid human fibroblasts after synchronizing cell cultures to selected stages of the cell cycle. Incubation of irradiated cells with aphidicolin, an inhibitor of DNA polymerases alpha and delta, delayed the sealing of repair patches and allowed estimation of rates of strand incision by the repair endonuclease. The apparent Vmax for endonucleolytic incision and Km for substrate utilization were determined by Lineweaver-Burk and Eadie-Hofstee analyses. For cells passing through G1, S or G2, Vmax for reparative incision was, respectively, 7.6, 8.4 and 8.4 breaks/10(10) Da per min, suggesting that there was little variation in incision activity during these cell-cycle phases. The Km values of 2.4-3.1 J/m2 for these cells indicate that the nucleotidyl DNA excision-repair pathway operates with maximal effectiveness after low fluences of UV that are in the shoulder region of survival curves. Fibroblasts in mitosis demonstrated a severe attenuation of reparative incision. Rates of incision were 11% of those seen in G2 cells. Disruption of nuclear structure during mitosis may reduce the effective concentration of endonuclease in the vicinity of damaged chromatin. The extreme condensation of chromatin during mitosis also may restrict the accessibility of reparative endonuclease to sites of DNA damage. Confluence-arrested fibroblasts in G0 expressed endonuclease activity with Vmax of 5.5 breaks/10(10) Da per min and a Km of 5.5 J/m2. The greater condensation of chromatin in quiescent cells may restrict the accessibility of endonuclease to dimers and so explain the elevated Km. When fibroblasts were synchronized by serum-deprivation, little variation in reparative endonuclease activity was discerned as released cells transited from early G1 through late G1 and early S. Proliferating fibroblasts in G1 were shown to express comparatively high numbers of reparative incision events in the absence of aphidicolin which was normally used to inhibit DNA polymerases and hold repair patches open. It was calculated that in G0, S and G2 phase cells, single-strand breaks at sites of repair remained open for 30, 19 and 14 sec, respectively. In G1 phase cells, repair sites remained open for 126 sec. Addition of deoxyribonucleosides to G1 cells reduced this time to 42 sec suggesting that the slower rate of synthesis and ligation of repair patches in G1 was due to a relative deficiency of deoxyribonucleotidyl precursors for DNA polymerase.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
Human diploid cells cultured in vitro provide an excellent model system for the study of aging. In this study, we examined the formation and rejoining of DNA single-strand breaks (SSBs) induced by X-rays in human lung diploid fibroblasts during senescence, by using a modified alkaline elution method. For detecting the formation and rejoining of DNA SSBs, conventional [14C]thymidine (TdR)-labeling and fluorometric methods were applied to dividing cells and to the whole cell population including non-dividing and slowly-dividing cells, respectively. We did not find any significant differences in the rejoining ability of X-ray-induced SSBs in human diploid cells at almost all population doubling levels, although only in terminally senescent cells the rejoining of SSBs seems to proceed more slowly. However, it was observed that the alkaline elution of DNA from unirradiated and X-irradiated cells seems to become faster with increasing in population doubling number, although there were no remarkable differences in the elution rates of DNA as measured by the [14C]TdR-labeling method and those measured by the fluorometric method. These results seem to suggest that the molecular size of DNA in human diploid cells in culture decreases with aging.  相似文献   

16.
The occurrence of DNA repair in UV- (254 nm) and X-irradiated normal human diploid fibroblasts maintained in a quiescent, nondividing state using low serum (0.5%) medium was ascertained. Techniques that detect different steps of the excision repair process were used so that the extent of completion of repair at single sites could be determined. These included measuring the disappearance of pyrimidine dimers by chromatography, detecting repair synthesis by density-gradient and autoradiographic methods and detecting the rejoining of repaired regions and repair of x-ray-induced single-strand DNA breaks using alkaline sucrose gradients. Results show that dimer excision occurs and the subsequent steps of repair synthesis and ligation are completed. About 50% of the dimers formed by exposure to 20 J/m2 is excised in the initial 24-h post-UV period. DNA repair (unscheduled DNA synthesis) can be detected through a 5-d post-UV period. The fraction of damaged sites eventually repaired is not known. X-ray-induced single-strand DNA breaks are repaired rapidly.  相似文献   

17.
Human thyroid-stimulating hormone (hTSH) has been produced in Chinese hamster ovary (CHO) cells co-transformed with two plasmids: one carrying the alpha subunit cDNA with mouse dihydrofolate reductase gene and the other carrying hTSH beta subunit cDNA. Each cDNA was driven to expression under the control of SV40 early promoter. hTSH and its alpha subunit were secreted into culture media, and their secretion increased with exposure of the cells to increasing concentrations of methotrexate. Gel filtration analysis revealed that the molecular size of the hTSH was the same as that of natural hTSH. Furthermore, the CHO cell-produced hTSH elevated the cyclic AMP level in the rat thyroid cell line FRTL-5 in the same manner as natural hTSH does.  相似文献   

18.
When exponentially growing CHO cells were deprived of arginine (Arg), cell multiplication ceased after 12 h, but initiation of DNA synthesis continued: after 48 h of starvation with continuous [3H]thymidine exposure, 85% of the population had incorporated label, as detected autoradiographically. Consideration of the distribution of exponential cells in the various cell cycle phases leads to a calculation that most cells in G1 at the time that Arg was removed, as well as those in S, engaged in some DNA synthesis during starvation. In contrast, isoleucine (Ile)-starved cells did not initiate DNA synthesis, as has been reported by others. Experiments with cells synchronized by mitotic selection confirmed this difference in Arg- and Ile- deprived behavior, but also showed that cells which underwent the mitosis leads to G1 transition during Arg starvation remained arrested in G1 (G0?). The results suggest that Arg-deprived cells continue to maintain some proliferative function(s) while Ile-deprived cells do not.  相似文献   

19.
The initiation of DNA replication and the subsequent chain elongation were studied using Chinese hamster ovary cells synchronized at the beginning of S phase. The cells were synchronized by a combination of mitotic selection and treatment with 5-fluorodeoxyuridine (FdU). The use of this drug at a concentration of 10–5 M was found to effectively prevent the leakage of cells into S phase. Reversal of the FdU block by supplying thymidine resulted in the synchronous onset of initiation at multiple sites in each cell. The length of the nascent chains, as determined by autoradiography and velocity sedimentation in alkaline gradients, increased linearly with time during the first twenty minutes of S phase after release. — We applied these procedures to study the effects of the length of an FdU block on the number of functional origins per cell, the rate of chain growth, and the rate of DNA synthesis per cell following reversal of the block. Although no change was noted in the rate of DNA synthesis in cells held at the beginning of S phase from 10.5 to 24 h after division, the rate of chain growth decreased from 0.94 to 0.28 microns per min. This decrease indicated that the number of functional origins increased markedly with length of FdU block. The calculated number of utilized origins per cell increased from 1,900 to 5,700. We also presented arguments that 1,900 origins per cell represents the approximate number of origins utilized by any cell held at the beginning of S phase for less than 10.5 h after division.  相似文献   

20.
DNA fork displacement rates (FDR) were measured in Chinese hamster ovary (CHO) cells heated at either 43.5 degrees C or 45.5 degrees C for various times. The inhibition of fork movement rate by heat was both time and temperature dependent, i.e., 10-20 min at 43.5 degrees C or 5 min at 45.5 degrees C was required to decrease the FDR to 20-30% of the control rate of 1 micron/min. Following heating, the reduced FDR was found to be constant for at least 75 min. The observed effects of heat on reduced rates of DNA replicon initiation and chain elongation and the increase in DNA with single-stranded regions could be explained by the heat sensitivity of the FDR. Any of these alterations in the DNA replication process may lead to many opportunities for abnormal DNA and/or protein interactions to occur which ultimately may lead to the observed formation of chromosomal aberrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号