首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The cellular prion protein (PrP(c)) is physiologically cleaved in the middle of its 106-126 amino acid neurotoxic region at the 110/111 downward arrow112 peptidyl bond, yielding an N-terminal fragment referred to as N1. We recently demonstrated that two disintegrins, namely ADAM10 and ADAM17 (TACE, tumor necrosis factor alpha converting enzyme) participated in both constitutive and protein kinase C-regulated generation of N1, respectively. These proteolytic events were strikingly reminiscent of those involved in the so-called "alpha-secretase pathway" that leads to the production of secreted sAPPalpha from betaAPP. We show here, by transient and stable transfection analyses, that ADAM9 also participates in the constitutive secretion of N1 in HEK293 cells, TSM1 neurons, and mouse fibroblasts. Decreasing endogenous ADAM9 expression by an antisense approach drastically reduces both N1 and sAPPalpha recoveries. However, we establish that ADAM9 was unable to increase N1 and sAPPalpha productions after transient transfection in fibroblasts depleted of ADAM10. Accordingly, ADAM9 is unable to cleave a fluorimetric substrate of membrane-bound alpha-secretase activity in ADAM10(-/-) fibroblasts. However, we establish that co-expression of ADAM9 and ADAM10 in ADAM10-deficient fibroblasts leads to enhanced membrane-bound and released fluorimetric substrate hydrolyzing activity when compared with that observed after ADAM10 cDNA transfection alone in ADAM10(-/-) cells. Interestingly, we demonstrate that shedded ADAM10 displays the ability to cleave endogenous PrP(c) in fibroblasts. Altogether, these data provide evidence that ADAM9 is an important regulator of the physiological processing of PrP(c) and betaAPP but that this enzyme acts indirectly, likely by contributing to the shedding of ADAM10. ADAM9 could therefore represent, besides ADAM10, another potential therapeutic target to enhance the breakdown of the 106-126 and Abeta toxic domains of the prion and betaAPP proteins.  相似文献   

2.
Human brain cellular prion protein (PrP(c)) is cleaved within its highly conserved domain at amino acid 110/111/112. This cleavage generates a highly stable C-terminal fragment (C1). We examined the relative abundance of holo- and truncated PrP(c) in human cerebral cortex and we found important inter-individual variations in the proportion of C1. Neither age nor postmortem interval explain the large variability observed in C1 amount. Interestingly, our results show that high levels of C1 are associated with the presence of the active ADAM 10 suggesting this zinc metalloprotease as a candidate for the cleavage of PrP(c) in the human brain.  相似文献   

3.
4.
The cellular prion protein (PrPC) undergoes constitutive proteolytic cleavage between residues 111/112 to yield a soluble N-terminal fragment (N1) and a membrane-anchored C-terminal fragment (C1). The C1 fragment represents the major proteolytic fragment of PrPC in brain and several cell types. To explore the role of C1 in prion disease, we generated Tg(C1) transgenic mice expressing this fragment (PrP(Δ23-111)) in the presence and absence of endogenous PrP. In contrast to several other N-terminally deleted forms of PrP, the C1 fragment does not cause a spontaneous neurological disease in the absence of endogenous PrP. Tg(C1) mice inoculated with scrapie prions remain healthy and do not accumulate protease-resistant PrP, demonstrating that C1 is not a substrate for conversion to PrPSc (the disease-associated isoform). Interestingly, Tg(C1) mice co-expressing C1 along with wild-type PrP (either endogenous or encoded by a second transgene) become ill after scrapie inoculation, but with a dramatically delayed time course compared with mice lacking C1. In addition, accumulation of PrPSc was markedly slowed in these animals. Similar effects were produced by a shorter C-terminal fragment of PrP(Δ23-134). These results demonstrate that C1 acts as dominant-negative inhibitor of PrPSc formation and accumulation of neurotoxic forms of PrP. Thus, C1, a naturally occurring fragment of PrPC, might play a modulatory role during the course of prion diseases. In addition, enhancing production of C1, or exogenously administering this fragment, represents a potential therapeutic strategy for the treatment of prion diseases.  相似文献   

5.
It is commonly assumed that the physiological isoform of prion protein, PrP(C), is cleaved during its normal processing between residues 111/112, whereas the pathogenic isoform, PrP(Sc), is cleaved at an alternate site in the octapeptide repeat region around position 90. Here we demonstrated both in cultured cells and in vivo, that PrP(C) is subject to a complex set of post-translational processing with the molecule being cleaved upstream of position 111/112, in the octapeptide repeat region or at position 96. PrP has therefore two main cleavage sites that we decided to name alpha and beta. Cleavage of PrP(C) at these sites leads us to re-evaluate the function of both N- and C-terminus fragments thus generated.  相似文献   

6.
7.
The human recombinase HsRad51 is cleaved during apoptosis. We have earlier observed cleavage of the 41-kDa full-length protein into a 33-kDa product in apoptotic Jurkat cells and in in vitro translated HsRad51 after treatment with activated S-100 extract. In this study, site-directed mutagenesis was used for mapping of the cleavage site to AQVD274 downward arrow G, which does not correspond to a conventional caspase cleavage site. The absence of HsRad51 cleavage in staurosporine-treated apoptotic MCF-7 cells, which lack caspase-3, indicates that caspase-3 is essential for HsRad51 cleavage in vivo. Cleavage into the 33-kDa fragment was generated by recombinant caspase-3 and -7 in in vitro translated wild type HsRad51, but not in the HsRad51 AQVE274 downward arrow G mutant. Similarly, HsRad51 of Jurkat cell extracts was cleaved into the 33-kDa product by recombinant caspase-3, whereas caspase-7 failed to cleave endogenous HsRad51. The cleavage of in vitro translated wild type and AQVE274 downward arrow G mutant HsRad51 as well as of endogenous HsRad51 also gave rise to a smaller fragment, which corresponds in size to a recently reported DVLD187 downward arrow N HsRad51 cleavage product. In Jurkat cell extracts, the AQVD274 downward arrow G and DVLD187 downward arrow N cleavage products of HsRad51 appeared at equal concentrations of caspase-3. Moreover both fragments were generated by induction of apoptosis in MDA-MB 157 cells with staurosporine and in Jurkat cells with camptothecin. Thus, two sites in the HsRad51 sequence are targets for caspase cleavage both in vitro and in vivo.  相似文献   

8.
The oncogene Akt/PKB/RAC-PK is a serine/threonine kinase that mediates survival signals and has protective effects against apoptosis induced by a variety of stimuli. The kinase activity of Akt has been demonstrated to be critical in transmitting survival signals. We found that Akt protein was down-regulated during apoptosis. The down-regulation was blocked by a caspase inhibitor, indicating that Akt was cleaved by caspases during apoptosis. The Akt protein incubation with active caspases in vitro revealed that it was cleaved at three sites to produce 40- and 44-kDa fragments. The two cleavage sites were between the NH(2)-terminal pleckstrin homology domain (PH domain) and the kinase domain (TVAD(108 downward arrow)G and EEMD(119 downward arrow)F) and in the COOH-terminal regulatory domain (SETD(434 downward arrow)T). The loss of COOH-terminal domain of the Akt protein reduced its kinase activity and the overexpression of NH(2)-terminal and COOH-terminal-deleted Akt fragment increased the sensitivity to apoptosis-inducing stimuli. These results indicate that caspase-dependent cleavage of anti-apoptotic Akt turns off the survival signals, resulting in the acceleration of apoptotic cell death.  相似文献   

9.
The events leading to the degradation of the endogenous PrP(C) (normal cellular prion protein) have been the subject of numerous studies. Two cleavage processes, α-cleavage and β-cleavage, are responsible for the main C- and N-terminal fragments produced from PrP(C). Both cleavage processes occur within the N-terminus of PrP(C), a region that is significant in terms of function. α-Cleavage, an enzymatic event that occurs at amino acid residues 110 and 111 on PrP(C), interferes with the conversion of PrP(C) into the prion disease-associated isoform, PrP(Sc) (abnormal disease-specific conformation of prion protein). This processing is seen as a positive event in terms of disease development. The study of β-cleavage has taken some surprising turns. β-Cleavage is brought about by ROS (reactive oxygen species). The C-terminal fragment produced, C2, may provide the seed for the abnormal conversion process, as it resembles in size the fragments isolated from prion-infected brains. There is, however, strong evidence that β-cleavage provides an essential process to reduce oxidative stress. β-Cleavage may act as a double-edged sword. By β-cleavage, PrP(C) may try to balance the ROS levels produced during prion infection, but the C2 produced may provide a PrP(Sc) seed that maintains the prion conversion process.  相似文献   

10.
Several novel protein kinase C (PKC) isozymes have been identified as substrates for caspase-3. We have previously shown that novel PKCepsilon is cleaved during apoptosis in MCF-7 cells that lack any functional caspase-3. In the present study, we show that in vitro-translated PKCepsilon is processed by human recombinant caspase-3, -7, and -9. Tumor necrosis factor-alpha (TNF) triggered processing of PKCepsilon to a 43-kDa carboxyl-terminal fragment, and cell-permeable caspase inhibitors prevented TNF-induced processing of PKCepsilon in MCF-7 cells. PKCepsilon was cleaved primarily at the SSPD downward arrow G site to generate two fragments with an approximate molecular mass of 43 kDa. It was also cleaved at the DDVD downward arrow C site to generate two fragments with molecular masses of 52 and 35 kDa. Treatment of MCF-7 cells with TNF resulted in the activation of PKCepsilon, and mutation at the SSPD downward arrow G (D383A) site inhibited proteolytic activation of PKCepsilon. Overexpression of wild-type but not dominant-negative PKCepsilon in MCF-7 cells delayed TNF-induced apoptosis, and mutation at the D383A site prevented antiapoptotic activity of PKCepsilon. These results suggest that cleavage of PKCepsilon by caspase-7 at the SSPD downward arrow G site results in the activation of PKCepsilon. Furthermore, activation of PKCepsilon was associated with its antiapoptotic function.  相似文献   

11.
Poly(ADP-ribose) glycohydrolase (PARG) is responsible for the catabolism of poly(ADP-ribose) synthesized by poly(ADP-ribose) polymerase (PARP-1) and other PARP-1-like enzymes. In this work, we report that PARG is cleaved during etoposide-, staurosporine-, and Fas-induced apoptosis in human cells. This cleavage is concomitant with PARP-1 processing and generates two C-terminal fragments of 85 and 74 kDa. In vitro cleavage assays using apoptotic cell extracts showed that a protease of the caspase family is responsible for PARG processing. A complete inhibition of this cleavage was achieved at nanomolar concentrations of the caspase inhibitor acetyl-Asp-Glu-Val-Asp-aldehyde, suggesting the involvement of caspase-3-like proteases. Consistently, recombinant caspase-3 efficiently cleaved PARG in vitro, suggesting the involvement of this protease in PARG processing in vivo. Furthermore, caspase-3-deficient MCF-7 cells did not show any PARG cleavage in response to staurosporine treatment. The cleavage sites identified by site-directed mutagenesis are DEID(256) downward arrow V and the unconventional site MDVD(307) downward arrow N. Kinetic studies have shown similar maximal velocity (V(max)) and affinity (K(m)) for both full-length PARG and its apoptotic fragments, suggesting that caspase-3 may affect PARG function without altering its enzymatic activity. The early cleavage of both PARP-1 and PARG by caspases during apoptosis suggests an important function for poly(ADP-ribose) metabolism regulation during this cell death process.  相似文献   

12.
13.
Jahani-Asl A  Basak A  Tsang BK 《FEBS letters》2007,581(16):2883-2888
Here, we show for the first time that Akt1 is cleaved in vitro at the caspase-3 consensus site DQDD(456) downward arrow SM. Our data suggest QEEE(116) downward arrow E(117) downward arrow MD, EEMD(119) downward arrow, TPPD(453) downward arrow QD and DAKE(398) downward arrow IM as novel non-consensus caspase-3 cleavage sites. More importantly, we demonstrate that phosphorylation of Akt1 modulates its cleavage in a site-specific manner: Resistance to cleavage at site DAKE(398) (within the kinase domain) in response to phosphorylation suggests a possible mechanism by which the anti-apoptotic role of Akt1 is regulated. Our result is important in biological models which rely on Akt1 for cell survival.  相似文献   

14.
Catestatin is an active 21-residue peptide derived from the chromogranin A (CgA) precursor, and catestatin is secreted from neuroendocrine chromaffin cells as an autocrine regulator of nicotine-stimulated catecholamine release. The goal of this study was to characterize the primary sequences of high molecular mass catestatin intermediates and peptides to define the proteolytic cleavage sites within CgA that are utilized in the biosynthesis of catestatin. Catestatin-containing polypeptides, demonstrated by anti-catestatin western blots, of 54-56, 50, 32, and 17 kDa contained NH(2)-terminal peptide sequences that indicated proteolytic cleavages of the CgA precursor at KK downward arrow, KR downward arrow, R downward arrow, and KR downward arrow basic residue sites, respectively. The COOH termini of these catestatin intermediates were defined by the presence of the COOH-terminal tryptic peptide of the CgA precursor, corresponding to residues 421-430, which was identified by MALDI-TOF mass spectrometry. Results also demonstrated the presence of 54-56 and 50 kDa catestatin intermediates that contain the NH(2) terminus of CgA. Secretion of catestatin intermediates from chromaffin cells was accompanied by the cosecretion of catestatin (CgA(344)(-)(364)) and variant peptide forms (CgA(343)(-)(368) and CgA(332)(-)(361)). These determined cleavage sites predicted that production of high molecular mass catestatin intermediates requires cleavage at the COOH-terminal sides of paired basic residues, which is compatible with the cleavage specificities of PC1 and PC2 prohormone convertases. However, it is notable that production of catestatin itself (CgA(344)(-)(364)) utilizes more unusual cleavage sites at the NH(2)-terminal sides of downward arrow R and downward arrow RR basic residue sites, consistent with the cleavage specificities of the chromaffin granule cysteine protease "PTP" that participates in proenkephalin processing. These findings demonstrate that production of catestatin involves cleavage of CgA at paired basic and monobasic residues, necessary steps for catestatin peptide regulation of nicotinic cholinergic-induced catecholamine release.  相似文献   

15.
Transmissibility and distinctive neuropathology are hallmark features of prion diseases differentiating them from other neurodegenerative disorders, with pathogenesis and transmission appearing closely linked to misfolded conformers (PrP(Sc)) of the ubiquitously expressed cellular form of the prion protein (PrP(C)). Given the apparent pathogenic primacy of misfolded PrP, the utilisation of peptides based on the prion protein has formed an integral approach for providing insights into misfolding pathways and pathogenic mechanisms. In parallel with studies employing prion peptides, similar approaches in other neurodegenerative disorders such as Alzheimer Disease, have demonstrated that differential processing of parent proteins and quite minor variations in the primary sequence of cognate peptides generated from the same constitutive processing (such as Aβ1-40 versus Aβ1-42 produced from γ-secretase activity) can be associated with very different pathogenic consequences. PrP(C) also undergoes constitutive α- or β-cleavage yielding C1 (residues 112-231 human sequence) or C2 (residues 90-231), respectively, with the full cell biological significance of such processing unresolved; however, it is noteworthy that in prion diseases, such as Creutzfeldt-Jakob disease (CJD) and murine models, the moderately extended C2 fragment predominates in the brain suggesting that the two cleavage events and the consequent C-terminal fragments may differ in their pathogenic significance. Accordingly, studies characterising biologically relevant peptides like C1 and C2, would be most valid if undertaken using peptides completely free of any inherent non-native sequence that arises as a by-product of commonly employed recombinant production techniques. To achieve this aim and thereby facilitate more representative biophysical and neurotoxicity studies, we adapted the combination of high fidelity Taq TA cloning with a SUMO-Hexa-His tag-type approach, incorporating the SUMO protease step. This technique consistently produced sufficient yields (~10 mg/L) of high purity peptides (>95%) equating to C1 and C2 of exact native primary sequence in the α-helical conformation suitable for biological and biophysical investigations.  相似文献   

16.
The cellular compartment and purpose of the proteolytic processing of the prion protein (PrP) are still under debate. We have studied ovine PrP constructs expressed in four cell lines; murine neuroblastoma cells (N2a), human neuroblastoma cells (SH-SY5Y), dog kidney epithelial cells (MDCK), and human furin-deficient colon cancer cells (LoVo). Cleavage of PrP in LoVo cells indicates that the processing is furin independent. Neither is it reduced by some inhibitors of lysosomal proteinases, proteasomes or zinc-metalloproteinases, but incubation with bafilomycin A1, an inhibitor of vacuolar H+/ATPases, increases the amount of uncleaved PrP in the apical medium of MDCK cells. Mutations affecting the putative cleavage site near amino acid 113 reveal that the cleavage is independent of primary structure at this site. Absence of glycosylphosphatidylinositol anchor and glycan modifications does not influence the proteolytic processing of PrP. Our data indicate that PrP is cleaved during transit to the cell membrane.  相似文献   

17.
An understanding of the regulatory mechanisms that control the activity of membrane type-1 matrix metalloproteinase (MT1-MMP), a key proteinase in tumor cell invasion, is essential for the design of potent and safe anti-cancer therapies. A unique proteolytic pathway regulates MT1-MMP at cancer cell surfaces. The abundance of proteolytic enzymes in cancer cells makes it difficult to identify the autocatalytic events in this pathway. To identify these events, a soluble form of MT1-MMP, lacking the C-terminal transmembrane and cytoplasmic domains, was expressed in Pichia pastoris. Following secretion, the latent zymogen and active enzyme were each purified from media by fast protein liquid chromatography. Trace amounts of active MT1-MMP induced activation of the zymogen and its self-proteolysis. This autocatalytic processing generated six main forms of MT1-MMP, each of which was subjected to the N-terminal microsequencing to identify the cleavage sites. Our data indicate that MT1-MMP functions as a self-convertase and is capable of cleaving its own prodomain at the furin cleavage motif RRKR downward arrow Y(112), thus autocatalytically generating the mature MT1-MMP enzyme with an N terminus starting at Tyr(112). The mature enzyme undergoes further autocatalysis to the two distinct intermediates (N terminus at Trp(119) and at Asn(130)) and, next, to the three inactive ectodomain forms (N terminus at Thr(222), at Gly(284), and at Thr(299)). These findings provide, for the first time, a structural basis for understanding the unconventional mechanisms of MT1-MMP activation and regulation. Finally, our data strongly imply that MT1-MMP is a likely substitute for the general proprotein convertase activity of furin-like proteinases, especially in furin-deficient cancer cells.  相似文献   

18.
The purpose of this report was to determine the effect of prion protein (PrP) gene disruption on T lymphocyte function. Previous studies have suggested that normal cellular prion protein (PrP(c)) binds to copper and Cu(2+) is essential for interleukin-2 (IL-2) mRNA synthesis. In this study, IL-2 mRNA levels in a copper-deficient condition were investigated using T lymphocytes from prion protein gene-deficient (PrP(0/0)) and wild-type mice. Results showed that Cu(2+) deficiency had no effect on PrP(c) expression in Con A-activated splenocytes. However, a delay in IL-2 gene expression was observed in PrP(0/0) mouse T lymphocyte cultures using Con A and Cu(2+)-chelator. These results suggest that PrP(c) expression may play an important role in rapid Cu(2+) transfer in T lymphocytes. The rapid transfer of Cu(2+) in murine T lymphocytes could be one of the normal functions of PrP(c).  相似文献   

19.
Membrane type-1 matrix metalloproteinase (MT1-MMP) exhibits distinctive and important pericellular cleavage functions. Recently, we determined that MT1-MMP was trafficked to the centrosomes in the course of endocytosis. Our data suggested that the functionally important, integral, centrosomal protein, pericentrin-2, was a cleavage target of MT1-MMP in human and in canine cells and that the sequence of the cleavage sites were ALRRLLG1156 downward arrow L1157FG and ALRRLLS2068 downward arrow L2069FG, respectively. The presence of Asp-948 at the P1 position inactivated the corresponding site (ALRRLLD948-L949FGD) in murine pericentrin. To confirm that MT1-MMP itself cleaves pericentrin directly, rather than indirectly, we analyzed the cleavage of the peptides that span the MT1-MMP cleavage site. In addition, we analyzed glioma U251 cells, which co-expressed MT1-MMP with the wild type murine pericentrin and the D948G mutant. We determined that the D948G mutant that exhibited the cleavage sequence of human pericentrin was sensitive to MT1-MMP, whereas unmodified murine pericentrin was resistant to proteolysis. Taken together, our results confirm that MT1-MMP cleaves pericentrin-2 in humans but not in mice and that mouse models of cancer probably cannot be used to critically examine MT1-MMP functionality.  相似文献   

20.
Prion diseases are characterised by the conversion of a cellular prion protein (PrP(C)) by its misfolded, hence pathogenic, isoform (PrP(Sc)). The efficiency of this transition depends on the molecular similarities between both interaction partners and on the intrinsic convertibility of PrP(C). Transgenic mice expressing chimeric murine/ovine PrP(C) (Tgmushp mice) are susceptible to BSE and/or scrapie prions of bovine or ovine origin while transgenic mice expressing similar murine/bovine PrP(C) chimera (Tgmubo mice) are essentially resistant. We have studied this phenomenon by cell-free conversion on procaryotically expressed chimeric PrP(C). Mouse passaged scrapie or BSE PrP(Sc) was used as a seed and the conversion reaction was carried out under semi-native conditions. The results obtained in this assay were similar to those of our in vivo experiments. Since mubo- and mushp-PrP(C) differ only at four amino acid positions (S96G, N142S, Y154H and Q185E), single or double point mutations of mushp-PrP(C) were examined in the cell-free conversion assay. While the scrapie Me7 prion induced conversion was largely reduced by the N142S and Q185E but not by the S96G and Y154H mutation, the BSE induced conversion was retained in all mutants. Newly formed PrP(res) exhibited strain specific characteristics, such as the localisation of the proteinase K cleavage site, even in the chimeric PrP(C) mutants. We therefore postulate that the efficiency of the conversion of chimeric PrP(C) depends on the amino acid sequence as well as on prion strain specific effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号