首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Currently, 49 families of scale insects are recognised, 33 of which are extant. Despite more than a decade of DNA sequence‐based phylogenetic studies of scales insects, little is known with confidence about relationships among scale insects families. Multiple lines of evidence support the monophyly of a group of 18 scale insect families informally referred to as the neococcoids. Among neococcoid families, published DNA sequence‐based estimates have supported Eriococcidae paraphyly with respect to Beesoniidae, Dactylopiidae, and Stictococcidae. No other neococcoid interfamily relationship has been strongly supported in a published study that includes exemplars of more than ten families. Likewise, no well‐supported relationships among the 15 extant scale insect families that are not neococcoids (usually referred to as ‘archaeococcoids’) have been published. We use a Bayesian approach to estimate the scale insect phylogeny from 162 adult male morphological characters, scored from 269 extant and 29 fossil species representing 43/49 families. The result is the most taxonomically comprehensive, most resolved and best supported estimate of phylogenetic relationships among scale insect families to date. Notable results include strong support for (i) Ortheziidae sister to Matsucoccidae, (ii) a clade comprising all scale insects except for Margarodidae s.s., Ortheziidae and Matsucoccidae, (iii) Coelostomidiidae paraphyletic with respect to Monophlebidae, (iv) Eriococcidae paraphyletic with respect to Stictococcidae and Beesoniidae, and (v) Aclerdidae sister to Coccidae. We recover strong support for a clade comprising Phenacoleachiidae, Pityococcidae, Putoidae, Steingeliidae and the neococcoids, along with a sister relationship between this clade and Coelostomidiidae + Monophlebidae. In addition, we recover strong support for Pityococcidae + Steingeliidae as sister to the neococcoids. Data from fossils were incomplete, and the inclusion of extinct taxa in the data matrix reduced support and phylogenetic structure. Nonetheless, these fossil data will be invaluable in DNA sequence‐based and total evidence estimates of phylogenetic divergence times.  相似文献   

2.
LEMURS (INFRAORDER: Lemuriformes) are a radiation of strepsirrhine primates endemic to the island of Madagascar. As of 2012, 101 lemur species, divided among five families, have been described. Genetic and morphological evidence indicates all species are descended from a common ancestor that arrived in Madagascar ~55-60 million years ago (mya). Phylogenetic relationships in this species-rich infraorder have been the subject of debate. Here we use Alu elements, a family of primate-specific Short INterspersed Elements (SINEs), to construct a phylogeny of infraorder Lemuriformes. Alu elements are particularly useful SINEs for the purpose of phylogeny reconstruction because they are identical by descent and confounding events between loci are easily resolved by sequencing. The genome of the grey mouse lemur (Microcebus murinus) was computationally assayed for synapomorphic Alu elements. Those that were identified as Lemuriformes-specific were analyzed against other available primate genomes for orthologous sequence in which to design primers for PCR (polymerase chain reaction) verification. A primate phylogenetic panel of 24 species, including 22 lemur species from all five families, was examined for the presence/absence of 138 Alu elements via PCR to establish relationships among species. Of these, 111 were phylogenetically informative. A phylogenetic tree was generated based on the results of this analysis. We demonstrate strong support for the monophyly of Lemuriformes to the exclusion of other primates, with Daubentoniidae, the aye-aye, as the basal lineage within the infraorder. Our results also suggest Lepilemuridae as a sister lineage to Cheirogaleidae, and Indriidae as sister to Lemuridae. Among the Cheirogaleidae, we show strong support for Microcebus and Mirza as sister genera, with Cheirogaleus the sister lineage to both. Our results also support the monophyly of the Lemuridae. Within Lemuridae we place Lemur and Hapalemur together to the exclusion of Eulemur and Varecia, with Varecia the sister lineage to the other three genera.  相似文献   

3.
To date, there is little consensus concerning the phylogenetic relationships among neognath orders, which include all extant birds except ratites and tinamous. Different data sets, both molecular and morphologic, have yielded radically different and often unresolved ordinal topologies, especially within the neoaves clade. This lack of resolution and ongoing conflict indicates a need for additional phylogenetic characters to be applied to the question of higher-level avian phylogeny. In this study, sequences of a single-copy nuclear gene, ZENK, were used to reconstruct an ordinal-level phylogeny of neognath birds. Strong support was indicated for the oldest divergence within Neognathae; the chicken- and duck-like birds formed a clade that was sister to all other modern birds. In addition, many families of traditional taxonomic orders clustered together in the ZENK tree, indicating the gene's general phylogenetic reliability. However, within the neoaves clade, there was little support for relationships among orders, which is a result similar to all other recent molecular studies of higher-level avian phylogeny. This similarity among studies suggests the possibility of a rapid radiation of the major neoaves lineages. Despite the ongoing lack of neoaves resolution, ZENK's sequence divergence and base composition patterns indicate its general utility as a new phylogenetic marker for higher-level avian systematics.  相似文献   

4.
The sequence of the mitochondrial COII gene has been widely used to estimate phylogenetic relationships at different taxomonic levels across insects. We investigated the molecular evolution of the COII gene and its usefulness for reconstructing phylogenetic relationships within and among four collembolan families. The collembolan COII gene showed the lowest A + T content of all insects so far examined, confirming that the well-known A + T bias in insect mitochondrial genes tends to increase from the basal to apical orders. Fifty-seven percent of all nucleotide positions were variable and most of the third codon positions appeared free to vary. Values of genetic distance between congeneric species and between families were remarkably high; in some cases the latter were higher than divergence values between other orders of insects. The remarkably high divergence levels observed here provide evidence that collembolan taxa are quite old; divergence levels among collembolan families equaled or exceeded divergences among pterygote insect orders. Once the saturated third-codon positions (which violated stationarity of base frequencies) were removed, the COII sequences contained phylogenetic information, but the extent of that information was overestimated by parsimony methods relative to likelihood methods. In the phylogenetic analysis, consistent statistical support was obtained for the monophyly of all four genera examined, but relationships among genera/families were not well supported. Within the genus Orchesella, relationships were well resolved and agreed with allozyme data. Within the genus Isotomurus, although three pairs of populations were consistently identified, these appeared to have arisen in a burst of evolution from an earlier ancestor. Isotomurus italicus always appeared as basal and I. palustris appeared to harbor a cryptic species, corroborating allozyme data. Received: 12 January 1996 / Accepted: 10 August 1996  相似文献   

5.
Multi-gene analysis provides a well-supported phylogeny of Rosales   总被引:1,自引:0,他引:1  
Despite many attempts to resolve evolutionary relationships among the major clades of Rosales, some nodes have been extremely problematic and have remained unresolved. In this study, we use two nuclear and 10 plastid loci to infer phylogenetic relationships among all nine families of Rosales. Rosales were strongly supported as monophyletic; within Rosales all family relationships are well-supported with Rosaceae sister to all other members of the order. Remaining Rosales can be divided into two subclades: (1) Ulmaceae are sister to Cannabaceae plus (Urticaceae+Moraceae); (2) Rhamnaceae are sister to Elaeagnaceae plus (Barbeyaceae+Dirachmaceae). One noteworthy result is that we recover the first strong support for a sister relationship between the enigmatic Dirachmaceae and Barbeyaceae. These two small families have distinct morphologies and potential synapomorphies remain unclear. Future studies should try to identify nonDNA synapomorphies uniting Barbeyaceae with Dirachmaceae.  相似文献   

6.
Neuroptera (lacewings) and allied orders Megaloptera (dobsonflies, alderflies) and Raphidioptera (snakeflies) are predatory insects and together make up the clade Neuropterida. The higher‐level relationships within Neuropterida have historically been widely disputed with multiple competing hypotheses. Moreover, the evolution of important biological innovations among various Neuropterida families, such as the origin, timing and direction of transitions between aquatic and terrestrial habitats of larvae, remains poorly understood. To investigate the origin and diversification of lacewings and their allies, we undertook phylogenetic analyses of mitochondrial genomes of all families of Neuropterida using Bayesian inference, maximum likelihood and maximum parsimony methods. We present a robust, fully resolved phylogeny and divergence time estimation for Neuropterida with strong statistical support for almost all nodes. Mitochondrial sequence data are typified by significant compositional heterogeneity across lineages, and parsimony and models assuming homogeneous rates did not recover Neuroptera as monophyletic. Only a model accounting for compositional heterogeneity (i.e. CAT‐GTR) recovered all orders of Neuropterida as monophyletic. Significant findings of the mitogenomic phylogeny include recovering Raphidioptera as sister to Megaloptera plus Neuroptera. The sister family of all other lacewings are the dusty‐wings (Coniopterygidae), rather than Nevrorthidae. Nevrorthidae are instead returned to their traditional position as the sister group of the spongilla‐flies (Sisyridae) and closely related to Osmylidae. Our divergence time analysis indicates that the Mesozoic was indeed a ‘golden age’ for lacewings, with most families of Neuropterida diverging during the Triassic and Jurassic and all extant families present by the Early Cretaceous. Based on ancestral character state reconstructions of larval habitat we evaluate competing hypotheses regarding the life style of early neuropteridan larvae as either aquatic or terrestrial.  相似文献   

7.
Abstract Relationships among families of the lower Diptera (formerly suborder ‘Nematocera’) have been exceptionally difficult to resolve. Multiple hypotheses based on morphology have been proposed to identify the earliest lineages of flies and place the phylogenetic origin of the higher flies (Brachycera), but convincing support is limited. Here we resolve relationships among the major groups of lower Diptera using sequence data from four nuclear markers, including both ribosomal (28S rDNA) and protein‐coding (CAD, TPI and PGD) genes. Our results support both novel and traditional arrangements. Most unexpectedly, the small, highly‐specialized family Deuterophlebiidae appears to be sister to all remaining Diptera. Other results include the resolution of the traditional infra‐orders Culicomorpha (including a novel superfamily Simulioidea = Thaumaleidae + Simuliidae), Tipulomorpha (Tipulidae sensu lato + Trichoceridae) and Bibionomorpha sensu lato. We find support for a limited Psychodomorpha (Blephariceridae, Tanyderidae and Psychodidae) and Ptychopteromorpha (Ptychopteridae), whereas the placement of several enigmatic families (Nymphomyiidae, Axymyiidae and Perissommatidae) remains ambiguous. According to genetic data, the infra‐order Bibionomorpha is sister to the Brachycera. Much of the phylogenetic signal for major lineages was found in the 28S rDNA gene, whereas protein‐coding genes performed variably at different levels. In addition to elucidating relationships, we also estimate the age of major lower dipteran clades, based on molecular divergence time estimates using relaxed‐clock Bayesian methods and fossil calibration points.  相似文献   

8.
Although modern morphological and molecular analyses support the monophyly of the Australasian marsupial order Dasyuromorphia, there is much less certainty about relationships among its constituent families (Dasyuridae, Myrmecobiidae, and Thylacinidae). While most authors regard Dasyuridae as monophyletic, a few have suggested that thylacines, numbats, or both have their closest relatives among dasyurids. Recent morphocladistic studies have identified several basicranial characters as putative synapomorphies of dasyurids, but no features that clearly implicate thylacinids, myrmecobiids, or both, as the sister group of Dasyuridae. Only two previous DNA studies have included both thylacine and numbat sequences along with dasyurids, and neither provided strong resolution of interfamilial relationships. In this study, we report a more thorough analytical treatment of complete cytochrome b, 12S rRNA, and protamine P1 gene sequences from dasyuromorphians than has heretofore been attempted. Our results concur with previous morphological studies in showing that Dasyuridae is monophyletic and with immunological findings that thylacinids and dasyurids are sister groups, apart from myrmecobiids. However, the level of support for nodes is highly dependent on the method of phylogenetic analysis employed. Our results also suggest that partitioning of sequence data sets to account for substitutional heterogeneity within and among genes does not necessarily lead to a major reduction in the precision of estimated phylogenies.  相似文献   

9.
In this study, the phylogenetic relationships among 13 pangasiids and six schilbids of Thailand were reconstructed based on the almost complete mitochondrial cytochrome b (cyt b), 12S rRNA, tRNA-Val and 16S rRNA, as well as the partial nuclear recombination-activating gene 1 (rag1) sequences by using the maximum likelihood and the Bayesian inference methods of phylogenetic reconstruction. The reconstructed phylogeny based on the concatenated sequence data set recovered Pangasiidae and Schilbidae as reciprocally monophyletic groups. Within Pangasiidae, four major clades were recovered, which according to the cyt b genetic distances can be categorized into four genera: Pangasius, Pseudolais, Helicophagus and Pangasianodon. The genus Pangasianodon was strongly supported as the most basal taxon within pangasiids, whereas Pseudolais + Helicophagus were recovered as a sister group of Pangasius. Within the latter, the giant pangasius Pangasius sanitwongsei was recovered as a sister group of the spot pangasius Pangasius larnaudii, Pangasius krempfi as a sister group of Pangasius nasutus + Pangasius conchophilus and Pangasius polyuranodon as a sister species of Pangasius macronema. Other internal phylogenetic relationships, however, were unresolved. Within Schilbidae, Pseudeutropius was supported as the most basal lineage. Eutropiichthys was recovered as a sister group of Clupisoma. The enigmatic Clupisoma sinense was recognized as more closely related to Laides longibarbis than to Clupisoma prateri. Thus, based on the cyt b genetic distances, a recategorization of C. sinense to the genus Laides is suggested. On the basis of a relaxed clock fossil calibration, the divergence of pangasiids and schilbids was estimated to have occurred 14·93 million years before present (b.p.) during the Miocene epoch. The separation between Pangasiidae and Schilbidae took place c. 13·12 Mb.p. during the early middle Miocene. The estimated divergence time of pangasiids is similar to the age of the calibrated fossil, Cetopangasius chaetobranchus, which was discovered in north-central Thailand. This suggests that the oldest pangasiid ancestor diverged into diverse genera in the area.  相似文献   

10.
Mitochondria1 DNA (mtDNA) restriction analysis was used to assess phylogenetic patterns among 21 taxa of the subfamily Coregoninae. The genus Prosopium formed a very distinct group differing by 10% (sequence divergence estimate) from other species. Coregonus and Stenodus species were closely related, diverging by sequence divergence estimates of less than 5.6%. These species split into two major sister groups. One comprised all 'true whitefish' (subgenus Coregonus ) and four cisco species (subgenus Leucichrhys ). The most distant species within this assemblage was the Acadian whitefish ( C. huntsmani ). The other group included all other cisco species and also the Inconnu ( Stenodus leucichthys ). These results supported a polyphyletic origin of the ciscoes, and did not support Stenodus as a sister taxon of the genus Coregonus . The levels of sequence divergence observed suggested that most extant coregonines radiated during the Pleistocene.  相似文献   

11.
The development of new schemes for weighting DNA sequence data for phylogenetic analysis continues to outpace the development of consensus on the most appropriate weights. The present study is an exploration of the similarities and differences between results from 22 character weighting schemes when applied to a study of barbet and toucan (traditional avian families Capitonidae and Ramphastidae) phylogenetic relationships. The dataset comprises cytochrome b sequences for representatives of all toucan and Neotropical barbet genera, as well as for several genera of Paleotropical barbets. The 22 weighting schemes produced conflicting patterns of relationship among taxa, often with conflicting patterns each receiving strong bootstrap support. Use of multiple weighting schemes helped to identify the source within the dataset (codon position, transitions, transversions) of the various putative phylogenetic signals. Importantly, some phylogenetic hypotheses were consistently supported despite the wide range of weights employed. The use of phylogenetic frameworks to summarize the results of these multiple analyses proved very informative. Relationships among barbets and toucans inferred from these data support the paraphyly of the traditional Capitonidae. Additionally, these data support paraphyly of Neotropical barbets, but rather than indicating a relationship between Semnornis and toucans, as previously suggested by morphological data, most analyses indicate a basal position of Semnornis within the Neotropical radiation. The cytochrome b data also allow inference of relationships among toucans. Supported hypotheses include Ramphastos as the sister to all other toucans, a close relationship of Baillonius and Pteroglossus with these two genera as the sister group to an (Andigena, Selenidera) clade, and the latter four genera as a sister group to Aulacorhynchus.  相似文献   

12.
The sequence evolution of the nuclear gene wingless was investigated among 34 representatives of three lepidopteran families (Riodinidae, Lycaenidae, and Nymphalidae) and four outgroups, and its utility for inferring phylogenetic relationships among these taxa was assessed. Parsimony analysis yielded a well-resolved topology supporting the monophyly of the Riodinidae and Lycaenidae, respectively, and indicating that these two groups are sister lineages, with strong nodal support based on bootstrap and decay indices. Although wingless provides robust support for relationships within and between the riodinids and the lycaenids, it is less informative about nymphalid relationships. Wingless does not consistently recover nymphalid monophyly or traditional subfamilial relationships within the nymphalids, and nodal support for all but the most recent branches in this family is low. Much of the phylogenetic information in this data set is derived from first- and second-position substitutions. However, third positions, despite showing uncorrected pairwise divergences up to 78%, also contain consistent signal at deep nodes within the family Riodinidae and at the node defining the sister relationship between the riodinids and lycaenids. Several hypotheses about how third-position signal has been retained in deep nodes are discussed. These include among-site rate variation, identified as a significant factor by maximum likelihood analyses, and nucleotide bias, a prominent feature of third positions in this data set. Understanding the mechanisms which underlie third-position signal is a first step in applying appropriate models to accommodate the specific evolutionary processes involved in each lineage.  相似文献   

13.
A phylogenetic analysis of the family Lemuridae was accomplished using multiple gene partitions and morphological characters. The results of the study suggest that several nodes in the lemurid phylogeny can be robustly resolved; however, the relationships of the species within the genus Eulemur are problematically nonrobust. The genus Varecia is strongly supported as the basal genus in the family. Hapalemur and Lemur catta are strongly supported as sister taxa and together are the sister group to the genus Eulemur. E. mongoz is the most basal species in the genus Eulemur. E. fulvus subspecies form a monophyletic group with three distinct lineages. E. coronatus is strongly supported as the sister taxon to E. macaco. The relationships of E. rubriventer, E. fulvus, and the E. macaco-E. coronatus pair are unresolved. Our combined molecular and morphological analysis demonstrates the lack of influence that morphology has on the simultaneous analysis tree when these two kinds of data are given equal weight. The effects of several extreme weighting schemes (removal of transitions and of third positions in protein-coding regions) and maximum-likelihood analysis were also explored. We suggest that these other forms of inference add little to resolving the problematic relationships of the species in the genus Eulemur.  相似文献   

14.
Sequences from the mitochondrial cytochrome oxidase subunit 2 gene (cox2) were determined for 14 species from the family Ceratopogonidae, representing 12 genera and all five subfamilies, along with six representatives of other nematoceran families. The purpose was to develop a molecular phylogeny of the Ceratopogonidae, and interpret the phylogenetic position of the family within the infraorder Culicomorpha. These taxa have been analysed using cladistic methodology which, in combination with an excellent fossil record, provides a well established morphological phylogeny. Sequence analysis of cox2 revealed a high degree of sequence divergence among the species, reflecting in part the antiquity of the family, but also a significant acceleration of sequence evolution in the ceratopogonids compared to other nematoceran Diptera. Phylogenetic reconstruction by neighbor-joining and maximum parsimony gave strong support for an early separation of an ancient lineage that includes the two genera, Austroconops and Leptoconops, from the remainder of the family. The results support the existence of a clade that includes two subfamilies, Dasyheleinae and Forcipomyiinae, and this clade appears as sister to the remaining subfamily, Ceratopogoninae. The molecular phylogeny also supports monophyly of the Ceratopogonidae, and either a sister or paraphyletic relationship of this family with the Chironomidae.  相似文献   

15.
The avian subfamily Tetraoninae (grouse and ptarmigan) is a Holarctic group in the order Galliformes distinguished by morphological adaptations to cold environments and behavioral traits associated with elaborate courtship. Here we investigate the relationships of 17 tetraonines and 12 other galliform species using mitochondrial 12S and ND2 sequence data. We found support for the recent phylogenetic classification that separates the genus Dendragapus into two genera, Falcipennis and Dendragapus. In addition, we found support for a tetraonine clade in which the first divergence is between Bonasa umbellus and all others, followed by divergence between a Bonasa bonasia/Bonasa sewerzowi clade and the remaining tetraonines. Falcipennis canadensis is sister to a clade with four Tetrao species, and the genus Centrocercus is sister to a Dendragapus obscurus/Tympanuchus clade. Our data indicate a basal position for Cracidae and Megapodiidae among the five recognized galliform families. We also found strong support for the monophyly of Phasianidae, although the relative positions of Numididae and Odontiphoridae remains unresolved. We use a maximum likelihood approach to infer ages of 37mya for divergence of Numididae and Phasianidae and 28mya for the divergence of Tetraoninae and Meleagris gallopavo. These estimates must be viewed as tentative as they depend on tests of rates of molecular evolution and accurate fossil dates.  相似文献   

16.
The family Cyprinidae is one of the largest families of fishes in the world and a well-known component of the East Asian freshwater fish fauna. However, the phylogenetic relationships among cyprinids are still poorly understood despite much effort paid on the cyprinid molecular phylogenetics. Original nucleotide sequence data of the nuclear recombination activating gene 2 were collected from 109 cyprinid species and four non-cyprinid cypriniform outgroup taxa and used to infer the cyprinid phylogenetic relationships and to estimate node divergence times. Phylogenetic reconstructions using maximum parsimony, maximum likelihood, and Bayesian analysis retrieved the same clades, only branching order within these clades varied slightly between trees. Although the morphological diversity is remarkable, the endemic cyprinid taxa in East Asia emerged as a monophyletic clade referred to as Xenocypridini. The monophyly for the subfamilies including Cyprininae and Leuciscinae, as well as the tribes including Labeonini, Gobionini, Acheilognathini, and Leuciscini, was also well resolved with high nodal support. Analysis of the RAG2 gene supported the following cyprinid molecular phylogeny: the Danioninae is the most basal subfamily within the family Cyprinidae and the Cyprininae is the sister group of the Leuciscinae. The divergence times were estimated for the nodes corresponding to the principal clades within the Cyprinidae. The family Cyprinidae appears to have originated in the mid-Eocene in Asia, with the cladogenic event of the key basal group Danioninae occurring in the early Oligocene (about 31-30 MYA), and the origins of the two subfamilies, Cyprininae and Leuciscinae, occurring in the mid-Oligocene (around 26 MYA).  相似文献   

17.
The snubnose darters (Percidae: subgenus Ulocentra) are a group of small, brightly colored North American freshwater fish belonging to the genus Etheostoma. Phylogenetic relationships among snubnose species have been a challenge to resolve at all levels of divergence, from the monophyly of species to deeper relationships among subgenera. Here, we used amplified fragment length polymorphisms (AFLPs) to estimate phylogenetic relationships among species from three closely related subgenera: Ulocentra, Etheostoma, and Nanostoma. With nearly complete sampling of recognized species, our analysis yielded a robust tree with statistical support at all nodes. Support was strongest for shallower relationships; support for internal nodes was either comparable to or greater than that of previous studies based on mitochondrial sequence data. Most recovered relationships were consistent with earlier hypotheses based on morphology or mtDNA sequences, with the exception of Etheostoma histrio, which was recovered as sister to Ulocentra. Our analysis indicates that careful use of AFLPs can yield statistically robust estimates of evolutionary relationships across multiple levels of divergence.  相似文献   

18.
Australidelphia is the cohort, originally named by Szalay, of all Australian marsupials and the South American Dromiciops. A lot of mitochondria and nuclear genome studies support the hypothesis of a monophyly of Australidelphia, but some familial relationships in Australidelphia are still unclear. In particular, the familial relationships among the order Diprotodontia (koala, wombat, kangaroos and possums) are ambiguous. These Diprotodontian families are largely grouped into two suborders, Vombatiformes, which contains Phascolarctidae (koala) and Vombatidae (wombat), and Phalangerida, which contains Macropodidae, Potoroidae, Phalangeridae, Petauridae, Pseudocheiridae, Acrobatidae, Tarsipedidae and Burramyidae. Morphological evidence and some molecular analyses strongly support monophyly of the two families in Vombatiformes. The monophyly of Phalangerida as well as the phylogenetic relationships of families in Phalangerida remains uncertain, however, despite searches for morphological synapomorphy and mitochondrial DNA sequence analyses. Moreover, phylogenetic relationships among possum families (Phalangeridae, Petauridae, Pseudocheiridae, Acrobatidae, Tarsipedidae and Burramyidae) as well as a sister group of Macropodoidea (Macropodidae and Potoroidae) remain unclear. To evaluate familial relationships among Dromiciops and Australian marsupials as well as the familial relationships in Diprotodontia, we determined the complete mitochondrial sequence of six Diprotodontian species. We used Maximum Likelihood analyses with concatenated amino acid and codon sequences of 12 mitochondrial protein genomes. Our analysis of mitochondria amino acid sequence supports monophyly of Australian marsupials+Dromiciops and monophyly of Phalangerida. The close relatedness between Macropodidae and Phalangeridae is also weakly supported by our analysis.  相似文献   

19.
The family Lemuridae includes four genera: Eulemur, Hapalemur, Lemur,Varecia. Taxonomy and phylogenetic relationships between L. catta, Eulemur and Hapalemur, and of Varecia to these other lemurids, continue to be hotly debated. Nodal relationships among the five Eulemur species also remain contentious. A mitochondrial DNA sequence dataset from the ND 3, ND 4 L, ND 4 genes and five tRNAs (Gly, Arg, His, Ser, Leu) was generated to try to clarify phylogenetic relationships w ithin the Lemuridae. Samples (n=39) from all ten lemurid species were collected and analysed. Three Daubentonia madagascariensis were included as outgroup taxa. The approximately 2400 bp sequences were analysed using maximum parsimony, neighbor-joining and maximum likelihood methods. The results support monophyly of Eulemur, a basal divergence of Varecia, and a sister-group relationship for Lemur/Hapalemur. Based on tree topology, bootstrap values, and pairwise distance comparisons, we conclude thatVarecia and Eulemur both represent distinct genera separate from L. catta. H. griseus andH. aureus form a clade with strong support, but the sequence data do not permit robust resolution of the trichotomy involving H. simus, H. aureus/H. griseus and L. catta. Within Eulemur there is strong support for a clade containing E. fulvus, E. mongoz and E. rubriventer. However, analyses failed to clearly resolve relationships among those three species or with the more distantly related E. coronatus and E. macaco. Our sequencing data support the current subspecific status of E.m. macaco and E.m. flavifrons, and that of V.v. variegata and V.v. rubra. However, tree topology and relatively large genetic distances among individual V.v. variegata indicate that there may be more phylogenetic structure within this taxon than is indicated by current taxonomy.  相似文献   

20.
Cheirogaleidae currently comprises five genera whose relationships remain contentious. The taxonomic status and phylogenetic position of both Mirza coquereli and Allocebus trichotis are still unclear. The taxonomic status of the recently discovered Microcebus ravelobensis (a sympatric sibling species of Microcebus murinus) and its phylogenetic position also require further examination. A approximately 2.4-kb mitochondrial DNA sequence including part of the COIII gene, complete ND3, ND4L, and ND4 genes, and 5 tRNAs was used to clarify relationships among cheirogaleids. Mirza and Microcebus form a clade representing the sister group of Allocebus, with a clade containing Cheirogaleus major and Cheirogaleus medius diverging first. M. ravelobensis and Microcebus rufus form a subclade within Microcebus, with M. murinus as its sister group. The molecular data support the generic status of Mirza coquereli and species-level divergence of M. ravelobensis. Furthermore, "M. rufus" may well represent more than one species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号