首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
乳酸菌细菌素具有广谱的抑菌活性,但其合成量低,限制了行业应用。群体感应是细胞间的通信过程,细菌通过感知信号分子浓度变化,调控相关的生物学过程。三组分系统在调控细菌素合成的过程中发挥了核心作用。本文中,笔者综述了调控乳酸菌细菌素合成的三组分系统的组成、Ⅰ类和Ⅱ类细菌素合成调控的基因与结构的差异性以及细菌密度和共培养等因素对细菌素的合成的影响,以阐明乳酸菌素合成的群体感应调控机制,对于其在食品、生物和医疗领域的应用都有重要的意义。  相似文献   

2.
乳酸菌素-安全、天然的食品防腐剂   总被引:2,自引:0,他引:2  
乳酸菌素是一类由乳酸菌在代谢过程中通过核糖体合成机制产生的抗菌多肽或蛋白,胞外分泌,能够通过在细胞膜上形成孔道或抑制细胞壁合成来达到溶菌目的。主要从乳酸菌素在食品中应用的安全性、影响乳酸菌素生物合成的条件、乳酸菌素活性的影响因素、以及目前乳酸菌素在食品领域的应用等方面进行了评述,揭示了乳酸菌素广阔的市场应用前景,从而使乳酸菌素这种天然防腐剂能获得更好地开发和利用。  相似文献   

3.
乳酸菌素是在乳酸茵代谢过程中通过核糖体合成机制产生并胞外分泌到环境中的一类对革兰阳性茵(尤其是亲缘性较近的细菌)具有抑制作用的杀菌蛋白或多肽,大多对热稳定,能够通过在细胞膜上形成孔道或抑制细胞壁合成来达到溶茵目的.乳酸菌素作为一种无毒副作用的天然食品防腐剂,比抗生素更具优点的抑菌素以及无残留的饲料添加剂,有着广阔的市场前景,逐步得到科研重视.对乳酸菌素产生茵的选育,生物合成及影响因素,应用方向和措施、趋势方面进行综述.  相似文献   

4.
Ⅱ类乳酸菌细菌素具有抑菌谱广,尤其对单核细胞增生李斯特菌表现出强抑制作用,被视为一类新型、安全的天然食品防腐剂,具有广泛应用前景,但合成量低是目前限制其应用的瓶颈之一。群体感应是细菌细胞间的相互交流,从而感知自身信号分子浓度进行基因表达调控的一种生理行为,已经证明乳酸菌群体感应系统能调控细菌素的合成。本文综述了细菌群体感应调控机制及其对乳酸菌细菌素生物合成调控的作用,为通过群体感应系统调控提高乳酸菌细菌素的产量提供思路。  相似文献   

5.
细菌素可以有效抑制其他细菌的生长,是产生菌获得生存优势的重要手段。细菌素使产生菌获得竞争优势基于两个方面:就产生菌自身而言,将细菌素吸附于细胞表面可能增强细胞表面疏水性,进而对定殖产生正向作用;就目标菌而言,细菌素可以自外而内抑制目标菌生物被膜、细胞壁、细胞膜的合成或破坏其结构完整性,同时还可影响其功能基因的表达。然而,伴随细菌素合成的往往是一簇基因的共同表达,需要一定的非生长相关性能量和物质消耗。因此,为实现细菌素合成的调控,细菌素表达基因的开启受制于细菌素自诱导、共培养诱导和环境因子诱导等一系列条件,以实现细菌素利用效率的最大化。根据细菌素主要的抑菌/杀菌机制,我们展望了细菌素耐受性突变菌株可能具有更强流动性细胞膜和(或)更高效小分子合成途径和(或)细菌素受体突变的特征,并提出了科学使用细菌素的建议。  相似文献   

6.
产Ⅱ类细菌素乳酸菌群体感应及其应用   总被引:1,自引:0,他引:1  
张香美  李平兰 《微生物学报》2011,51(9):1152-1157
群体感应(quorum sensing,QS)是微生物通过感知与细胞密度相关的信号分子的浓度来调控基因表达的一种行为。许多产Ⅱ类细菌素乳酸菌通过自诱导肽介导的QS系统调控其细菌素的合成。本文综述了乳酸菌Ⅱ类细菌素合成的QS调控现象、调控机制、QS系统组分以及QS的应用。产Ⅱ类细菌素乳酸菌QS的研究,必将为揭示发酵调控机理、调控发酵过程提供新的研究平台,为食品级基因表达系统的开发提供新的选择。  相似文献   

7.
1株产细菌素乳酸菌的筛选和鉴定   总被引:11,自引:2,他引:11  
目的 从植物性材料中筛选产细菌素的乳酸菌。方法 琼脂扩散法。结果 所筛选的产细菌素R260菌株经鉴定为植物乳杆菌。排除有机酸、过氧化氢等干扰因素后,发酵液仍有很强的抑菌作用;用胰蛋白酶和胃蛋白酶处理后,发酵液抑菌活性急剧下降,因而确定产生的抑菌物质具有蛋白质性质,是一种细菌素。抑菌谱试验测定表明,此菌株的发酵液不仅抑制革兰阳性菌,而且对部分革兰阴性菌也有抑制作用,因此产生的是一类广谱细菌素。结论筛选到了1株产广谱细菌素的乳酸菌。  相似文献   

8.
对筛选到具有高效抑菌效果的植物乳杆菌SN4和粪肠球菌CN4产生的乳酸菌素进行进一步生物学特性研究。采用牛津杯法测定细菌素对金黄色葡萄球菌的抑菌效果,发酵上清制取乳酸菌素初提液,通过对两株乳酸菌产生的乳酸菌素进行蛋白酶、热和酸碱处理,研究其抑菌效果的稳定性,以及菌株的生长合成曲线和抑菌谱。试验结果表明:两种乳酸菌素对大部分蛋白酶较敏感,胰蛋白酶处理后乳酸菌素BSN4和BCN4分别能保留84%和55%活性;两种乳酸菌素在p H 4~10之间保持80%的抑菌活性(抑菌圈20 mm),在25~100℃处理20 min后能分别保留89.1%和74.4%以上的活性,乳酸菌素BSN4经120℃处理5 min后仍保留69%活性;菌株SN4在发酵10 h就能达到稳定期,并表现出较好地产酸性和抑菌活性。抑菌谱显示乳酸菌素BSN4和BCN4对革兰阴性菌和真菌无明显抑菌效果,但对大部分革兰阳性菌有较好的抑菌活性。结果显示,两种乳酸菌素对大部分革兰阳性菌有较好的抑菌效果,具有较好的环境耐受性,可为乳酸菌素在生产生活中的应用提供参考。  相似文献   

9.
细菌素是一种由微生物核糖体合成的抗菌肽,一般作为食品防腐剂使用。近年来,科学家挑选少数的细菌素进行深入的研究,开辟了细菌素新的研究领域,并拓宽了其应用范围。随着遗传学和纳米技术的快速发展,细菌素极有可能发展成为下一代新型抗生素、新型载体分子,肿瘤治疗的药物等。同时,科学家发现一些细菌素具有调节群体感应的功能,这一发现表明细菌素具有应用到新领域的可能。目前,革兰氏阴性菌产生的细菌素主要用于细菌素翻译修饰研究,而革兰氏阳性菌(主要是乳酸菌)产生的细菌素主要进行细菌素应用方面的研究。当前,细菌素的应用正从食品领域扩展至人类健康方面。综述了细菌素的功能及其作用效果,并且详细描述了其从食品领域到人类健康方面的应用,表明了细菌素的重要性,旨在为进一步研究细菌素在食品防腐、人类疾病防治和生物防治等领域奠定基础。  相似文献   

10.
乳酸菌细菌素的分子生物学研究进展   总被引:9,自引:2,他引:9  
乳酸菌是一大类发酵糖产生大量乳酸的兼性厌氧菌 ,广泛应用于医药、食品、发酵等工业 ,主要包括乳杆菌( L actobacillus)、乳球菌 ( L actococcus)、明串珠菌( L euconostoc )、片球菌 ( Pediococcus )、链球菌( Streptococcus)、肠球菌 ( Enterococcus)、双歧杆菌( Bifidobacterium)和肉食杆菌 ( Carnobacterium)等属 [1 ]。许多乳酸菌除产生乳酸、乙酸和双乙酰外 ,还可产生一些具有抑菌或杀菌作用的细菌素 ( bacteriocin) ,在食品防腐保鲜中起重要作用 [2 ] 。细菌素的含义可以这样理解。细菌素是由某些细菌在代谢过程中通过核糖体合…  相似文献   

11.
Bacteriocins are low molecular weight peptides secreted by the predator bacterial cells to kill sensitive cells present in the same ecosystem competing for food and other nutrients. Exceptionally few bacteriocins along with their native antibacterial property also exhibit additional anti-viral and anti-fungal properties. Bacteriocins are generally produced by Gm+, Gm– and archaea bacteria. Bacteriocins from Gm?+?bacteria especially from lactic acid bacteria (LAB) have been thoroughly investigated considering their great biosafety and broad industrial applications. LAB expressing bacteriocins were isolated from fermented milk and milk products, rumen of animals and soil using deferred antagonism assay. Nisin is the only bacteriocin that has got FDA approval for application as a food preservative, which is produced by Lactococcus lactis subsp. Lactis. Its crystal structure explains that its antimicrobial properties are due to the binding of NH2 terminal to lipid II molecule inhibiting the peptidoglycan synthesis and carboxy terminal forming pores in bacterial cell membrane leading to cell lysis. The hinge region connecting NH2 and carboxy terminus has been mutated to generate mutant variants with higher antimicrobial activity. In a 50 ton fermentation of the mutant strain 3807 derived from L. lactis subsp. lactis ATCC 11454, 9,960?IU/mL of nisin was produced. Currently, high purity of nisin (>99%) is very expensive and hardly commercially available. Development of more advanced tools for cost-effective separation and purification of nisin would be commercially attractive. Chemical synthesis and heterologous expression of bacteriocins ended in low yields of pure proteins. At present, bacteriocins are almost solely applied in food industries, but they have a great potential to be used in other fields such as feeds, organic fertilizers, environmental protection and personal care products. The future of bacteriocins is largely dependent on getting FDA approval for use of other bacteriocins in addition to nisin to promote the research and applications.  相似文献   

12.
Bacteriocins from lactic acid bacteria (LAB) are a diverse group of antimicrobial proteins/peptides, offering potential as biopreservatives, and exhibit a broad spectrum of antimicrobial activity at low concentrations along with thermal as well as pH stability in foods. High bacteriocin production usually occurs in complex media. However, such media are expensive for an economical production process. For effective use of bacteriocins as food biopreservatives, there is a need to have heat-stable wide spectrum bacteriocins produced with high-specific activity in food-grade medium. The main hurdles concerning the application of bacteriocins as food biopreservatives is their low yield in food-grade medium and time-consuming, expensive purification processes, which are suitable at laboratory scale but not at industrial scale. So, the present review focuses on the bacteriocins production using complex and food-grade media, which mainly emphasizes on the bacteriocin producer strains, media used, different production systems used and effect of different fermentation conditions on the bacteriocin production. In addition, this review emphasizes the purification processes designed for efficient recovery of bacteriocins at small and large scale.  相似文献   

13.
In nature, microorganisms can present several mechanisms for setting intercommunication and defense. One of these mechanisms is related to the production of bacteriocins, which are peptides with antimicrobial activity. Bacteriocins can be found in Gram-positive and Gram-negative bacteria. Nevertheless, bacteriocins produced by Gram-positive bacteria are of particular interest due to the industrial use of several strains that belong to this group, especially lactic acid bacteria (LAB), which have the status of generally recognized as safe (GRAS) microorganisms. In this work, we will review recent tendencies in the field of invention and state of art related to bacteriocin production by Gram-positive microorganism. Hundred-eight patents related to Gram-positive bacteriocin producers have been disclosed since 1965, from which 57% are related bacteriocins derived from Lactococcus, Lactobacillus, Streptococcus, and Pediococcus strains. Surprisingly, patents regarding heterologous bacteriocins production were mainly presented just in the last decade. Although the major application of bacteriocins is concerned to food industry to control spoilage and foodborne bacteria, during the last years bacteriocin applications have been displacing to the diagnosis and treatment of cancer, and plant disease resistance and growth promotion.  相似文献   

14.
Lactic acid bacteria (LAB) fight competing Gram-positive microorganisms by secreting anti-microbial peptides called bacteriocins. Peptide bacteriocins are usually divided into lantibiotics (class I) and non-lantibiotics (class II), the latter being the main topic of this review. During the past decade many of these bacteriocins have been isolated and characterized, and elements of the genetic mechanisms behind bacteriocin production have been unravelled. Bacteriocins often have a narrow inhibitory spectrum, and are normally most active towards closely related bacteria likely to occur in the same ecological niche. Lactic acid bacteria seem to compensate for these narrow inhibitory spectra by producing several bacteriocins belonging to different classes and having different inhibitory spectra. The latter may also help in counteracting the possible development of resistance mechanisms in target organisms. In many strains, bacteriocin production is controlled in a cell-density dependent manner, using a secreted peptide-pheromone for quorum-sensing. The sensing of its own growth, which is likely to be comparable to that of related species, enables the producing organism to switch on bacteriocin production at times when competition for nutrients is likely to become more severe. Although today a lot is known about LAB bacteriocins and the regulation of their production, several fundamental questions remain to be solved. These include questions regarding mechanisms of immunity and resistance, as well as the molecular basis of target-cell specificity. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

15.
O'Sullivan L  Ross RP  Hill C 《Biochimie》2002,84(5-6):593-604
Lactic acid bacteria (LAB) have been used for centuries in the fermentation of a variety of dairy products. The preservative ability of LAB in foods is attributed to the production of anti-microbial metabolites including organic acids and bacteriocins. Bacteriocins generally exert their anti-microbial action by interfering with the cell wall or the membrane of target organisms, either by inhibiting cell wall biosynthesis or causing pore formation, subsequently resulting in death. The incorporation of bacteriocins as a biopreservative ingredient into model food systems has been studied extensively and has been shown to be effective in the control of pathogenic and spoilage microorganisms. However, a more practical and economic option of incorporating bacteriocins into foods can be the direct addition of bacteriocin-producing cultures into food. This paper presents an overview of the potential for using bacteriocin-producing LAB in foods for the improvement of the safety and quality of the final product. It describes the different genera of LAB with potential as biopreservatives, and presents an up-to-date classification system for the bacteriocins they produce. While the problems associated with the use of some bacteriocin-producing cultures in certain foods are elucidated, so also are the situations in which incorporation of the bacteriocin-producer into model food systems have been shown to be very effective.  相似文献   

16.
During the recent years extensive efforts have been made to find out bacteriocins from lactic acid bacteria (LAB) active against various food spoilage and pathogenic bacteria, and superior stabilities against heat treatments and pH variations. Bacteriocins isolated from LAB have been grouped into four classes. Circular bacteriocins which were earlier grouped among the four groups of bacteriocins, have recently been proposed to be classified into a different class, making it class V bacteriocins. Circular bacteriocins are special molecules, whose precursors must be post translationally modified to join the N to C termini with a head-to-tail peptide bond. Cyclization appears to make them less susceptible to proteolytic cleavage, high temperature and pH, and, therefore, provides enhanced stability as compared to linear bacteriocins. The advantages of circularization are also reflected by the fact that a significant number of macrocyclic natural products have found pharmaceutical applications. Circular bacteriocins were unknown two decades ago, and even to date, only a few circular bacteriocins from a diverse group of Gram positive organisms have been reported. The first example of a circular bacteriocin was enterocin AS-48, produced by Enterococcus faecalis AS-48. Gassereccin A, produced by Lactobacillus gasseri LA39, Reutericin 6 produced by Lactobacillus reuteri LA6 and Circularin A, produced by Clostridium beijerinickii ATCC 25,752, are further examples of this group of antimicrobial peptides. In the present scenario, Gassericin A can be an important tool in the food preservation owing to its properties of high pH and temperature tolerance and the fact that it is produced by LAB L. gasseri, whose many strains are proven probiotic.  相似文献   

17.
Bacteriocins are antimicrobial peptides produced by bacteria Gram-negative and Gram-positive, including lactic acid bacteria (LAB), organisms that are traditionally used in food preservation practices. Bacteriocins have been shown to have an aptitude as biofilm controlling agents in Listeria monocytogenes biofilms, a major risk for consumers and the food industry. Biofilms protect pathogens from sanitization procedures, allowing them to survive and persist in processing facilities, resulting in the cross-contamination of the end products. Studies have been undertaken on bacteriocinogenic LAB, their bacteriocins, and bioengineered bacteriocin derivatives for controlling L. monocytogenes biofilms on different surfaces through inhibition, competition, exclusion, and displacement. These alternative strategies can be considered promising in preventing the development of resistance to conventional sanitizers and disinfectants. Bacteriocins are “friendly” antimicrobial agents, and with high prevalence in nature, they do not have any known associated public health risk. Most trials have been carried out in vitro, on food contact materials such as polystyrene and stainless steel, while there have been few studies performed in situ to consolidate the results observed in vitro. There are strategies that can be employed for prevention and eradication of L. monocytogenes biofilms (such as the establishment of standard cleaning procedures using the available agents at proper concentrations). However, commercial cocktails using alternatives compounds recognized as safe and environmental friendly can be an alternative approach to be applied by the industries in the future.  相似文献   

18.
Bacteriocins are bacterial proteinaceous toxins with bacteriostatic or bacteriocidal activity towards other bacteria. The current theory on their biological role concerns especially colicins, with underlying social interactions described as an example of spite. This leads to a rock–paper–scissors game between colicin producers and sensitive and resistant variants. The generality of this type of selection mechanism has previously been challenged with lactic acid bacterial (LAB) bacteriocins as an example. In the natural environment of LAB, batch cultures are the norm opposed to the natural habitats of Escherichia coli where continuous cultures are prevailing. This implies that fitness for LAB, to a large degree, is related to survival rates (bottleneck situations) rather than to growth rates. We suggest that the biological role of LAB bacteriocins is to enhance survival in the stationary growth phase by securing a supply of nutrients from lysed target cells. Thus, this social interaction is an example of selfishness rather than of spite. Specifically, it fits into an ecological model known as intraguild predation (IGP), which is a combination of competition and predation where the predator (LAB bacteriocin producer) and prey (bacteriocin susceptible bacteria) share similar and often limited resources. We hypothesize that IGP may be a common phenomenon promoting microbial production of antagonistic compounds.  相似文献   

19.
Bacteriocins are compounds that are produced by bacteria and are antagonistic to other bacteria. Although they have been known for many years, recent interest in these compounds has increased because of their potential use as natural food preservatives. Although most of this research has been directed at the molecular level, a clearer picture of the ecological role played by bacteriocins in natural environments is beginning to emerge. In addition, the importance and practical implications of evolutionary aspects of bacteriocins and bacteriocin resistance are now being assessed.  相似文献   

20.
Bacteriocins are ribosomally synthesized antimicrobial peptides produced by microorganisms belonging to different eubacterial taxonomic branches. Most of them are small cationic membrane-active compounds that form pores in the target cells, disrupting membrane potentials and causing cell death. The production of small cationic peptides with antibacterial activity is a defense strategy found not only in bacteria, but also in plants and animals. Bacteriocins are classified according to different criteria by different authors; in this review, we will summarize the principal bacteriocin classifications, highlight their main physical and chemical characteristics, and describe the mechanism of some selected bacteriocins that act at the membrane level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号