共查询到20条相似文献,搜索用时 15 毫秒
1.
A challenge associated with drug design is the development of selective inhibitors of proteases (serine or cysteine) that exhibit the same primary substrate specificity, that is, show a preference for the same P(1) residue. While these proteases have similar active sites, nevertheless there are subtle differences in their S and S' subsites which can be exploited. We describe herein for the first time the use of functionalized sulfonamides as a design and diversity element which, when coupled to the 1,2,5-thiadiazolidin-3-one 1,1 dioxide scaffold yields potent, time-dependent inhibitors of the serine proteases human leukocyte elastase (HLE), proteinase 3 (PR 3) and cathepsin G(Cat G). Our preliminary findings suggest that (a) appending to the 1,2,5-thiadiazolidin-3-one 1,1 dioxide scaffold recognition and diversity elements that interact with both the S and S' subsites of a target protease may result in optimal enzyme selectivity and potency and, (b) functionalized sulfonamides constitute a powerful design and diversity element with low intrinsic chemical reactivity and potentially wide applicability. 相似文献
2.
Kuang R Epp JB Ruan S Chong LS Venkataraman R Tu J He S Truong TM Groutas WC 《Bioorganic & medicinal chemistry》2000,8(5):1005-1016
A series of carboxylate derivatives based on the 1,2,5-thiadiazolidin-3-one 1,1 dioxide and isothiazolidin-3-one 1,1 dioxide scaffolds has been synthesized and the inhibitory profile of these compounds toward human leukocyte elastase (HLE), cathepsin G (Cat G) and proteinase 3 (PR 3) was then determined. Most of the compounds were found to be potent, time-dependent inhibitors of elastase, with some of the compounds exhibiting k(inact)/K1 values as high as 4,928,300 M(-1) s(-1). The inhibitory potency of carboxylate derivatives based on the 1,2,5-thiadiazolidin-3-one 1,1 dioxide platform was found to be influenced by both the pKa and the inherent structure of the leaving group. Proper selection of the primary specificity group (R(I)) was found to lead to selective inhibition of HLE over Cat G, however, those compounds that inhibited HLE also inhibited PR 3, albeit less efficiently. The predictable mode of binding of these compounds suggests that, among closely-related serine proteases, highly selective inhibitors of a particular serine protease can be fashioned by exploiting subtle differences in their S' subsites. This study has also demonstrated that the degradative action of elastase on elastin can be abrogated in the presence of inhibitor 17. 相似文献
3.
He S Kuang R Venkataraman R Tu J Truong TM Chan HK Groutas WC 《Bioorganic & medicinal chemistry》2000,8(7):1713-1717
The existence of subtle differences in the Sn' subsites of closely-related (chymo)trypsin-like serine proteases, and the fact that the 1,2,5-thiadiazolidin-3-one 1,1 dioxide scaffold docks to the active site of (chymo)trypsin-like enzymes in a substrate-like fashion, suggested that the introduction of recognition elements that can potentially interact with the Sn' subsites of these proteases might provide an effective means for optimizing enzyme potency and selectivity. Accordingly, a series of heterocyclic sulfide derivatives based on the 1,2,5-thiadiazolidin-3-one 1,1 dioxide scaffold (I) was synthesized and the inhibitory activity and selectivity of these compounds toward human leukocyte elastase (HLE), proteinase 3 (PR 3) and cathepsin G (Cat G) were then determined. Compounds with P1 = isobutyl were found to be potent, time-dependent inhibitors of HLE and, to a lesser extent PR 3, while those with P1 = benzyl inactivated Cat G rapidly and irreversibly. This study has demonstrated that 1,2,5-thiadiazolidin-3-one 1,1 dioxide-based heterocyclic sulfides are effective inhibitors of (chymo)trypsin-like serine proteases. 相似文献
4.
The interaction of a series of 1,2,5-thiadiazolidin-3-one 1,1 dioxide-based sulfonamides with neutrophil-derived serine proteases was investigated. The nature of the amino acid component, believed to be oriented toward the S' subsites, had a profound effect on enzyme selectivity. This series of compounds were found to be potent, time-dependent inhibitors of human neutrophil elastase (HNE) and were devoid of any inhibitory activity toward neutrophil proteinase 3 (PR 3) and cathepsin G (Cat G). The results of these studies demonstrate that exploitation of differences in the S' subsites of HNE and PR 3 can lead to highly selective inhibitors of HNE. 相似文献
5.
Lai Z Gan X Wei L Alliston KR Yu H Li YH Groutas WC 《Archives of biochemistry and biophysics》2004,429(2):191-197
The design, synthesis, and in vitro biochemical evaluation of a class of mechanism-based inhibitors of human leukocyte elastase (HLE) that incorporate in their structure a 1,2,5-thiadiazolidin-3-one 1,1 dioxide scaffold with appropriate recognition and reactivity elements appended to it is described. The synthesized compounds were found to be efficient, time-dependent inhibitors of HLE. The interaction of the inhibitors with HLE is postulated to lead to the formation of a highly reactive N-sulfonyl imine (a Michael acceptor) that arises from an enzyme-induced sulfonamide fragmentation cascade. Subsequent reaction ultimately leads to the formation of a relatively stable acyl enzyme. The results cited herein demonstrate convincingly the superiority of the 1,2,5-thiadiazolidin-3-one 1,1 dioxide scaffold over other scaffolds (e.g., saccharin) in the design of inhibitors of (chymo)trypsin-like serine proteases. 相似文献
6.
Groutas WC Epp JB Kuang R Ruan S Chong LS Venkataraman R Tu J He S Yu H Fu Q Li YH Truong TM Vu NT 《Archives of biochemistry and biophysics》2001,385(1):162-169
The 1,2,5-thiadiazolidin-3-one 1,1 dioxide scaffold (I) embodies a motif that allows it to dock to the active site of (chymo)trypsin-like proteases in a predictable and substrate-like fashion. Consequently, inhibitors derived from this heterocyclic scaffold interact with both the S and S' subsites of an enzyme. Exploitation of binding interactions with both the S and S' subsites of a target enzyme may lead to compounds with greatly enhanced enzyme selectivity and inhibitory potency. This preliminary report describes the use of a series of compounds having the heterocyclic scaffold linked to various amino acids to probe the S' subsites of human leukocyte elastase (HLE), proteinase 3 (PR 3), and cathepsin G (Cat G). For comparative purposes, a series of compounds derived from a related scaffold, isothiazolidin-3-one 1,1 dioxide (II), was also generated. Several of the compounds were found to be highly potent and selective time-dependent inhibitors of HLE, PR 3, and Cat G. 相似文献
7.
Wong T Groutas CS Mohan S Lai Z Alliston KR Vu N Schechter NM Groutas WC 《Archives of biochemistry and biophysics》2005,436(1):1-7
We describe herein the design, synthesis, and in vitro biochemical evaluation of a series of potent, time-dependent inhibitors of the mast cell-derived serine protease tryptase. The inhibitors were readily obtained by attaching various heterocyclic thiols, as well as a basic primary specificity residue P1, to the 1,2,5-thiadiazolidin-3-one 1,1-dioxide scaffold. The inhibitors were found to be devoid of any inhibitory activity toward a neutral (elastase) or cysteine (papain) protease, however they were also fairly efficient inhibitors of bovine trypsin. The differential inhibition observed with trypsin suggests that enzyme selectivity can be optimized by exploiting differences in the S′ subsites of the two enzymes. The results described herein demonstrate the versatility of the heterocyclic scaffold in fashioning mechanism-based inhibitors of neutral, basic, and acidic (chymo)trypsin-like serine proteases. 相似文献
8.
Iris S. Weitz Maria Pellegrini Miriam Royo Dale F. Mierke Michael Chorev 《International journal of peptide research and therapeutics》1998,5(2-3):83-86
Summary The continuing effort to transform bioactive peptides into non-peptide peptidomimetics of therapeutic potential requires a
diversity of tools such as molecular scaffolds, pseudopeptide modifications, and conformation mimetics. To this end, a novel
polyfunctional monoheterocyclic system, 1,2,5-trisubstituted hexahydro-3-oxo-1H-1,4-diazepine ring (DAP), was designed. The linear precursor for the DAP was generated through a reductive alkylation step
including a modified side chain and an α-amino function of two amino acid derivatives. Structural analysis of model diastereomeric
DAPs, employing1H and13C NMR and computer simulation, revealed the conformational preferences of this system. The structural similarities to the
1,4-benzodiazepine, a common molecular scaffold for many non-peptidic peptidomimetic agents, and the pronounced dipeptidomimetic
character of the DAP system offer a new powerful tool to medicinal chemists engaged in rational peptide-based drug design. 相似文献
9.
Iris S. Weitz Maria Pellegrini Miriam Royo Dale F. Mierke Michael Chorev 《Letters in Peptide Science》1998,5(2-3):83-86
The continuing effort to transform bioactive peptides into non-peptide peptidomimetics of therapeutic potential requires a diversity of tools such as molecular scaffolds, pseudopeptide modifications, and conformation mimetics. To this end, a novel polyfunctional monoheterocyclic system, 1,2,5-trisubstituted hexahydro-3-oxo-1H-1,4-diazepine ring (DAP), was designed. The linear precursor for the DAP was generated through a reductive alkylation step including a modified side chain and an -amino function of two amino acid derivatives. Structural analysis of model diastereomeric DAPs, employing 1H and13 C NMR and computer simulation, revealed the conformational preferences of this system. The structural similarities to the 1,4-benzodiazepine, a common molecular scaffold for many non-peptidic peptidomimetic agents, and the pronounced dipeptidomimetic character of the DAP system offer a new powerful tool to medicinal chemists engaged in rational peptide-based drug design. 相似文献
10.
《Bioorganic & medicinal chemistry letters》2014,24(2):462-466
Poly(ADP-ribose)polymerase-I (PARP-1) enzyme is involved in maintaining DNA integrity and programmed cell death. A virtual screening of commercial libraries led to the identification of five novel scaffolds with inhibitory profile in the low nanomolar range. A hit-to-lead optimization led to the identification of a group of new potent PARP-1 inhibitors, acyl-piperazinylamides of 3-(4-oxo-3,4-dihydro-quinazolin-2-yl)-propionic acid. Molecular modeling studies highlighted the preponderant role of the propanoyl side chain. 相似文献
11.
Dengfeng Dou Guijia He Yi Li Zhong Lai Liuqing Wei Kevin R. Alliston Gerald H. Lushington David M. Eichhorn William C. Groutas 《Bioorganic & medicinal chemistry》2010,18(3):1093-1102
The S′ subsites of human neutrophil proteinase 3 (Pr 3) were probed by constructing diverse libraries of compounds based on the 1,2,3,5-thiatriazolidin-3-one 1,1-dioxide using combinational and click chemistry methods. The multiple points of diversity embodied in the heterocyclic scaffold render it well-suited to the exploration of the S′ subsites of Pr 3. Molecular modeling studies suggest that further exploration of the S′ subsites of Pr 3 using the aforementioned heterocyclic scaffold may lead to the identification of highly selective, reversible competitive inhibitors of Pr 3. 相似文献
12.
Cheonik Joo Eeda Venkateswararao Ki-Cheul Lee Vinay K. Sharma Min-Sik Kyung Youngsoo Kim Sang-Hun Jung 《Bioorganic & medicinal chemistry》2012,20(19):5757-5762
Hydroxyethylaminomethyl-4H-chromenones were previously discovered as fairly strong IL-5 inhibitor. For determination of detail structure activity relationship, N-substituted hydroxyethylaminomethylchromenones 4a–n were prepared and evaluated for their IL-5 inhibitory activity. Shifting the hydrophobic group to nitrogen from 1-position of hydroxyethylamino moiety of hydroxyethylaminomethyl-4H-chromenones enhances the activity. The increment in bulkiness or hydrophobicity of alkyl side chain at amino group increases the activity. The same level of activity of 5-(cyclohexylmethoxy)-3-(N-benzyl-2-hydroxyethylaminomethyl)-4H-chromenone analogs regardless of hydrophobic or hydrophilic substituents at 4th position of phenyl ring might infer the existence of tunnel structure in the putative receptor for accepting these side chains. 相似文献
13.
Lucie Maingot Florence Leroux Valérie Landry Julie Dumont Hideaki Nagase Bruno Villoutreix Olivier Sperandio Rebecca Deprez-Poulain Benoit Deprez 《Bioorganic & medicinal chemistry letters》2010,20(21):6213-6216
In this Letter we describe the design, synthesis, screening, and optimization of a new family of ADAMTS-5 inhibitors. These inhibitors display an original 1,2,4-triazole-3-thiol scaffold as a putative zinc binding-group. In vitro results are rationalized by in silico docking of the compounds in ADAMTS-5’s crystal structure. 相似文献
14.
Dou D Tiew KC Mandadapu SR Gunnam MR Alliston KR Kim Y Chang KO Groutas WC 《Bioorganic & medicinal chemistry》2012,20(6):2111-2118
The development of small molecule therapeutics to combat norovirus infection is of considerable interest from a public health perspective because of the highly contagious nature of noroviruses. A series of amino acid-derived acyclic sulfamide-based norovirus inhibitors has been synthesized and evaluated using a cell-based replicon system. Several compounds were found to display potent anti-norovirus activity, low toxicity, and good aqueous solubility. These compounds are suitable for further optimization of pharmacological and ADMET properties. 相似文献
15.
Michael Gütschow Markus Pietsch Andrea Themann Janine Fahrig Bärbel Schulze 《Journal of enzyme inhibition and medicinal chemistry》2013,28(4):341-347
A series of substituted 2,4,5-triphenylisothiazol-3(2H)-one 1,1-dioxides 9 was synthesized and investigated as inhibitors of human leukocyte elastase (HLE). All compounds were found to inhibit HLE in a time-dependent manner and most of them exhibited kobs/[I] values > 300 M? 1s? 1. The most potent 3-oxosultam of this series was 9l (kobs/[I] = 2440 M? 1s? 1). Kinetic investigations performed with 9g and different substrate concentrations did not allow to clearly distinguish between a competitive or noncompetitive mode of inhibition. A more complex interaction is supported by the failure of a linear dependency of kobs values on the inhibitor concentration. 相似文献
16.
Gütschow M Pietsch M Themann A Fahrig J Schulze B 《Journal of enzyme inhibition and medicinal chemistry》2005,20(4):341-347
A series of substituted 2,4,5-triphenylisothiazol-3(2H)-one 1,1-dioxides 9 was synthesized and investigated as inhibitors of human leukocyte elastase (HLE). All compounds were found to inhibit HLE in a time-dependent manner and most of them exhibited kobs/[I] values > 300M(-1)s(-1). The most potent 3-oxosultam of this series was 91 (kobs/[I] = 2440 M(-1)s(-1)). Kinetic investigations performed with 9g and different substrate concentrations did not allow to clearly distinguish between a competitive or noncompetitive mode of inhibition. A more complex interaction is supported by the failure of a linear dependency of kobs values on the inhibitor concentration. 相似文献
17.
With annual death tolls in the millions and emerging resistance to existing drugs, novel therapies are needed against malaria. Wiesner et al. recently developed a novel class of antimalarials derived from farnesyltransferase inhibitors based on a 2,5-diaminobenzophenone scaffold. The compounds displayed a wide range of activity, including submicromolar, against the multi-drug resistant Plasmodium falciparum strain Dd2. In order to investigate quantitatively the local physicochemical properties involved in the interaction between drug and biotarget, we used the 3D-QSAR methods CoMFA and CoMSIA to study some of the series, including the screened lead compound 2,5-bis-acylaminobenzophenone, 28 cinnamic acid derivatives, 29 N-(3-benzoyl-4-tolylacetylaminophenyl)-3-(5-aryl-2-furyl)acrylic acid amides, and 34 N-(4-substituted-amino-3-benzoylphenyl)-[5-(4-nitrophenyl)-2-furyl]acrylic acid amides. We found that steric, electrostatic, and hydrophobic properties of substituent groups play key roles in the bioactivity of the series of compounds, while hydrogen bonding interactions show no obvious impact. We built several highly predictive 3D-QSAR models, including a CoMSIA one composed of steric, electrostatic, and hydrophobic fields, with r(2)=0.94, q(2)=0.63, and r(pred)(2)=0.63. The results provide insight for optimization of this class of antimalarials for better activity and may prove helpful for further lead optimization. 相似文献
18.
S. Ballet R. De Wachter K. Van Rompaey Cs. Tömböly D. Feytens G. Töth L. Quartara P. Cucchi S. Meini D. Tourwé 《Journal of peptide science》2007,13(3):164-170
High affinity peptide ligands for the bradykinin (BK) B(2) subtype receptor have been shown to adopt a beta-turn conformation of the C-terminal tetrapeptide (H-Arg(1)-Pro(2)-Pro(3)-Gly(4)-Phe(5)-Ser(6)-Pro(7)-Phe(8)-Arg(9)-OH). We investigated the replacement of the Pro(7)-Phe(8) dipeptide moiety in BK or the D-Tic(7)-Oic(8) subunit in HOE140 (H-D-Arg(0)-Arg(1)-Pro(2)-Hyp(3)-Gly(4)-Thi(5)-Ser(6)-D-Tic(7)-Oic(8)-Arg(9)-OH) by 4-amino-1,2,4,5-tetrahydro-2-benzazepin-3-one templates (Aba). Binding studies to the human B(2) receptor showed a correlation between the affinities of the BK analogs and the propensity of the templates to adopt a beta-turn conformation. The L-spiro-Aba-Gly containing HOE140 analog BK10 has the best affinity, which correlates with the known turn-inducing property of this template. All the compounds did not modify basal inositolphosphate (IP) output in B(2)-expressing CHO cells up to 10 microM concentration. The antagonist properties were confirmed by the guinea pig ileum smooth muscle contractility assay. The new amino-benzazepinone (Aba) substituted BK analogs were found to be surmountable antagonists. 相似文献
19.
Brassinosteroids (BRs) are steroidal plant hormones that control several important agronomic traits such as plant architecture, seed yield, and stress tolerance. Inhibitors that target BR biosynthesis are candidate plant growth regulators. We synthesized novel triazole derivatives, based on the ketoconazole scaffold, that function as inhibitors of BR biosynthesis. The biological activity of the test compounds was evaluated by determining their ability to induce dwarfism in Arabidopsis seedlings grown in the dark. The chemically induced dwarfism of Arabidopsis seedlings was further evaluated by a rescue experiment using the co-application of brassinolide and/or gibberellins (GA). The structure-activity relationship studies revealed a potent BR biosynthesis inhibitor, 2RS, 4RS-1-{2-(4-chlorophenyl)-4-[2-(2-ethoxyphenyl)-ethyl]-1,3-dioxolan-2-ylmethyl}-1H-1,2,4-triazole (7m), with an IC(50) value of 0.10±0.03 μM for retardation of Arabidopsis seedling stem elongation. The compound-induced hypocotyl dwarfism was counteracted by the co-application of 10nM brassinolide, but not 1 μM GA(3), which produced seedlings that resembled BR-deficient mutants. This result suggests that 7m is a potent and specific inhibitor of BR biosynthesis. 相似文献
20.
Andrzejak V Muccioli GG Body-Malapel M El Bakali J Djouina M Renault N Chavatte P Desreumaux P Lambert DM Millet R 《Bioorganic & medicinal chemistry》2011,19(12):3777-3786
Growing evidence suggests a role for the endocannabinoid (EC) system, in intestinal inflammation and compounds inhibiting anandamide degradation offer a promising therapeutic option for the treatment of inflammatory bowel diseases. In this paper, we report the first series of carboxamides derivatives possessing FAAH inhibitory activities. Among them, compound 39 displayed significant inhibitory FAAH activity (IC(50)=0.088 μM) and reduced colitis induced by intrarectal administration of TNBS. 相似文献