首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
2.
Starches from exotic corn lines were screened by using differential scanning calorimetry (DSC) to find thermal properties that were significantly different from those exhibited by starches from normal Corn Belt lines. Two independent gelatinization transitions, one corresponding to the melting of a peak at 66 °C and the other to a peak melting at 69 °C, were found in some starches. The melting characteristics were traced to two separate types of granules within the endosperm. Strong correlations were found between DSC properties and proportion of large granules with equivalent diameter ≥17 μm. Starches with a lower peak onset gelatinization temperature (ToG), had a lower normalized concentration of chains with a degree of polymerization (dp) of 15–24 and/or a greater normalized concentration of chains with a dp of 6–12. These studies will aid in understanding structure–thermal property relationships of starches, and in identifying corn lines of interest for commercial breeding.  相似文献   

3.
The starfish SALMFamide neuropeptides S1 (GFNSALMFamide) and S2 (SGPYSFNSGLTFamide) are the prototypical members of a family of neuropeptides that act as muscle relaxants in echinoderms. Comparison of the bioactivity of S1 and S2 as muscle relaxants has revealed that S2 is ten times more potent than S1. Here we investigated a structural basis for this difference in potency by comparing the bioactivity and solution conformations (using NMR and CD spectroscopy) of S1 and S2 with three chimeric analogs of these peptides. A peptide comprising S1 with the addition of S2's N-terminal tetrapeptide (Long S1 or LS1; SGPYGFNSALMFamide) was not significantly different to S1 in its bioactivity and did not exhibit concentration-dependent structuring seen with S2. An analog of S1 with its penultimate residue substituted from S2 (S1(T); GFNSALTFamide) exhibited S1-like bioactivity and structure. However, an analog of S2 with its penultimate residue substituted from S1 (S2(M); SGPYSFNSGLMFamide) exhibited loss of S2-type bioactivity and structural properties. Collectively, our data indicate that the C-terminal regions of S1 and S2 are the key determinants of their differing bioactivity. However, the N-terminal region of S2 may influence its bioactivity by conferring structural stability in solution. Thus, analysis of chimeric SALMFamides has revealed how neuropeptide bioactivity is determined by a complex interplay of sequence and conformation.  相似文献   

4.
Native and high pressure-treated (water suspensions, 650 MPa) waxy maize starch, containing mainly amylopectin, and Hylon VII, rich in amylose, were studied for their ability to generate free radicals upon thermal treatment at 180–230 °C. The electron paramagnetic resonance (EPR) spectroscopy was used to characterize the nature, number and stability of radicals. Various stable and short living (stabilized by N-tert-butyl-α-phenylnitrone (PBN) spin trap) radical species were formed. It was found, that at given conditions the waxy maize starch reveals higher ability to generate radicals, than Hylon VII. The presence of water and high pressure pretreatment of starches, both resulted in the reduction of the amount of thermally generated radicals. The decrease in crystallinity of waxy maize starch and of Hylon VII, occurring upon high pressure treatment, leads to the increase of the relative amount of fast rotating component in the EPR spectrum of both types of starches.  相似文献   

5.
Pure starches were isolated from white and red sorghum cultivated in Tidikelt, a hyper arid region situated in south Algeria. Amylose content, X-ray pattern and rheological properties of starches were examined. The amylose content in white sorghum starch (27.1%) was slightly higher than that in red sorghum (24.8%). The swelling power and the solubility behavior of both starches were nearly similar below 65 °C. At higher temperatures, starch isolated from the white sorghum cultivar showed higher swelling power and lower solubility index than pigmented sorghum starch. The pasting properties of starches determined by RVA, Rapid Visco Analyser showed different viscosity peaks. Red sorghum starch had a higher value (4731 cP) than white sorghum starch (4093 cP). For both sorghum, X-ray diffractograms exhibit an A-type diffraction pattern, typical of cereal starches and the relative degrees of crystallinity were estimated at 22.72% and 28.91%, respectively, for local white and red sorghum starch. DSC analysis revealed that sorghum starches present higher temperatures at the peak (70.60 and 72.28 °C for white and red sorghum starches, respectively) and lower gelatinization enthalpies (9.087 and 8.270 J/g for white and red sorghum starches, respectively) than other cereal starches.The results showed that physicochemical and functional properties of sorghum cultivar starches were influenced by the genotype and the environment.  相似文献   

6.
Endosperm starch and pericarp starch were isolated from maize (B73) kernels at different developmental stages. Starch granules, with small size (2–4 μm diameter), were first observed in the endosperm on 5 days after pollination (DAP). The size of endosperm-starch granules remained similar until 12DAP, but the number increased extensively. A substantial increase in granule size was observed from 14DAP (diameter 4–7 μm) to 30DAP (diameter10–23 μm). The size of starch granules on 30DAP is similar to that of the mature and dried endosperm-starch granules harvested on 45DAP. The starch content of the endosperm was little before 12DAP (less than 2%) and increased rapidly from 10.7% on 14DAP to 88.9% on 30DAP. The amylose content of the endosperm starch increased from 9.2% on 14DAP to 24.2% on 30DAP and 24.4% on 45DAP (mature and dried). The average amylopectin branch chain-length of the endosperm amylopectin increased from DP23.6 on 10DAP to DP26.9 on14DAP and then decreased to DP25.4 on 30DAP and DP24.9 on 45DAP. The onset gelatinization temperature of the endosperm starch increased from 61.3 °C on 8DAP to 69.0 °C on 14DAP and then decreased to 62.8 °C on 45DAP. The results indicated that the structure of endosperm starch was not synthesized consistently through the maturation of kernel. The pericarp starch, however, showed similar granule size, starch content, amylose content, amylopectin structure and thermal properties at different developmental stages of the kernel.  相似文献   

7.
The binding of tetraphenylphosphonium (TPP+) to EmrE, a membrane-bound, 110 residue Escherichia coli multidrug transport protein, has been observed by 31P cross-polarisation–magic-angle spinning nuclear magnetic resonance spectroscopy (CP–MAS NMR). EmrE has been reconstituted into dimyristoyl phosphatidylcholine bilayers. CP–MAS could selectively distinguish binding of TPP+ to EmrE in the fluid membrane. A population of bound ligand appears shifted 4 ppm to lower frequency compared to free ligand in solution, which suggests a rather direct and specific type of interaction of the ligand with the protein. This is also supported by the observed restricted motion of the bound ligand. The observation of another weakly bound substrate population arises from ligand binding to negatively charged residues in the protein loop regions.  相似文献   

8.
The organization of amylose and amylopectin within starch granules is still not well elucidated. This study investigates the radial distribution of amylose and amylopectin in different corn starches varying in amylose content (waxy corn starch (WC), common corn starch (CC), and 50% and 70% amylose corn starches (AMC)). Corn starches were surface gelatinized by 13 M LiCl at room temperature to different extents (approximately 10%, 20%, 30%, and 40%). The gelatinized surface starch and remaining granules were characterized for amylose content, amylopectin chain-length distribution, thermal properties, swelling power (SP), and water solubility index (WSI). Except for the outmost 10% layer, the amylose content in CC increased slightly with increasing surface removal. In contrast, amylose was more concentrated at the periphery than at the core for 50% and 70% AMC. The proportion of amylopectin A chains generally decreased while that of B1 chains generally increased with increasing surface removal for all corn starches. The gelatinization enthalpy usually decreased, except for 70% AMC, whereas the retrogradation enthalpy relatively remained unchanged for CC but increased for WC, 50% and 70% AMC with increasing surface removal. The SP and WSI increased with increasing surface removal for all corn starches, with WC showing a significant increase in SP after the removal of the outmost 10% layer. The results of this study indicated that there were similarities and differences in the distribution of amylose and amylopectin chains along the radial location of corn starch granules with varying amylose contents. More amylose-lipid complex and amylopectin long chains were present at the periphery than at the core for amylose-containing corn starches.  相似文献   

9.
A monoclonal antibody to porcine beta-lipotropin has been produced which binds to the N-terminal (gamma-lipotropin) portion of the molecule. The antibody can be used to detect beta-lipotropin as well as other beta-endorphin precursors (predominantly a Mr 38 000 polypeptide) using radiobinding assay or the immunoblotting technique. Purification of the peptides can be readily achieved by affinity chromatography using the monoclonal antibody covalently bound to Sepharose 4B. As the antibody recognises the N-terminal part of beta-lipotropin, it can be used to detect and purify beta-lipotropin and other beta-endorphin precursors in the presence of beta-endorphin.  相似文献   

10.
The molecular structure and physicochemical properties of acid–alcohol treated maize and potato starches (0.36% HCl in methanol at 25 °C for 1–15 days) were investigated. The yields of the modified starches were ranging from 91 to 100%. The average granule size of modified starches decreased slightly. The solubility of starches increased with the increase of treatment time, and the pasting properties confirmed the high solubility of modified starches. The gelatinization temperatures and range of gelatinization increased with the increase of treatment time except To (onset temperature) of maize starch. Molecular structures of modified starches suggested the degradation of starches occurred mostly within the first 5 days of treatment, and degradation rate of potato starch was higher than maize starch both in amylopectin and in amylose. Maize starch was found less susceptible to acid–alcohol degradation than potato starch.  相似文献   

11.
We have investigated by multidimensional NMR the structural and dynamic characteristics of the urea-denatured state of activated SUMO-1, a 97-residue protein belonging to the growing family of ubiquitin-like proteins involved in post-translational modifications. Complete backbone amide and 15N resonance assignments were obtained in the denatured state by using HNN and HN(C)N experiments. These enabled other proton assignments from TOCSY-HSQC spectra. Secondary Halpha chemical shifts and 1H-1H NOE indicate that the protein chain in the denatured state has structural preferences in the broad beta-domain for many residues. Several of these are seen to populate the (phi,psi) space belonging to polyproline II structure. Although there is no evidence for any persistent structures, many contiguous stretches of three or more residues exhibit structural propensities suggesting possibilities of short-range transient structure formation. The hetero-nuclear 1H-15N NOEs are extremely weak for most residues, except for a few at the C-terminal, and the 15N relaxation rates show sequence-wise variation. Some of the regions of slow motions coincide with those of structural preferences and these are interspersed by highly flexible residues. The implications of these observations for the early folding events starting from the urea-denatured state of activated SUMO-1 have been discussed.  相似文献   

12.
13.
The effects of starch structural properties and starch modification on extruder operation were monitored via die pressure, motor torque, mean residence time and specific mechanical energy (SME). The structural properties studied involved variations in the ratios of amylose and amylopectin as well as the effect of a hydroxypropylated starch on the fore mentioned extruder properties. A full factorial design of experiments (DOE) was used to then determine the influence of starch type (unmodified starches with 0%, 28%, 50% and 80% amylose; 80% amylose hydroxypropylated starch) and screw speed (250, 300 and 350 rpm) on these processing parameters. The effects of starch type and screw speed on extrusion operation that were systematically investigated using the DOE and have provided valuable insight into the relationships between starch structure and processing. The design of experiments showed that starch type for both unmodified and modified maize had a statistically significant effect on parameters such as torque, die pressure and specific mechanical energy and that screw speed also significantly effected specific mechanical energy. Residence time distributions differed according to starch type (amylose content, hydroxypropylation) and screw speed. The additional study of residence time distribution also gave an indication of the degree of mixing in the extruder. Starch type variations were apparent at low screw speed however at higher screw speed the influence of starch type decreased significantly.  相似文献   

14.
 One- and two-dimensional NMR experiments have been carried out on different forms of myohemerythrin (MHr), a monomeric 13.9-kDa oxygen carrier, focusing on paramagnetically shifted proton resonances. Compared to the corresponding forms of octameric hemerythrin (Hr), all of the MHr forms exhibit spectra with better resolution and signal-to-noise ratios. The metMHr spectra allow the differentiation of the signals from the Nδ-H protons of the five Nε-coordinated His ligands and those from the bridging Asp and Glu ligands. The 1D spectra of deoxyMHr exhibit a number of relatively sharp features including three solvent-exchangeable peaks that account for five protons. One of these His N-H protons exchanges more slowly with solvent than the other four and is assigned to His 54, which, by analogy to the crystal structure of deoxyHr, is the only His ligand that is hydrogen-bonded to an amino acid residue, Glu24 in this case. One-dimensional NOE results on the non-exchangeable signals clearly show the connectivities among the α and β protons of the bridging Asp111, and the α, β, and γ protons of the bridging Glu58 ligands. One-dimensional NOE experiments performed on the N-H proton signals of the coordinated His ligands, together with the COSY results, help to identify the geminal β protons of the His ligands. Upon the binding of N3 to one of the Fe(II) sites in deoxyMHr, the overlapping His Nδ-H proton signals observed in the deoxyMHr spectrum are resolved into individual signals; these have been correlated to the corresponding signals in deoxyMHr by saturation transfer experiments. Similarly, all five His N-H protons are resolved in the 1H NMR spectrum of the deoxy form of the single point mutant L103N MHr. However, all five N-H protons readily exchange with solvent, indicating that the mutation affects the hydrogen-bonding interaction between His54 and Glu24. Received: 20 May 1996 / Accepted: 24 October 1996  相似文献   

15.
We have investigated in the present study the effect of both non-selective and selective cationic 14-mer peptides on the lipid orientation of DMPC bilayers by 31P solid-state nuclear magnetic resonance (NMR) spectroscopy. Depending on the position of substitution, these peptides adopt mainly either an α-helical structure able to permeabilize DMPC and DMPG vesicles (non-selective peptides) or an intermolecular β-sheet structure only able to permeabilize DMPG vesicles (selective peptides). Several systems have been investigated, namely bilayers mechanically oriented between glass plates as well as bicelles oriented with their normal perpendicular or parallel to the external magnetic field. The results have been compared with spectral simulations with the goal of elucidating the difference in the interaction of these two types of peptides with zwitterionic lipid bilayers. The results indicate that the perturbation induced by selective peptides is much greater than that induced by non-selective peptides in all the lipid systems investigated, and this perturbation has been associated to the aggregation of the selective β-sheet peptides in these systems. On the other hand, the oriented lipid spectra obtained in the presence of non-selective peptides suggest the presence of toroidal pores. This article is part of a Special Issue entitled: Interfacially Active Peptides and Proteins. Guest Editors: William C. Wimley and Kalina Hristova.  相似文献   

16.
The analysis of melarsoprol in whole blood, plasma, urine and cerebrospinal fluid is described. Extraction was made with a mixture of chloroform and acetonitrile followed by back-extraction into phosphoric acid. A reversed-phase liquid chromatography system with ultraviolet detection was used. The relative standard deviation was 1% at concentrations around 10 μmol/l and 3–6% at the lower limit of determination (9 nmol/l in plasma, 93 nmol/l in whole blood, 45 nmol/l in urine and 10 nmol/l in cerebrospinal fluid). Melarsoprol is not a stable compound and samples to be stored for longer periods of time should be kept at −70°C. Plasma samples can be stored at −20°C for upt to 2 months. Chromatography showed that melarsoprol contains two components. Using nuclear magnetic resonance spectroscopy the two components were shown to be diastereomers which slowly equilibrate by inversion of the configuration at the As atom.  相似文献   

17.
Exudates of the rosid clade of the eudicots have been surveyed and characterized by carbon-13 and proton nuclear magnetic resonance spectroscopy. Of 554 samples divided roughly equally between the subclades fabids and malvids, about two-fifths are resins, a third gums, one-ninth gum resins, one-twelfth kinos, and the remaining not affiliated with these four main molecular classes. Two small new molecular classes, respectively from the Clusiaceae (xanthics) and the Zygophyllaceae (guaiacs), are identified and described.  相似文献   

18.
The ability of lysolipids to enter into a membrane bi-layer and disturb the membrane structure was used to study the behavior of K562 erythroleukemic cells, K562 wild type (K562wt) as well as the multidrug resistant cells K562adr. Both types of cells, when analyzed by proton NMR spectroscopy exhibit the high resolution signals assigned to so-called "mobile lipid" signals, which, in most cases, are located outside the lipid bi-layer as lipid droplets. In order to perform these studies, the K562wt and K562adr cells were treated for 48h with lysophosphatidylcholine oleoyl (LPC18), lysophosphatidylcholine palmitoyl (LPC16) and L-alpha-lysophosphatidyslerine (LPS). After evaluating toxicity of lysolipids, proton NMR of whole treated cells was used to analyze the mobile lipid content. Nile red staining and fluorescence microscopy were used to detect the presence of intracellular lipid droplets. Membrane lipid asymmetry perturbation was estimated by annexin V staining with use of flow cytometry. Using fluorescence spectroscopy the functioning of P-glycoprotein (P-gp) responsible for multidrug resistance was also evaluated after the treatment with lysolipids. Lysolipids were found to be more toxic for K562wt than for K562adr cells. LPS and LPC16 produced an increased of a mobile lipid NMR signal and amount of lipid droplets in K562wt cells only. LPC18, with the lowest toxicity, has shown more intense effects on NMR spectra with a large increase of lipid NMR signal without changes in lipid droplet staining. The functioning of the P-gp pump and membrane asymmetry were not modified by any of the lysolipids used.  相似文献   

19.
27Al and 31P nuclear magnetic resonance (NMR) spectroscopies were used to investigate aluminum interactions at pH 3.4 with model membranes composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC). A solution state 27Al NMR difference assay was developed to quantify aluminum binding to POPC multilamellar vesicles (MLVs). Corresponding one-dimensional (1D) fast magic angle spinning (MAS) 31P NMR spectra showed that aluminum induced the appearance of two new isotropic resonances for POPC shifted to -6.4 ppm and -9.6 ppm upfield relative to, and in slow exchange with, the control resonance at -0.6 ppm. Correlation of the (27)Al and (31)P NMR binding data revealed a 1:2 aluminum:phospholipid stoichiometry in the aluminum-bound complex at -9.6 ppm and a 1:1 aluminum:phospholipid stoichiometry in that at -6.4 ppm. Slow MAS 31P NMR spectra demonstrated shifts in the anisotropic chemical shift tensor components of the aluminum-bound POPC consistent with a close coordination of aluminum with phosphorus. A model of the aluminum-bis-phospholipid complex is proposed on the basis of these findings.  相似文献   

20.
Channels of maize starch granules are lined with proteins and phospholipids. Therefore, when they are treated with reagents that react at or near the surfaces of channels, three types of crosslinks could be produced: protein–protein, protein–starch, starch–starch. To determine which of these may be occurring and the effect(s) of channel proteins (and their removal) on crosslinking, normal and waxy maize starches were treated with a proteinase (thermolysin, which is known to remove protein from channels) before and after crosslinking, and the properties of the products were compared to those of a control (crosslinking without proteinase treatment). After establishing that treatment of starch with thermolysin alone had no effect on the RVA trace, three reaction sequences were used: crosslinking alone (CL), proteinase treatment before crosslinking (Enz-CL), proteinase treatment after crosslinking (CL-Enz). Two crosslinking reagents were used: phosphoryl chloride (POCl3), which is known to react at or near channel surfaces; STMP, which is believed to react throughout the granule matrix. Three concentrations of POCl3 (based on the weight of starch) were used. For both normal maize starch (NMS) and waxy maize starch (WMS) reacted with POCl3, the trends were generally the same, with apparent relative degrees of crosslinking indicated to be CL-Enz = CL > Enz-CL, but the effects were greater with NMS and there were differences when different concentrations of reagent were used. The basic trends were the same when potato starch was used in the same experiments. Crosslinking with STMP was done both in the presence and the absence of sodium sulfate (SS). Both with and without SS and with both NMS and WMS, the order of indicated crosslinking was generally the same as found after reaction with POCl3, with the indicated swelling inhibition being greater when SS was present in the reaction mixture. Examination of the maize starches with a protein stain indicated that channel protein was removed by treatment with thermolysin when the proteinase treatment occurred before crosslinking with either POCl3 or STMP, but only incompletely or not at all if the treatment with the proteinase occurred after crosslinking. Because the crosslinking reactions were less effective when the protein was removed, the results are tentatively interpreted as indicating that they involved protein molecules, although there may not be a direct relationship.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号