共查询到20条相似文献,搜索用时 15 毫秒
1.
Veenman L Leschiner S Spanier I Weisinger G Weizman A Gavish M 《Journal of neurochemistry》2002,80(5):917-927
Peripheral-type benzodiazepine receptors (PBR) are located in glial cells in the brain and in peripheral tissues. Mitochondria form the primary location for PBR. Functional PBR appear to require at least three components: an isoquinoline binding protein, a voltage-dependent anion channel, and an adenine nucleotide carrier. In the present study, rats received intraperitoneal kainic acid injections, which are known to cause seizures, neurodegeneration, hyperactivity, gliosis, and a fivefold increase in PBR ligand binding density in the hippocampus. In the forebrain of control rats, hippocampal voltage-dependent anion channel and adenine nucleotide carrier abundance was relatively low, while isoquinoline binding protein abundance did not differ between hippocampus and the rest of the forebrain. One week after kainic acid injection, isoquinoline binding protein abundance was increased more than 20-fold in the hippocampal mitochondrial fraction. No significant changes were detected regarding hippocampal voltage-dependent anion channel and adenine nucleotide carrier abundance. Pre-treatment with the isoquinoline PK11195, a specific PBR ligand, attenuated the occurrence of seizures, hyperactivity, and increases in isoquinoline binding protein levels in the hippocampus, which usually follow kainic acid application. These data suggest that isoquinoline binding protein may be involved in these effects of kainic acid injections. 相似文献
2.
Cellular and subcellular localization of peripheral benzodiazepine receptors after trimethyltin neurotoxicity 总被引:6,自引:0,他引:6
The peripheral benzodiazepine receptor (PBR) is currently used as a marker of inflammation and gliosis following brain injury. Previous reports suggest that elevated PBR levels in injured brain tissue are specific to activated microglia and infiltrating macrophages. We have produced hippocampal lesions using the neurotoxicant trimethyltin (TMT) to examine the cellular and subcellular nature of the PBR response. Degenerating, argyrophilic pyramidal neurons were observed in the hippocampus at 2 and 14 days after TMT exposure. Reactive microglia were also evident at both times with a maximal response observed at 14 days, subsiding by 6 weeks. Astrocytosis was observed at 14 days and 6 weeks, but not 2 days, after TMT administration, suggesting that the onset of the astroglia response is delayed, but more persistent, compared with microgliosis. Morphological evidence from [3H]PK11195 microautoradiography and PBR immunohistochemistry indicates that both astrocytes and microglia are capable of expressing high levels of PBR after injury. This was confirmed by double labeling of either Griffonia simplicifolia isolectin B4, a microglial-specific marker, or glial fibrillary acidic protein, an astrocyte-specific protein with PBR fluorescence immunohistochemistry. These results demonstrate that PBR expression is increased after brain injury in both activated microglia and astrocytes. Our findings also provide the first evidence for in situ nuclear localization of PBR in glial cells. 相似文献
3.
Do-Rego JL Mensah-Nyagan AG Beaujean D Leprince J Tonon MC Luu-The V Pelletier G Vaudry H 《Journal of neurochemistry》2001,76(1):128-138
Neurosteroids may play a major role in the regulation of various neurophysiological and behavioural processes. However, while the biochemical pathways involved in the synthesis of neuroactive steroids in the central nervous system are now elucidated, the mechanisms controlling the activity of neurosteroid-producing cells remain almost completely unknown. In the present study, we have investigated the effect of the octadecaneuropeptide (ODN), an endogenous ligand of benzodiazepine receptors, in the control of steroid biosynthesis in the frog hypothalamus. Glial cells containing ODN-like immunoreactivity were found to send their thick processes in the close vicinity of neurones expressing the steroidogenic enzyme 3 beta-hydroxysteroid dehydrogenase. Exposure of frog hypothalamic explants to graded concentrations of ODN (10(-10)-10(-5) M) produced a dose-dependent increase in the conversion of tritiated pregnenolone into various radioactive steroids, including 17-hydroxypregnenolone, progesterone, 17-hydroxyprogesterone, dehydroepiandrosterone and dihydrotestosterone. The ODN-induced stimulation of neurosteroid biosynthesis was mimicked by the central-type benzodiazepine receptor (CBR) inverse agonists methyl beta-carboline-3-carboxylate (beta-CCM) and methyl 6,7-dimethoxy-4-ethyl-beta-carboline-3-carboxylate (DMCM). The stimulatory effects of ODN, beta-CCM and DMCM on steroid formation was markedly reduced by the CBR antagonist flumazenil. The ODN-evoked stimulation of neurosteroid production was also significantly attenuated by GABA. Collectively, these data indicate that the endozepine ODN, released by glial cell processes in the vicinity of 3 beta-hydroxysteroid dehydrogenase-containing neurones, stimulates the biosynthesis of neurosteroids through activation of central-type benzodiazepines receptors. 相似文献
4.
Venneti S Lopresti BJ Wang G Slagel SL Mason NS Mathis CA Fischer ML Larsen NJ Mortimer AD Hastings TG Smith AD Zigmond MJ Suhara T Higuchi M Wiley CA 《Journal of neurochemistry》2007,102(6):2118-2131
Activated microglia are an important feature of many neurological diseases and can be imaged in vivo using 1-(2-chlorophenyl)-N-methyl-N-(1-methylpropyl)-3-isoquinolinecarboxamide (PK11195), a ligand that binds the peripheral benzodiazepine receptor (PBR). N-(2,5-dimethoxybenzyl)-N-(5-fluoro-2-phenoxyphenyl) acetamide (DAA1106) is a new PBR-specific ligand that has been reported to bind to PBR with higher affinity compared with PK11195. We hypothesized that this high-affinity binding of DAA1106 to PBR will enable better delineation of microglia in vivo using positron emission tomography. [(3)H]DAA1106 showed higher binding affinity compared with [(3)H](R)-PK11195 in brain tissue derived from normal rats and the rats injected intrastriatally with 6-hydroxydopamine or lipopolysaccharide at the site of the lesion. Immunohistochemistry combined with autoradiography in brain tissues as well as correlation analyses showed that increased [(3)H]DAA1106 binding corresponded mainly to activated microglia. Finally, ex vivo autoradiography and positron emission tomography imaging in vivo showed greater retention of [(11)C]DAA1106 compared with [(11)C](R)-PK11195 in animals injected with either lipopolysaccaride or 6-hydroxydopamine at the site of lesion. These results indicate that DAA1106 binds with higher affinity to microglia in rat models of neuroinflammation when compared with PK11195, suggesting that [(11)C]DAA1106 may represent a significant improvement over [(11)C](R)-PK11195 for in vivo imaging of activated microglia in human neuroinflammatory disorders. 相似文献
5.
Ostuni MA Tumilasci OR Péranzi G Cardoso EM Contreras LN Arregger AL Papadopoulos V Lacapere JJ 《Biology of the cell / under the auspices of the European Cell Biology Organization》2008,100(7):427-439
Background information. TSPO (translocator protein), previously known as PBR (peripheral‐type benzodiazepine receptor), is a ubiquitous 18 kDa transmembrane protein that participates in diverse cell functions. High‐affinity TSPO ligands are best known for their ability to stimulate cholesterol transport in organs synthesizing steroids and bile salts, although they modulate other physiological functions, including cell proliferation, apoptosis and calcium‐dependent transepithelial ion secretion. In present study, we investigated the localization and function of TSPO in salivary glands. Results. Immunohistochemical analysis of TSPO in rat salivary glands revealed that TSPO and its endogenous ligand, DBI (diazepam‐binding inhibitor), were present in duct and mucous acinar cells. TSPO was localized to the mitochondria of these cells, whereas DBI was cytosolic. As expected, mitochondrial membrane preparations, which were enriched in TSPO, exhibited a high affinity for the TSPO drug ligand, 3H‐labelled PK 11195, as shown by Bmax and Kd values of 10.0±0.5 pmol/mg and 4.0±1.0 nM respectively. Intravenous perfusion of PK 11195 increased the salivary flow rate that was induced by muscarinic and α‐adrenergic agonists, whereas it had no effect when administered alone. Addition of PK 11195 also increased the K+, Na+, Cl− and protein content of saliva, indicating that this ligand modulated secretion by acini and duct cells. Conclusions. High‐affinity ligand binding to mitochondrial TSPO modulates neurotransmitter‐induced salivary secretion by duct and mucous acinar cells of rat submandibular glands. 相似文献
6.
Ines Armando Andres P. Lemoine Enrique T. Segura Marta B. Barontini 《Cellular and molecular neurobiology》1993,13(6):593-600
1. | The effect of benzodiazepine pretreatment on the stress-induced decrease in MAO activity in rat tissues using footshock as stress model was investigated. |
2. | Animals were injected with vehicle, Lorazepam (1.25 mg/kg), or Clonazepam (0.5 mg/kg) 2 hr before or with PK 11195 (0.45 mg/kg) 2.5 hr before being subjected to one session of 10 inescapable footshocks or to a sham session. At the end of the session animals were sacrificed and MAO A and B activities in hearts and brains were determined. |
3. | Pretreatment of the animals with both Lorazepam and Clonazepam abolished the decrease induced by footshock in MAO A activity in brain. Pretreatment with Lorazepam but not with Clonazepam abolished the stressinduced decrease in MAO A in the heart. Pretreatment with PK 11195 before Lorazepam reversed its effects in the heart but not in the brain. Neither footshock nor any of the drugs used had any effect on heart and brain MAO B. |
4. | Our results suggest that in the heart but not in the brain, peripheral benzodiazepine receptors play a role in the regulation of MAO A activity under stress conditions. |
7.
Biegon A Alvarado M Budinger TF Grossman R Hensley K West MS Kotake Y Ono M Floyd RA 《Journal of neurochemistry》2002,82(4):924-934
Following induction of acute neuroinflammation by intracisternal injection of endotoxin (lipopolysaccharide) in rats, quantitative autoradiography was used to assess the regional level of microglial activation and glutamate (NMDA) receptor binding. The possible protective action of the antioxidant phenyl-tert-butyl nitrone in this model was tested by administering the drug in the drinking water for 6 days starting 24 hafter endotoxin injection. Animals were killed 7 days post-injection and consecutive cryostat brain sections labeled with [3H]PK11195 as a marker of activated microglia and [125I]iodoMK801 as a marker of the open-channel, activated state of NMDA receptors. Lipopolysaccharide increased [3H]PK11195 binding in the brain, with the largest increases (two- to threefold) in temporal and entorhinal cortex, hippocampus, and substantia innominata. A significant (> 50%) decrease in [125I]iodoMK801 binding was found in the same brain regions. Phenyl-tert-butyl nitrone treatment resulted in a partial inhibition (approx. 25% decrease) of the lipopolysaccharide-induced increase in [3H]PK11195 binding but completely reversed the lipopolysaccharide-induced decrease in [125I]iodoMK80 binding in the entorhinal cortex, hippocampus, and substantia innominata. Loss of NMDA receptor function in cortical and hippocampal regions may contribute to the cognitive deficits observed in diseases with a neuroinflammatory component, such as meningitis or Alzheimer's disease. 相似文献
8.
The aim of the present work was to study the effect of muscarinic agonist on cell proliferation and muscarinic acetylcholine receptors (mAChRs) regulation in rat Sertoli cells. Primary cultures of Sertoli cells were obtained from 8-day and 15-day old male Wistar rats. In proliferation assays, [methyl-3H]thymidine incorporation in Sertoli cells from 8-day and 15-day old rats reached a plateau after 60 min of carbachol incubation and decreased after 120 min of agonist incubation. Binding studies with [N-Methyl-3H]scopolamine ([3H]NMS) indicated a rapid loss of cell surface mAChRs when Sertoli cells from 15-day old rats were incubated with carbachol at 35 degrees C for 2 min. This effect was temperature-dependent. When the incubation of the cells was prolonged at 35 degrees C or at 4 degrees C, after the agonist had been washed away, 94% of mAChRs were present in the cell surface after 120 min incubation at 35 degrees C. At 4 degrees C, however, a low percentage of mAChRs was detected in the cell surface. In the presence of cycloheximide, the recycling of mAChRs to the cell surface was not changed, suggesting that the appearance of mAChRs on cell surface was not dependent on de novo receptor synthesis. In conclusion, our studies indicate that the activation of mAChRs may play a role in rat Sertoli cell proliferation. These receptors may be under regulation (internalization and recycling) when cells are exposed to muscarinic cholinergic agonist. 相似文献
9.
Kathryn G. Todd David J. McManus Glen B. Baker 《Cellular and molecular neurobiology》1995,15(3):361-370
Summary 1. The effects of chronic administration of five antidepressant drugs on the benzodiazepine and 5-HT2A binding sites in the same rat brain were assessed.2. Clomipramine, desipramine, maprotiline, fluoxetine, and phenelzine (all 10 mg/kg/day) were administered s.c. for 21 days by Alzet osmotic minipumps.3. Results showed that none of the drugs changed the density or affinity of benzodiazepine binding sites, yet at the same dose all the drugs with the exception of fluoxetine decreased binding to 5-HT2A receptors in the same animals. 相似文献
10.
Stromal cell-derived factor-1alpha (SDF-1alpha/CXCL12) stimulates ovarian cancer cell growth through the EGF receptor transactivation 总被引:9,自引:0,他引:9
Porcile C Bajetto A Barbieri F Barbero S Bonavia R Biglieri M Pirani P Florio T Schettini G 《Experimental cell research》2005,308(2):241-253
Ovarian cancer (OC) is the leading cause of death in gynecologic diseases in which there is evidence for a complex chemokine network. Chemokines are a family of proteins that play an important role in tumor progression influencing cell proliferation, angiogenic/angiostatic processes, cell migration and metastasis, and, finally, regulating the immune cells recruitment into the tumor mass. We previously demonstrated that astrocytes and glioblastoma cells express both the chemokine receptor CXCR4 and its ligand stromal cell-derived factor-1 (SDF-1), and that SDF-1alpha treatment induced cell proliferation, supporting the hypothesis that chemokines may play an important role in tumor cells' growth in vitro. In the present study, we report that CXCR4 and SDF-1 are expressed in OC cell lines. We demonstrate that SDF-1alpha induces a dose-dependent proliferation in OC cells, by the specific interaction with CXCR4 and a biphasic activation of ERK1/2 and Akt kinases. Our results further indicate that CXCR4 activation induces EGF receptor (EGFR) phosphorylation that in turn was linked to the downstream intracellular kinases activation, ERK1/2 and Akt. In addition, we provide evidence for cytoplasmic tyrosine kinase (c-Src) involvement in the SDF-1/CXCR4-EGFR transactivation. These results suggest a possible important "cross-talk" between SDF-1/CXCR4 and EGFR intracellular pathways that may link signals of cell proliferation in ovarian cancer. 相似文献
11.
H.S. Yung Kevin B.S. Chow K.H. Lai H. Wise 《Prostaglandins, leukotrienes, and essential fatty acids》2009,81(1):65-71
Cyclooxygenase-1 (COX-1) behaves as a delayed response gene in rat pheochromocytoma (PC12) cells exposed to nerve growth factor (NGF). To investigate the possible targets for COX-1 generated prostanoids in the early stages of neuronal differentiation, we have examined the expression of prostanoid receptors by PC12 cells using functional assays. Prostanoid receptor-specific agonists failed to activate adenylyl cyclase in undifferentiated and NGF-treated PC12 cells; neither did they stimulate phospholipase C activity. EP3 receptor agonists and PGF2α were the only active ligands, able to inhibit forskolin-stimulated adenylyl cyclase activity. PC12 cells expressed EP3 and FP receptor mRNA, but only the responses to EP3 receptor agonists were inhibited by the EP3 receptor antagonist ONO-AE3-240. The functional role of NGF-stimulated COX-1 remains to be determined since we found no strong evidence of a role for EP3 receptors in the morphological changes induced by NGF during the early stages of differentiation of PC12 cells. 相似文献
12.
Luz María G. Carrasquero Esmerilda G. Delicado Diego Bustillo† Yolanda Gutiérrez-Martín† Antonio R. Artalejo† M Teresa Miras-Portugal 《Journal of neurochemistry》2009,110(3):879-889
Previous work has established the presence of functional P2X7 subunits in rat cerebellar astrocytes, which after stimulation with 3'- O -(4-benzoyl)benzoyl ATP (BzATP) evoked morphological changes that were not reproduced by any other nucleotide. To further characterize the receptor(s) and signaling mechanisms involved in the action of BzATP, we have employed fura-2 microfluorometry and the patch-clamp technique. BzATP elicited intracellular calcium responses that typically exhibited two components: the first one was transient and metabotropic in nature – sensitive to phospholipase C inhibition and pertussis toxin treatment –, whereas the second one was sustained and depended on the presence of extracellular calcium. The ionotropic nature of this latter component was corroborated by measurements of Mn2+ entry and macroscopic non-selective cation currents evoked by either BzATP (100 μM) or ATP (1 mM). The two components of the calcium response to BzATP differed in their pharmacological sensitivity. The metabotropic component was partially sensitive to pyridoxalphosphate-5'-phosphate-6-azo-(-2-chloro-5-nitrophenyl)-2,4-disulfonate, a selective antagonist of P2Y13 receptors, while the ionotropic component was modulated by external magnesium and markedly reduced by brilliant blue G and 3-(5-(2,3-dichlorophenyl)-1 H -tetrazol-1-yl)methyl pyridine (A438079), thus implying the involvement of P2X7 purinergic receptors. It is concluded that P2Y13 and P2X7 purinergic receptors are functionally expressed in rat cerebellar astrocytes and mediate the increase in intracellular calcium elicited by BzATP in these cells. 相似文献
13.
Arthur Yuwiler 《Neurochemical research》1990,15(1):95-100
Isatin (Tribulin) produced a dose-dependent inhibition of both MAO A and MAO B in broken cell preparations from rat brain and pineal. However, isatin administered in vivo (80–160 mg/kg) to the intact animal significantly increased brain, but not pineal, serotonin and did not affect 5HIAA or other indoles in either brain or pineal. Further, in vivo administration did not produce detectable MAO inhibition in either tissue. In pineal organ culture, addition of isatin up to 1mM had no influence on the concentrations of pineal indoles or the activities of monoamine oxidase or serotonin N-acetyltransferase. However, the diazepam augmentation of beta adrenergic induction of serotonin N-acetyltransferase activity was blocked by isatin. The results of these studies call into question the proposed role of isatin as an endogenous monoamine oxidase inhibitor but support a possible role as a benzodiazepine receptor blocker. 相似文献
14.
15.
In isolated rat lung perfused with a physiological saline solution (5.5 mM glucose), complex I inhibitors decrease lung tissue ATP and increase endothelial permeability (Kf), effects that are overcome using an amphipathic quinone (CoQ1) [Free Radic. Biol. Med. 65:1455–1463; 2013]. To address the microvascular endothelial contribution to these intact lung responses, rat pulmonary microvascular endothelial cells in culture (PMVEC) were treated with the complex I inhibitor rotenone and ATP levels and cell monolayer permeability (PS) were measured. There were no detectable effects on ATP or permeability in experimental medium that, like the lung perfusate, contained 5.5 mM glucose. To unmask a potential mitochondrial contribution, the glucose concentration was lowered to 0.2 mM. Under these conditions, rotenone decreased ATP from 18.4±1.6 (mean±SEM) to 4.6±0.8 nmol/mg protein, depolarized the mitochondrial membrane potential (Δψm) from −129.0±3.7 (mean±SEM) to −92.8±5.5 mV, and decreased O2 consumption from 2.0±0.1 (mean±SEM) to 0.3±0.1 nmol/min/mg protein. Rotenone also increased PMVEC monolayer permeability (reported as PS in nl/min) to FITC–dextran (~40 kDa) continually over a 6 h time course. When CoQ1 was present with rotenone, normal ATP (17.4±1.4 nmol/mg protein), O2 consumption (1.5±0.1 nmol/min/mg protein), Δψm (−125.2±3.3 mV), and permeability (PS) were maintained. Protective effects of CoQ1 on rotenone-induced changes in ATP, O2 consumption rate, Δψm, and permeability were blocked by dicumarol or antimycin A, inhibitors of the quinone-mediated cytosol–mitochondria electron shuttle [Free Radic. Biol. Med. 65:1455–1463; 2013]. Key rotenone effects without and with CoQ1 were qualitatively reproduced using the alternative complex I inhibitor, piericidin A. We conclude that, as in the intact lung, PMVEC ATP supply is linked to the permeability response to complex I inhibitors. In contrast to the intact lung, the association in PMVEC was revealed only after decreasing the glucose concentration in the experimental medium from 5.5 to 0.2 mM. 相似文献
16.
Anastassia Hatzoglou Efstathia Bakogeorgou Evangelia Papakonstanti Christos Stournaras Dimitrios S. Emmanouel Elias Castanas 《Journal of cellular biochemistry》1996,63(4):410-421
Opioids and somatostatin analogs have been implicated in the modulation of renal water handling, but whether their action is accomplished through central and/or peripheral mechanisms remains controversial. In different cell systems, on the other hand, opioids and somatostatin inhibit cell proliferation. In the present study, we have used an established cell line, derived from opossum kidney (OK) proximal tubules, in order to characterize opioid and somatostatin receptors and to investigate the action of opioids and somatostatin on tubular epithelial tissue. Our results show the presence of one class of opioid binding sites with kappa1 selectivity (KD 4.6 ± 0.9 nM, 57,250 sites/cell), whereas delta, mu, or other subtypes of the kappa site were absent. Somatostatin presents also a high affinity site on these cells (KD 24.5 nM, 330,000 sites/cell). No effect of either opioids or somatostatin on the activity of the Na+/Pi cotransporter was observed, indicating that these agents do not affect ion transport mechanisms. However, opioid agonists and somatostatin analogs decrease OK cell proliferation in a dose-dependent manner; in the same nanomolar concentration range, they displayed reversible specific binding for these agents. The addition of diprenorphine, a general opioid antagonist, reversed the effects of opioids, with the exception of morphine. Furthermore, morphine interacts with the somatostatin receptor in this cell line too, as was the case in the breast cancer T47D cell line. Our results indicate that in the proximal tubule opioids and somatostatin do not affect ion transport, but they might have a role in the modulation of renal cell proliferation either during ontogenesis or in kidney repair. © 1996 Wiley-Liss, Inc. 相似文献
17.
Herman L Hubert P Caberg JH Evrard B Kedzia W Boniver J Delvenne P 《Cancer immunology, immunotherapy : CII》2007,56(7):1087-1096
Although human papillomavirus (HPV) DNA is detected in the majority of cervical cancers and their precursors (squamous intraepithelial
lesions; SIL), the persistence or progression of cervical lesions could be associated with quantitative and functional alterations
of dendritic/Langerhans cells (DC/LC). As LC abnormalities have been associated with a decreased expression of macrophage
inflammatory protein 3α (MIP3α) in cervical SIL, we tested the effect of exogenous MIP3α on the migration of LC in a (pre)neoplastic
epithelium formed in vitro. By using a Boyden chamber assay, we first showed that the migratory capacity of LC generated in
vitro is significantly increased in the presence of MIP3α compared to control medium. We next demonstrated that MIP3α is able
to increase the 3D infiltration of LC in organotypic cultures of HPV-transformed keratinocytes. This property to stimulate
LC migration was not altered after inclusion of MIP3α in a bioadhesive polycarbophil gel. Moreover, the function of DC to
exert cytostatic effects and to present alloantigens was not altered in the presence of MIP3α.
P. Hubert and L. Herman contributed equally to this work. 相似文献
18.
心肌肥厚大鼠心肌细胞核三磷酸肌醇受体的特征 总被引:12,自引:0,他引:12
为了研究细胞核三磷酸肌醇受体在心肌肥厚中的作用,制备了腹主动脉缩窄大鼠心肌肥厚模型、用差速离心和密度梯度离心提纯心肌细胞核,以[3H]IP3为配基,采用放射受体分析心肌细胞核膜IP3R与其配体的最大结合容量(Bmax)和解离常数(Kd)。大鼠心肌细胞核上存在IP3R、CaM和PKC激动剂PMA,能显著抑制该受体与IP3的结合(P<0.05);核外[Ca2+]也能剂量依赖的抑制细胞核IP3R与IP3的结合。腹主动脉缩窄术后4周,大鼠心肌显著肥大,伴有明显的血流动力学异常,其心肌细胞核IP3R的Bmax和Kd与对照组比较分别增加1.217和2.149倍(P<0.01)。心肌细胞核上存在IP3R,并受CaM和PMA及核外[Ca 相似文献
19.
ATP stimulates glucose transport through activation of P2 purinergic receptors in C(2)C(12) skeletal muscle cells 总被引:1,自引:0,他引:1
Kim MS Lee J Ha J Kim SS Kong Y Cho YH Baik HH Kang I 《Archives of biochemistry and biophysics》2002,401(2):205-214
Extracellular ATP acts as a signal that regulates a variety of cellular processes via binding to P2 purinergic receptors (P2 receptors). We herein investigated the effects and signaling pathways of ATP on glucose uptake in C(2)C(12) skeletal muscle cells. ATP as well as P2 receptor agonists (ATP-gamma S) stimulated the rate of glucose uptake, while P2 receptor antagonists (suramin) inhibited the stimulatory effect of ATP, indicating that P2 receptors are involved. This ATP-stimulated glucose transport was blocked by specific inhibitors of Gi protein (pertusiss toxin), phospholipase C (U73122), protein kinase C (GF109203X), and phosphatidylinositol (PI) 3-kinase (LY294002). ATP stimulated PI 3-kinase activity and P2 receptor antagonists blocked this activation. In C(2)C(12) myotubes expressing glucose transporter GLUT4, ATP increased basal and insulin-stimulated glucose transport. Finally, ATP facilitated translocation of GLUT1 and GLUT4 into plasma membrane. These results together suggest that cells respond to extracellular ATP to increase glucose transport through P2 receptors. 相似文献
20.
Natriuretic peptides are structurally similar, but genetically distinct, hormones that participate in cardiovascular homeostasis by regulating blood and extracellular fluid volume and blood pressure. We investigated the distribution of natriuretic peptides and their receptors in goat (Capra hircus) heart tissue using the peroxidase-anti-peroxidase (PAP) immunohistochemical method. Strong staining of atrial natriuretic peptide (ANP) was observed in atrial cardiomyocytes, while strong staining for brain natriuretic peptide (BNP) was observed in ventricular cardiomyocytes. Slightly stronger cytoplasmic C-type natriuretic peptide (CNP) immunostaining was detected in the ventricles compared to the atria. Natriuretic peptide receptor-A (NPR-A) immunoreactivity was more prominent in the atria, while natriuretic peptide receptor-B (NPR-B) immunoreactivity was stronger in the ventricles. Cytoplasmic natriuretic peptide receptor-C (NPR-C) immunoreactivity was observed in both the atria and ventricles, although staining was more prominent in the ventricles. ANP immunoreactivity ranged from weak to strong in endothelial and vascular smooth muscle cells. Endothelial cells exhibited moderate to strong BNP immunoreactivity, while vascular smooth cells displayed weak to strong staining. Endothelial cells exhibited weak to strong cytoplasmic CNP immunoreactivity. Vascular smooth muscle cells were labeled moderately to strongly for CNP. Weak to strong cytoplasmic NPR-A immunoreactivity was found in the endothelial cells and vascular smooth muscle cells stained weakly to moderately for NPR-A. Endothelial and vascular smooth cells exhibited weak to strong cytoplasmic NPR-B immunoreactivity. Moderate to strong NPR-C immunoreactivity was observed in the endothelial and smooth muscle cells. Small gender differences in the immunohistochemical distribution of natriuretic peptides and receptors were observed. Our findings suggest that endothelial cells, vascular smooth cells and cardiomyocytes express both natriuretic peptides and their receptors. 相似文献