首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
5-Fluorouridine residues have been introduced into functionally important bulge and loop regions of 29-mer HIV-1 TAR RNA hairpins I and II to study Mg2+ and Ca2+ binding using 19F-NMR spectroscopy. There was no substantial binding detected up to 20-molar excess in case of both cations, whereas association of argininamide, used as a reference ligand, could be detected at less than 1-molar excess. The deltadelta 19F value of 1.93 ppm observed for (F)U23 upon argininamide binding is in agreement with former NMR studies of TAR RNA/argininamide complex. However, obtained results do not confirm U38 x A27 x U23 base-triple formation. The unmodified HIV-1 TAR RNA hairpin resulted from 600 ps in aqua molecular dynamics simulation was subjected to a molecular mechanics modelling of Mg+ binding.  相似文献   

2.
Metal ion-induced changes in HIV-1 TAR RNA internal dynamics were determined by the changes in EPR spectral width for TAR RNAs containing spin-labeled nucleotides (U23, U25, U38, and U40). This gave a dynamic signature for each of 10 metal ions studied, which fell into one of three distinct groups. While Li(+) and K(+) had little effect on TAR RNA internal dynamics, Na(+) unexpectedly had a dynamic signature that was similar to Ca(2+) and Sr(2+), with a decrease in mobility at U23 and U38, little or no change at U25, and an increase in mobility at U40. Mg(2+), Co(2+), Ni(2+), Zn(2+), and Ba(2+) had similar effects on U23, U38, and U40, but the mobility of U25 was markedly increased. Our results show that RNA dynamics change upon metal binding to the TAR RNA bulge, indicating that RNA structure adapts to accommodate metal ions of different size and coordination properties.  相似文献   

3.
Edwards TE  Sigurdsson ST 《Biochemistry》2002,41(50):14843-14847
Electron paramagnetic resonance (EPR) spectroscopy was utilized to investigate the correlation between RNA structure and RNA internal dynamics in complexes of HIV-1 TAR RNA with small molecules. TAR RNAs containing single nitroxide spin-labels in the 2'-position of U23, U25, U38, or U40 were incubated with compounds known to inhibit TAR-Tat complex formation. The combined changes in nucleotide mobility at all four sites, as monitored by their EPR spectral width, yield a dynamic signature for each compound. The multicyclic dyes Hoechst 33258, DAPI, and berenil bind to TAR RNA in a similar manner and gave nearly identical signatures. Different signatures were obtained for the acridine derivative CGP 40336A and the aminoglycoside antibiotic neomycin, which bind to different regions of the RNA. The dynamic signature for guanidinoneomycin was remarkably similar to that obtained for argininamide and is evidence for guanidinoneomycin binding to the same site as arginine 52 of the Tat protein, rather than to the neomycin binding site. The data presented here show that the dynamic signatures provide strong insights into RNA structure and recognition and demonstrate the value of EPR spectroscopy for the investigation of small molecule binding to RNA.  相似文献   

4.
5.
RNA binding by the tat and rev proteins of HIV-1   总被引:3,自引:0,他引:3  
  相似文献   

6.
Replication of human immunodeficiency virus type 1 (HIV-1) is regulated in part through an interaction between the virally encoded trans-activator protein Tat and the trans-activator responsive region (TAR) of the viral RNA genome. Because TAR is highly conserved and its interaction with Tat is required for efficient viral replication, it has received much attention as an antiviral drug target. Here, we report a 2-aminopurine (2-AP) fluorescence-based assay for evaluating potential TAR inhibitors. Through selective incorporation of 2-AP within the bulge (C23 or U24) of a truncated form of the TAR sequence (delta TAR-ap23 and delta TAR-ap24), binding of argininamide, a 24-residue arginine-rich peptide derived from Tat, and Neomycin has been characterized using steady-state fluorescence. Binding of argininamide to the 2-AP deltaTAR constructs results in a four- to 11-fold increase in fluorescence intensity, thus providing a sensitive reporter of that interaction (KD approximately 1 mM). Similarly, binding of the Tat peptide results in an initial 14-fold increase in fluorescence (KD approximately 25 nM), but is then followed by a slight decrease that is attributed to an additional, lower-affinity association(s). Using the deltaTAR-ap23 and TAR-ap24 constructs, two classes of Neomycin binding sites are detected; the first molecule of antibiotic binds as a noncompetitive inhibitor of Tat/argininamide (KD approximately 200 nM), whereas the second, more weakly bound molecule(s) becomes associated in a presumably nonspecific manner (KD approximately 4 microM). Taken together, the results demonstrate that the 2-AP fluorescence-detected binding assays provide accurate and general methods for quantitatively assessing TAR interactions.  相似文献   

7.
Complexes of the HIV transactivation response element (TAR) RNA with the viral regulatory protein tat are of special interest due in particular to the plasticity of the RNA at this binding site and to the potential for therapeutic targeting of the interaction. We performed REDOR solid-state NMR experiments on lyophilized samples of a 29 nt HIV-1 TAR construct to measure conformational changes in the tat-binding site concomitant with binding of a short peptide comprising the residues of the tat basic binding domain. Peptide binding was observed to produce a nearly 4 Å decrease in the separation between phosphorothioate and 2′F labels incorporated at A27 in the upper helix and U23 in the bulge, respectively, consistent with distance changes observed in previous solution NMR studies, and with models showing significant rearrangement in position of bulge residue U23 in the bound-form RNA. In addition to providing long-range constraints on free TAR and the TAR–tat complex, these results suggest that in RNAs known to undergo large deformations upon ligand binding, 31P–19F REDOR measurements can also serve as an assay for complex formation in solid-state samples. To our knowledge, these experiments provide the first example of a solid-state NMR distance measurement in an RNA–peptide complex.  相似文献   

8.
9.
Evidence for a base triple in the free HIV-1 TAR RNA   总被引:2,自引:0,他引:2       下载免费PDF全文
We propose the existence of a novel base triple in the HIV-1 TAR hairpin. This triple is supported by covariation of loop residue 31 with residue 22, which is part of an unusual base pair with U40 below the 3-nucleotide bulge. A set of mutants was constructed to test the involvement of bases A22, U31, and U40 in a triple interaction. RNA structure probing, trans-activation assays, and structure modeling are consistent with the existence of this base triple in a bent conformation of the free TAR element. However, disruption of the base triple does not affect binding of a Tat-derived peptide. We therefore compared the structure of free and Tat-bound TAR RNA by footprinting and site-specific cross-linking analyses. These studies indicate that the Tat arginine-rich motif, in addition to its known binding site at the bulge, is in close contact with U31 in the TAR loop. Because binding of Tat to TAR is known to coincide with the formation of a base triple with residues U23, A27, and U38, we hypothesize that Tat binding and the associated straightening of TAR triggers the disruption of the (A22-U40)U31 triple.  相似文献   

10.
An RNA aptamer for an HIV Tat protein has been isolated by the in vitro SELEX method. The RNA aptamer binds to the Tat protein 50-100 times more strongly than native TAR RNA does. Here, we have investigated the structure of the RNA aptamer complexed with ligands, partial peptide fragments of the Tat protein or argininamide, by multidimensional 1H/13C/15N NMR. It is strongly suggested that two U:A:U base triples are formed in the RNA aptamer upon binding of ligands. Specific hydrogen bonds between arginine side chains of ligands and guanine bases located adjacent to the base triples are identified. On the basis of many intramolecular and intermolecular NOEs, a structural model of the complex has been constructed.  相似文献   

11.
Lu J  Kadakkuzha BM  Zhao L  Fan M  Qi X  Xia T 《Biochemistry》2011,50(22):5042-5057
RNA conformational dynamics and the resulting structural heterogeneity play an important role in RNA functions, e.g., recognition. Recognition of HIV-1 TAR RNA has been proposed to occur via a conformational capture mechanism. Here, using ultrafast time-resolved fluorescence spectroscopy, we have probed the complexity of the conformational landscape of HIV-1 TAR RNA and monitored the position-dependent changes in the landscape upon binding of a Tat protein-derived peptide and neomycin B. In the ligand-free state, the TAR RNA samples multiple families of conformations with various degrees of base stacking around the three-nucleotide bulge region. Some subpopulations partially resemble those ligand-bound states, but the coaxially stacked state is below the detection limit. When Tat or neomycin B binds, the bulge region as an ensemble undergoes a conformational transition in a position-dependent manner. Tat and neomycin B induce mutually exclusive changes in the TAR RNA underlying the mechanism of allosteric inhibition at an ensemble level with residue-specific details. Time-resolved anisotropy decay measurements revealed picosecond motions of bases in both ligand-free and ligand-bound states. Mutation of a base pair at the bulge--stem junction has differential effects on the conformational distributions of the bulge bases. A dynamic model of the ensemble view of the conformational landscape for HIV-1 TAR RNA is proposed, and the implication of the general mechanism of RNA recognition and its impact on RNA-based therapeutics are discussed.  相似文献   

12.
13.
K S Long  D M Crothers 《Biochemistry》1999,38(31):10059-10069
Basic peptides from the carboxy terminus of the HIV-1 Tat protein bind to the apical stem-loop region of TAR RNA with high affinity and moderate specificity. The conformations of the unbound and 24 residue Tat peptide (Tfr24)-bound forms of TAR RNA have been characterized by NMR spectroscopy. The unbound form of TAR exists in major and minor forms having different trinucleotide bulge conformations. A specific TAR RNA conformational change is observed upon complex formation with Tfr24, consisting of coaxial stacking of helical stems and base triple formation. A U23-A27-U38 base triple is proposed based on exchangeable proton NMR data, where U23 forms a base pair with A27 in the major groove. No evidence for base triple formation was found for Tat peptides in which lysine residues are extensively substituted for arginine.  相似文献   

14.
The structure and dynamics of the stem-loop transactivation response element (TAR) RNA from the human immunodeficiency virus type-1 (HIV-1) bound to the ligand argininamide (ARG) has been characterized using a combination of a large number of residual dipolar couplings (RDCs) and trans-hydrogen bond NMR methodology. Binding of ARG to TAR changes the average inter-helical angle between the two stems from approximately 47 degrees in the free state to approximately 11 degrees in the bound state, and leads to the arrest of large amplitude (+/-46 degrees ) inter-helical motions observed previously in the free state. While the global structural dynamics of TAR-ARG is similar to that previously reported for TAR bound to Mg2+, there are substantial differences in the hydrogen bond alignment of bulge and neighboring residues. Based on a novel H5(C5)NN experiment for probing hydrogen-mediated 2hJ(N,N) scalar couplings as well as measured RDCs, the TAR-ARG complex is stabilized by a U38-A27.U23 base-triple involving an A27.U23 reverse Hoogsteen hydrogen bond alignment as well as by a A22-U40 Watson-Crick base-pair at the junction of stem I. These hydrogen bond alignments are not observed in either the free or Mg2+ bound forms of TAR. The combined conformational analysis of TAR under three states reveals that ligands and divalent ions can stabilize similar RNA global conformations through distinct interactions involving different hydrogen bond alignments in the RNA.  相似文献   

15.
R Tan  A D Frankel 《Biochemistry》1992,31(42):10288-10294
Short basic peptides from the HIV Tat protein bind specifically to a bulge region in TAR RNA, with a single arginine residue providing the only sequence-specific contact. The free amino acid arginine also binds specifically to TAR. Previous circular dichroism (CD) experiments suggested that peptide binding induces a conformational change in TAR. Here we confirm this observation using single arginine-containing peptides and show that arginine or guanidine binding also induces a conformational change in TAR. A peptide containing a single arginine within a stretch of histidines (CYHHHRHHHHHA) shows pH-dependent binding and a corresponding change in TAR conformation, as detected by a decrease in the CD signal at 265 nm. Arginine and guanidine, which bind to TAR with apparent Kd's of approximately 1.5 mM, induce similar CD changes. In contrast, lysine, which does not bind specifically to TAR, has no effect. Mutants of TAR that abolish specific binding (a U-->C substitution in the three-nucleotide bulge, a deletion of the bulge, or an A-U to U-A base pair change above the bulge) show no change in the CD signal upon binding of peptides, arginine, or guanidine. The results suggest that binding of a single guanidinium group to a specific site in TAR induces a change in RNA conformation.  相似文献   

16.
The interaction of HIV-1 Tat protein with its recognition sequence, the trans-activation responsive region TAR is a potential target for drug discovery against HIV infection. We show by use of an in vitro competition filter binding interference assay that synthetic oligodeoxyribonucleotides complementary to the HIV-1 TAR RNA apical stem-loop and bulge region inhibit the binding of Tat protein or a Tat peptide (residues 37-72) better than two small molecules that have been shown to bind TAR RNA, Hoechst 33258 and neomycin B. The inhibition is not sensitive to length between 13 and 16 residues or precise positioning but shorter oligonucleotides are less effective. Enhanced inhibition was obtained for a 16-mer 2'-O-methyl oligoribonucleotide but not for C5-propyne pyrimidine-substituted oligonucleotides. Control non-antisense oligonucleotides were occasionally also effective in filter binding interference but only the complementary antisense 2'-O-methyl oligoribonucleotide was effective in gel mobility shift assays in direct TAR binding or in interference with Tat peptide binding to the TAR stem-loop. This is the first demonstration of effective inhibition of the Tat-TAR interaction by nuclease-stabilized oligonucleotide analogues.  相似文献   

17.
The dynamic behavior of HIV-1 TAR and its complex with argininamide is investigated by means of molecular dynamics simulations starting from NMR structures, with explicit inclusion of water and periodic boundary conditions particle mesh Ewald representation of the electrostatic energy. During simulations of free and argininamide-bound TAR, local structural patterns, as determined by NMR experiments, were reproduced. An interdomain motion was observed in the simulations of free TAR, which is absent in the case of bound TAR, leading to the conclusion that the free conformation of TAR is intrinsically more flexible than the bound conformation. In particular, in the bound conformation the TAR–argininamide interface is very well ordered, as a result of the formation of a U·A·U base triple, which imposes structural constraints on the global conformation of the molecule. Free energy analysis, which includes solvation contributions, was used to evaluate the influence of van der Waals and electrostatic terms on formation of the complex and on the conformational rearrangement from free to bound TAR.  相似文献   

18.
J W Harper  N J Logsdon 《Biochemistry》1991,30(32):8060-8066
Substantial evidence indicates that HIV-1 trans-activation by tat protein is mediated through the TAR RNA element. This RNA forms a stem-loop structure containing a three-nucleotide bulge and a six-nucleotide loop. Previous mutagenic analysis of TAR indicates that the bulge residues and a 4 bp segment of the stem constitute, in part, the tat binding site. However, there appears to be no sequence-specific contribution of the six-base loop. We have employed a ribonuclease protection technique to explore the interaction of tat with single-stranded regions of TAR. The results indicate that tat interacts with both the bulge and loop regions of TAR. Treatment of TAR RNA with RNase A results in cleavage at U23 and U31, located in the bulge and loop regions, respectively. High concentrations (approximately 2 microM) of Escherichia coli derived tat protein, prepared by standard procedures, gave complete protection of TAR RNA from RNase A cleavage. However, under these conditions, truncated TAR derivatives in which no stem-loop structure is expected to form were also protected, indicating nonspecific binding. In order to obtain a tat preparation with enhanced specificity toward TAR RNA, methods were developed for refolding the recombinant protein. This treatment enhanced the affinity of tat for TAR by approximately 30-fold [Kd(apparent) less than 25 nM] and markedly increased its specificity for the TAR. Again, tat protected TAR RNA from RNase A cleavage at both U23 and U31. Protection was also observed with RNase T1 which cleaves TAR RNA at three G residues in the six-base loop.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
20.
We describe a strategy for constructing atomic resolution dynamical ensembles of RNA molecules, spanning up to millisecond timescales, that combines molecular dynamics (MD) simulations with NMR residual dipolar couplings (RDC) measured in elongated RNA. The ensembles are generated via a Monte Carlo procedure by selecting snap-shot from an MD trajectory that reproduce experimentally measured RDCs. Using this approach, we construct ensembles for two variants of the transactivation response element (TAR) containing three (HIV-1) and two (HIV-2) nucleotide bulges. The HIV-1 TAR ensemble reveals significant mobility in bulge residues C24 and U25 and to a lesser extent U23 and neighboring helical residue A22 that give rise to large amplitude spatially correlated twisting and bending helical motions. Omission of bulge residue C24 in HIV-2 TAR leads to a significant reduction in both the local mobility in and around the bulge and amplitude of inter-helical bending motions. In contrast, twisting motions of the helices remain comparable in amplitude to HIV-1 TAR and spatial correlations between them increase significantly. Comparison of the HIV-1 TAR dynamical ensemble and ligand bound TAR conformations reveals that several features of the binding pocket and global conformation are dynamically preformed, providing support for adaptive recognition via a ‘conformational selection’ type mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号