首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Little is known about the abundance, distribution, and ecology of aerobic anoxygenic phototrophic (AAP) bacteria, particularly in oligotrophic environments, which represent 60% of the ocean. We investigated the abundance of AAP bacteria across the South Pacific Ocean, including the center of the gyre, the most oligotrophic water body of the world ocean. AAP bacteria, Prochlorococcus, and total prokaryotic abundances, as well as bacteriochlorophyll a (BChl a) and divinyl-chlorophyll a concentrations, were measured at several depths in the photic zone along a gradient of oligotrophic conditions. The abundances of AAP bacteria and Prochlorococcus were high, together accounting for up to 58% of the total prokaryotic community. The abundance of AAP bacteria alone was up to 1.94 × 105 cells ml−1 and as high as 24% of the overall community. These measurements were consistent with the high BChl a concentrations (up to 3.32 × 10−3 μg liter−1) found at all stations. However, the BChl a content per AAP bacterial cell was low, suggesting that AAP bacteria are mostly heterotrophic organisms. Interestingly, the biovolume and therefore biomass of AAP bacteria was on average twofold higher than that of other prokaryotic cells. This study demonstrates that AAP bacteria can be abundant in various oligotrophic conditions, including the most oligotrophic regime of the world ocean, and can account for a large part of the bacterioplanktonic carbon stock.  相似文献   

2.
As an oligotrophic specialist, Prochlorococcus spp. has streamlined its genome and metabolism including the CO2-concentrating mechanism (CCM), which serves to elevate the CO2 concentration around Rubisco. The genomes of Prochlorococcus spp. indicate that they have a simple CCM composed of one or two HCO3 pumps and a carboxysome, but its functionality has not been examined. Here, we show that the CCM of Prochlorococcus spp. is effective and efficient, transporting only two molecules of HCO3 per molecule of CO2 fixed. A mechanistic, numerical model with a structure based on the CCM components present in the genome is able to match data on photosynthesis, CO2 efflux, and the intracellular inorganic carbon pool. The model requires the carboxysome shell to be a major barrier to CO2 efflux and shows that excess Rubisco capacity is critical to attaining a high-affinity CCM without CO2 recovery mechanisms or high-affinity HCO3 transporters. No differences in CCM physiology or gene expression were observed when Prochlorococcus spp. was fully acclimated to high-CO2 (1,000 µL L−1) or low-CO2 (150 µL L−1) conditions. Prochlorococcus spp. CCM components in the Global Ocean Survey metagenomes were very similar to those in the genomes of cultivated strains, indicating that the CCM in environmental populations is similar to that of cultured representatives.The marine picocyanobacteria genus Prochlorococcus along with its sister group the marine genus Synechococcus dominate primary production in oligotrophic marine environments (Partensky et al., 1999). Prochlorococcus spp. is an oligotrophic specialist with several key adaptations allowing it to outcompete other phytoplankton in the stable, low-nutrient regions where it thrives. These adaptations include small cell size (less than 1 μm), allowing it to effectively capture nutrients and light, and genome streamlining, which minimizes nutrient requirements (Partensky and Garczarek, 2010). At approximately 1,900 genes, the genomes of high-light-adapted Prochlorococcus spp. are the smallest known among photoautotrophs, suggesting that this is about the minimum number of genes needed to make a cell from inorganic constituents and light (Rocap et al., 2003). Genome reduction has been accomplished by both the loss of entire pathways and complexes, such as the phycobilisomes and many regulatory capabilities, and the paring down of systems to their minimal components, as is the case for the circadian clock and the photosynthetic complexes (Rocap et al., 2003; Kettler et al., 2007; Partensky and Garczarek, 2010).As part of this genome streamlining, the CO2-concentrating mechanism (CCM), which enhances the efficiency of photosynthesis by elevating the concentration of CO2 around Rubisco, has been reduced to what appears to be the minimal number of components necessary for a functional CCM (Badger and Price, 2003; Badger et al., 2006). In typical cyanobacteria, the CCM is composed of HCO3 transporters, CO2 uptake systems, and the carboxysome, a protein microcompartment in which Rubisco and carbonic anhydrase (CA) are enclosed. HCO3 is accumulated in the cytoplasm by direct import from the environment and by the active conversion of CO2 to HCO3 via an NADH-dependent process, which constitutes the CO2 uptake mechanism (Shibata et al., 2001). The accumulated HCO3 then diffuses into the carboxysome, where CA converts it to CO2, elevating the concentration of CO2 around Rubisco (Reinhold et al., 1987; Price and Badger, 1989).Whereas some cyanobacteria have up to three different families of HCO3 transporters with differing affinities for use under different environmental conditions, Prochlorococcus spp. has only one or two families (Badger et al., 2006). Most cyanobacteria have low-affinity and high-affinity CO2 uptake systems, but no CO2 uptake systems are apparent in Prochlorococcus spp. genomes. The carboxysome of Prochlorococcus spp. and other α-cyanobacteria has apparently been laterally transferred from chemoautotrophs, but all of the required components of the carboxysome are present and it is functional (Badger et al., 2002; Roberts et al., 2012). Despite its simplicity, this CCM is likely functional. HCO3 can be accumulated in the cytoplasm by the HCO3 transporters and then diffuse into the carboxysome for conversion to CO2 and subsequent fixation by Rubisco. However, the functionality of the CCM in Prochlorococcus spp. has not yet been tested. Prochlorococcus spp. is a representative of the α-cyanobacteria, a group with distinct CCMs, which have been much less well studied than the CCMs of β-cyanobacteria (Rae et al., 2011, 2013; Whitehead et al., 2014).We characterized inorganic carbon (Ci) acquisition and processing in Prochlorococcus spp. MED4, examined the effect of long-term acclimation to different CO2 concentrations on CCM physiology and gene expression, and searched metagenomes for Prochlorococcus spp. CCM genes to determine if CCMs in the natural populations are similar to cultured strains.  相似文献   

3.
Subtropical oceanic gyres are the most extensive biomes on Earth where SAR11 and Prochlorococcus bacterioplankton numerically dominate the surface waters depleted in inorganic macronutrients as well as in dissolved organic matter. In such nutrient poor conditions bacterioplankton could become photoheterotrophic, that is, potentially enhance uptake of scarce organic molecules using the available solar radiation to energise appropriate transport systems. Here, we assessed the photoheterotrophy of the key microbial taxa in the North Atlantic oligotrophic gyre and adjacent regions using 33P-ATP, 3H-ATP and 35S-methionine tracers. Light-stimulated uptake of these substrates was assessed in two dominant bacterioplankton groups discriminated by flow cytometric sorting of tracer-labelled cells and identified using catalysed reporter deposition fluorescence in situ hybridisation. One group of cells, encompassing 48% of all bacterioplankton, were identified as members of the SAR11 clade, whereas the other group (24% of all bacterioplankton) was Prochlorococcus. When exposed to light, SAR11 cells took 31% more ATP and 32% more methionine, whereas the Prochlorococcus cells took 33% more ATP and 34% more methionine. Other bacterioplankton did not demonstrate light stimulation. Thus, the SAR11 and Prochlorococcus groups, with distinctly different light-harvesting mechanisms, used light equally to enhance, by approximately one-third, the uptake of different types of organic molecules. Our findings indicate the significance of light-driven uptake of essential organic nutrients by the dominant bacterioplankton groups in the surface waters of one of the less productive, vast regions of the world''s oceans—the oligotrophic North Atlantic subtropical gyre.  相似文献   

4.
The abundance of aerobic anoxygenic phototrophic (AAP) bacteria, cyanobacteria, and heterotrophs was examined in the Mid-Atlantic Bight and the central North Pacific Gyre using infrared fluorescence microscopy coupled with image analysis and flow cytometry. AAP bacteria comprised 5% to 16% of total prokaryotes in the Atlantic Ocean but only 5% or less in the Pacific Ocean. In the Atlantic, AAP bacterial abundance was as much as 2-fold higher than that of Prochlorococcus spp. and 10-fold higher than that of Synechococcus spp. In contrast, Prochlorococcus spp. outnumbered AAP bacteria 5- to 50-fold in the Pacific. In both oceans, subsurface abundance maxima occurred within the photic zone, and AAP bacteria were least abundant below the 1% light depth. The abundance of AAP bacteria rivaled some groups of strictly heterotrophic bacteria and was often higher than the abundance of known AAP bacterial genera (Erythrobacter and Roseobacter spp.). Concentrations of bacteriochlorophyll a (BChl a) were low (~1%) compared to those of chlorophyll a in the North Atlantic. Although the BChl a content of AAP bacteria per cell was typically 20- to 250-fold lower than the divinyl-chlorophyll a content of Prochlorococcus, the pigment content of AAP bacteria approached that of Prochlorococcus in shelf break water. Our results suggest that AAP bacteria can be quite abundant in some oceanic regimes and that their distribution in the water column is consistent with phototrophy.  相似文献   

5.
Nearly half of the Earth''s surface is covered by the ocean populated by the most abundant photosynthetic organisms on the planet—Prochlorococcus cyanobacteria. However, in the oligotrophic open ocean, the majority of their cells in the top half of the photic layer have levels of photosynthetic pigmentation barely detectable by flow cytometry, suggesting low efficiency of CO2 fixation compared with other phytoplankton living in the same waters. To test the latter assumption, CO2 fixation rates of flow cytometrically sorted 14C-labelled phytoplankton cells were directly compared in surface waters of the open Atlantic Ocean (30°S to 30°N). CO2 fixation rates of Prochlorococcus are at least 1.5–2.0 times higher than CO2 fixation rates of the smallest plastidic protists and Synechococcus cyanobacteria when normalised to photosynthetic pigmentation assessed using cellular red autofluorescence. Therefore, our data indicate that in oligotrophic oceanic surface waters, pigment minimisation allows Prochlorococcus cells to harvest plentiful sunlight more effectively than other phytoplankton.  相似文献   

6.
The effect of light on the synchronization of cell cycling was investigated in several strains of the oceanic photosynthetic prokaryote Prochlorococcus using flow cytometry. When exposed to a light-dark (L-D) cycle with an irradiance of 25 μmol of quanta · m−2 s−1, the low-light-adapted strain SS 120 appeared to be better synchronized than the high-light-adapted strain PCC 9511. Submitting L-D-entrained populations to shifts (advances or delays) in the timing of the “light on” signal translated to corresponding shifts in the initiation of the S phase, suggesting that this signal is a key parameter for the synchronization of population cell cycles. Cultures that were shifted from an L-D cycle to continuous irradiance showed persistent diel oscillations of flow-cytometric signals (light scatter and chlorophyll fluorescence) but with significantly reduced amplitudes and a phase shift. Complete darkness arrested most of the cells in the G1 phase of the cell cycle, indicating that light is required to trigger the initiation of DNA replication and cell division. However, some cells also arrested in the S phase, suggesting that cell cycle controls in Prochlorococcus spp. are not as strict as in marine Synechococcus spp. Shifting Prochlorococcus cells from low to high irradiance translated quasi-instantaneously into an increase of cells in both the S and G2 phases of the cell cycle and then into faster growth, whereas the inverse shift induced rapid slowing of the population growth rate. These data suggest a close coupling between irradiance levels and cell cycling in Prochlorococcus spp.  相似文献   

7.
8.
Prochlorococcus is one of the dominant cyanobacteria and a key primary producer in oligotrophic intertropical oceans. Here we present an overview of the pathways of nitrogen assimilation in Prochlorococcus, which have been significantly modified in these microorganisms for adaptation to the natural limitations of their habitats, leading to the appearance of different ecotypes lacking key enzymes, such as nitrate reductase, nitrite reductase, or urease, and to the simplification of the metabolic regulation systems. The only nitrogen source utilizable by all studied isolates is ammonia, which is incorporated into glutamate by glutamine synthetase. However, this enzyme shows unusual regulatory features, although its structural and kinetic features are unchanged. Similarly, urease activities remain fairly constant under different conditions. The signal transduction protein PII is apparently not phosphorylated in Prochlorococcus, despite its conserved amino acid sequence. The genes amt1 and ntcA (coding for an ammonium transporter and a global nitrogen regulator, respectively) show noncorrelated expression in Prochlorococcus under nitrogen stress; furthermore, high rates of organic nitrogen uptake have been observed. All of these unusual features could provide a physiological basis for the predominance of Prochlorococcus over Synechococcus in oligotrophic oceans.  相似文献   

9.
Many cyanophage isolates which infect the marine cyanobacteria Synechococcus spp. and Prochlorococcus spp. contain a gene homologous to psbA, which codes for the D1 protein involved in photosynthesis. In the present study, cyanophage psbA gene fragments were readily amplified from freshwater and marine samples, confirming their widespread occurrence in aquatic communities. Phylogenetic analyses demonstrated that sequences from freshwaters have an evolutionary history that is distinct from that of their marine counterparts. Similarly, sequences from cyanophages infecting Prochlorococcus and Synechococcus spp. were readily discriminated, as were sequences from podoviruses and myoviruses. Viral psbA sequences from the same geographic origins clustered within different clades. For example, cyanophage psbA sequences from the Arctic Ocean fell within the Synechococcus as well as Prochlorococcus phage groups. Moreover, as psbA sequences are not confined to a single family of phages, they provide an additional genetic marker that can be used to explore the diversity and evolutionary history of cyanophages in aquatic environments.  相似文献   

10.
Glutamine synthetase plays a key role in nitrogen metabolism, thus the fine regulation of this enzyme in Prochlorococcus, which is especially important in the oligotrophic oceans where this marine cyanobacterium thrives. In this work, we studied the metal-catalyzed oxidation of glutamine synthetase in cultures of Prochlorococcus marinus strain PCC 9511 subjected to nutrient limitation. Nitrogen deprivation caused glutamine synthetase to be more sensitive to metal-catalyzed oxidation (a 36% increase compared to control, non starved samples). Nutrient starvation induced also a clear increase (three-fold in the case of nitrogen) in the concentration of carbonyl derivatives in cell extracts, which was also higher (22%) upon addition of the inhibitor of electron transport, DCMU, to cultures. Our results indicate that nutrient limitations, representative of the natural conditions in the Prochlorococcus habitat, affect the response of glutamine synthetase to oxidative inactivating systems. Implications of these results on the regulation of glutamine synthetase by oxidative alteration prior to degradation of the enzyme in Prochlorococcus are discussed.  相似文献   

11.
The globally significant picocyanobacterium Prochlorococcus is the main primary producer in oligotrophic subtropical gyres. When phosphate concentrations are very low in the marine environment, the mol:mol availability of phosphate relative to the chemically similar arsenate molecule is reduced, potentially resulting in increased cellular arsenic exposure. To mediate accidental arsenate uptake, some Prochlorococcus isolates contain genes encoding a full or partial efflux detoxification pathway, consisting of an arsenate reductase (arsC), an arsenite-specific efflux pump (acr3) and an arsenic-related repressive regulator (arsR). This efflux pathway was the only previously known arsenic detox pathway in Prochlorococcus. We have identified an additional putative arsenic mediation strategy in Prochlorococcus driven by the enzyme arsenite S-adenosylmethionine methyltransferase (ArsM) which can convert inorganic arsenic into more innocuous organic forms and appears to be a more widespread mode of detoxification. We used a phylogenetically informed approach to identify Prochlorococcus linked arsenic genes from both pathways in the Global Ocean Sampling survey. The putative arsenic methylation pathway is nearly ubiquitously present in global Prochlorococcus populations. In contrast, the complete efflux pathway is only maintained in populations which experience extremely low PO4:AsO4, such as regions in the tropical and subtropical Atlantic. Thus, environmental exposure to arsenic appears to select for maintenance of the efflux detoxification pathway in Prochlorococcus. The differential distribution of these two pathways has implications for global arsenic cycling, as their associated end products, arsenite or organoarsenicals, have differing biochemical activities and residence times.  相似文献   

12.
Prochlorococcus is the numerically dominant phototroph in the oligotrophic subtropical ocean and carries out a significant fraction of marine primary productivity. Although field studies have provided evidence for nitrate uptake by Prochlorococcus, little is known about this trait because axenic cultures capable of growth on nitrate have not been available. Additionally, all previously sequenced genomes lacked the genes necessary for nitrate assimilation. Here we introduce three Prochlorococcus strains capable of growth on nitrate and analyze their physiology and genome architecture. We show that the growth of high-light (HL) adapted strains on nitrate is ∼17% slower than their growth on ammonium. By analyzing 41 Prochlorococcus genomes, we find that genes for nitrate assimilation have been gained multiple times during the evolution of this group, and can be found in at least three lineages. In low-light adapted strains, nitrate assimilation genes are located in the same genomic context as in marine Synechococcus. These genes are located elsewhere in HL adapted strains and may often exist as a stable genetic acquisition as suggested by the striking degree of similarity in the order, phylogeny and location of these genes in one HL adapted strain and a consensus assembly of environmental Prochlorococcus metagenome sequences. In another HL adapted strain, nitrate utilization genes may have been independently acquired as indicated by adjacent phage mobility elements; these genes are also duplicated with each copy detected in separate genomic islands. These results provide direct evidence for nitrate utilization by Prochlorococcus and illuminate the complex evolutionary history of this trait.  相似文献   

13.
14.
Marine unicellular cyanobacteria, represented by Synechococcus and Prochlorococcus, dominate the total phytoplankton biomass and production in oligotrophic ocean. In this study, we employed comparative genomics approaches to extensively investigate synonymous codon usage bias and evolutionary rates in a large number of closely related species of marine unicellular cyanobacteria. Although these two groups of marine cyanobacteria have a close phylogenetic relationship, we find that they are highly divergent not only in codon usage patterns but also in the driving forces behind the diversification. It is revealed that in Prochlorococcus, mutation and genome compositional constraints are the main forces contributing to codon usage bias, whereas in Synechococcus, translational selection. In addition, nucleotide substitution rate analysis indicates that they are not evolving at a constant rate after the divergence and that the average dN/dS values of core genes in Synechococcus are significantly higher than those in Prochlorococcus. Our evolutionary genomic analysis provides the first insight into codon usage, evolutionary genetic mechanisms and environmental adaptation of Synechococcus and Prochlorococcus after divergence.  相似文献   

15.
Marine picocyanobacteria, comprised of the genera Synechococcus and Prochlorococcus, are the most abundant and widespread primary producers in the ocean. More than 20 genetically distinct clades of marine Synechococcus have been identified, but their physiology and biogeography are not as thoroughly characterized as those of Prochlorococcus. Using clade-specific qPCR primers, we measured the abundance of 10 Synechococcus clades at 92 locations in surface waters of the Atlantic and Pacific Oceans. We found that Synechococcus partition the ocean into four distinct regimes distinguished by temperature, macronutrients and iron availability. Clades I and IV were prevalent in colder, mesotrophic waters; clades II, III and X dominated in the warm, oligotrophic open ocean; clades CRD1 and CRD2 were restricted to sites with low iron availability; and clades XV and XVI were only found in transitional waters at the edges of the other biomes. Overall, clade II was the most ubiquitous clade investigated and was the dominant clade in the largest biome, the oligotrophic open ocean. Co-occurring clades that occupy the same regime belong to distinct evolutionary lineages within Synechococcus, indicating that multiple ecotypes have evolved independently to occupy similar niches and represent examples of parallel evolution. We speculate that parallel evolution of ecotypes may be a common feature of diverse marine microbial communities that contributes to functional redundancy and the potential for resiliency.  相似文献   

16.
Direct evidence that marine cyanobacteria take up organic nitrogen compounds in situ at high rates is reported. About 33% of the total bacterioplankton turnover of amino acids, determined with a representative [(35)S]methionine precursor and flow sorting, can be assigned to Prochlorococcus spp. and 3% can be assigned to Synechococcus spp. in the oligotrophic and mesotrophic parts of the Arabian Sea, respectively. This finding may provide a mechanism for Prochlorococcus' competitive dominance over both strictly autotrophic algae and other bacteria in oligotrophic regions sustained by nutrient remineralization via a microbial loop.  相似文献   

17.
Prochlorococcus is the numerically dominant photosynthetic organism throughout much of the world''s oceans, yet little is known about the ecology and genetic diversity of populations inhabiting tropical waters. To help close this gap, we examined natural Prochlorococcus communities in the tropical Pacific Ocean using a single-cell whole-genome amplification and sequencing. Analysis of the gene content of just 10 single cells from these waters added 394 new genes to the Prochlorococcus pan-genome—that is, genes never before seen in a Prochlorococcus cell. Analysis of marker genes, including the ribosomal internal transcribed sequence, from dozens of individual cells revealed several representatives from two uncultivated clades of Prochlorococcus previously identified as HNLC1 and HNLC2. While the HNLC clades can dominate Prochlorococcus communities under certain conditions, their overall geographic distribution was highly restricted compared with other clades of Prochlorococcus. In the Atlantic and Pacific oceans, these clades were only found in warm waters with low Fe and high inorganic P levels. Genomic analysis suggests that at least one of these clades thrives in low Fe environments by scavenging organic-bound Fe, a process previously unknown in Prochlorococcus. Furthermore, the capacity to utilize organic-bound Fe appears to have been acquired horizontally and may be exchanged among other clades of Prochlorococcus. Finally, one of the single Prochlorococcus cells sequenced contained a partial genome of what appears to be a prophage integrated into the genome.  相似文献   

18.
It is necessary to develop new methods for the isolation of unknown actinomycetes from soils. To evaluate the effects of oligotrophic medium on the isolation of soil actinomycetes and develop a new isolation method, the Gause’s synthetic medium was diluted to one tenth the recommended concentration in the present study. Soil dilution plate technique was used to isolate actinomycetes from the soil samples. Oligotrophy decreased actinomycete and streptomycete counts, as well as the number of antagonistic actinomycete species. Oligotrophy also decreased the number of actinomycete species in five samples. Some actinomycete species were cultured only on the oligotrophic medium, whereas other species could not be cultured. Oligotrophy decreased actinomycete counts more significantly for soils with organic matter content >40 g/kg. We used 16S rRNA sequence analysis to identify 22 actinomycete species that were only cultured on the oligotrophic medium. Oligotrophic medium was helpful for the isolation of Streptomyces spp., Micromonospora spp. and Streptosporangium spp. Slightly more than 80 % of the identified actinomycete species were biologically active. Therefore, we could draw a conclusion that oligotrophic medium could be helpful for the discovery of new antibiotic producers and the exploitation and utilization of new, biologically active compounds.  相似文献   

19.
Marine cyanobacteria of the genus Prochlorococcus represent numerically dominant photoautotrophs residing throughout the euphotic zones in the open oceans and are major contributors to the global carbon cycle. Prochlorococcus has remained a genetically intractable bacterium due to slow growth rates and low transformation efficiencies using standard techniques. Our recent successes in cloning and genetically engineering the AT-rich, 1.1 Mb Mycoplasma mycoides genome in yeast encouraged us to explore similar methods with Prochlorococcus. Prochlorococcus MED4 has an AT-rich genome, with a GC content of 30.8%, similar to that of Saccharomyces cerevisiae (38%), and contains abundant yeast replication origin consensus sites (ACS) evenly distributed around its 1.66 Mb genome. Unlike Mycoplasma cells, which use the UGA codon for tryptophane, Prochlorococcus uses the standard genetic code. Despite this, we observed no toxic effects of several partial and 15 whole Prochlorococcus MED4 genome clones in S. cerevisiae. Sequencing of a Prochlorococcus genome purified from yeast identified 14 single base pair missense mutations, one frameshift, one single base substitution to a stop codon and one dinucleotide transversion compared to the donor genomic DNA. We thus provide evidence of transformation, replication and maintenance of this 1.66 Mb intact bacterial genome in S. cerevisiae.  相似文献   

20.
The transformation of leucine incorporation rates to prokaryotic carbon production rates requires the use of either theoretical or empirically determined conversion factors. Empirical leucine-to-carbon conversion factors (eCFs) vary widely across environments, and little is known about their potential controlling factors. We conducted 10 surface seawater manipulation experiments across the world''s oceans, where the growth of the natural prokaryotic assemblages was promoted by filtration (i.e., removal of grazers [F treatment]) or filtration combined with dilution (i.e., also relieving resource competition [FD treatment]). The impact of sunlight exposure was also evaluated in the FD treatments, and we did not find a significant effect on the eCFs. The eCFs varied from 0.09 to 1.47 kg C mol Leu−1 and were significantly lower in the FD than in the F samples. Also, changes in bacterial community composition during the incubations, as assessed by automated ribosomal intergenic spacer analysis (ARISA), were more pronounced in the FD than in the F treatments, compared to unmanipulated controls. Thus, we discourage the common procedure of diluting samples (in addition to filtration) for eCF determination. The eCFs in the filtered treatment were negatively correlated with the initial chlorophyll a concentration, picocyanobacterial abundance (mostly Prochlorococcus), and the percentage of heterotrophic prokaryotes with high nucleic acid content (%HNA). The latter two variables explained 80% of the eCF variability in the F treatment, supporting the view that both Prochlorococcus and HNA prokaryotes incorporate leucine in substantial amounts, although this results in relatively low carbon production rates in the oligotrophic ocean.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号