首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Serum and glucocorticoid-regulated kinases (SGKs) form a family of serine/threonine protein kinases that exhibit structural and sequence similarity to the protein kinase B (PKB)/Akt family. The major difference between these two families is the absence of a lipid-binding, pleckstrin homology domain in the SGKs. Despite the absence of the pleckstrin homology domain, activation of the three human isoforms is, like PKB, dependent upon the phosphatidylinositol 3'-kinase (PI3K) pathway that is induced by growth factors and mitogens. Full-length SGK3 contains a complete Phox homology (PX) domain that targets the protein to endosomes. Both a functional PX domain and PI3K activation are necessary for phosphorylation of SGK3 at two regulatory sites (Thr-320 and Ser-486) and subsequent induction of kinase activity. PDK1 phosphorylates endosome-associated SGK3 at Thr-320, whereas diversion of SGK3 to the plasma membrane, where PDK1 normally activates PKB, interferes with PDK1 phosphorylation of SGK3. A chimeric protein in which the carboxyl-terminal hydrophobic motif (HM) of SGK3 has been exchanged for the HM of PRK2 is constitutively active. Finally, we demonstrate that SGK3 activation becomes PX domain-independent once the HM is phosphorylated. Taken together, these data indicate that the targeting of SGK3 to endosomes, mediated by its PX domain, is essential for proper SGK3 activation, likely due to co-localization of SGK3 with an endosomal, PI3K-dependent and staurosporine-sensitive HM kinase.  相似文献   

2.
The phosphatidylinositol 3' kinase (PI3K)-signaling pathway plays a critical role in a variety of cellular responses such as modulation of cell survival, glucose homeostasis, cell division, and cell growth. PI3K generates important lipid second messengers-phosphatidylinositides that are phosphorylated at the 3' position of their inositol ring head-group. These membrane restricted lipids act by binding with high affinity to specific protein domains such as the pleckstrin homology (PH) domain. Effectors of PI3K include molecules that harbor such domains such as phosphoinositide-dependent kinase (PDK1) and protein kinase B (PKB), also termed Akt. The mammalian genome encodes three different PKB genes (alpha, beta, and gamma; Akt1, 2, and 3, respectively) and each is an attractive target for therapeutic intervention in diseases such as glioblastoma and breast cancer. A second family of three protein kinases, termed serum and glucocorticoid-regulated protein kinases (SGKs), is structurally related to the PKB family including regulation by PI3K but lack a PH domain. However, in addition to PH domains, a second class of 3' phosphorylated inositol phospholipid-binding domains exists that is termed Phox homology (PX) domain: this domain is found in one of the SGKs (SGK3). Here, we summarize knowledge of the three SGK isoforms and compare and contrast them to PKB with respect to their possible importance in cellular regulation and potential as therapeutic targets.  相似文献   

3.
Song X  Xu W  Zhang A  Huang G  Liang X  Virbasius JV  Czech MP  Zhou GW 《Biochemistry》2001,40(30):8940-8944
The recruitment of specific cytosolic proteins to intracellular membranes through binding phosphorylated derivatives of phosphatidylinositol (PtdIns) controls such processes as endocytosis, regulated exocytosis, cytoskeletal organization, and cell signaling. Protein modules such as FVYE domains and PH domains that bind specifically to PtdIns 3-phosphate (PtdIns-3-P) and polyphosphoinositides, respectively, can direct such membrane targeting. Here we show that two representative Phox homology (PX) domains selectively bind to specific phosphatidylinositol phosphates. The PX domain of Vam7p selectively binds PtdIns-3-P, while the PX domain of the CPK PI-3 kinase selectively binds PtdIns-4,5-P(2). In contrast, the PX domain of Vps5p displays no binding to any PtdInsPs that were tested. In addition, the double mutant (Y42A/L48Q) of the PX domain of Vam7p, reported to cause vacuolar trafficking defects in yeast, has a dramatically decreased level of binding to PtdIns-3-P. These data reveal that the membrane targeting function of the Vam7p PX domain is based on its ability to associate with PtdIns-3-P, analogous to the function of FYVE domains.  相似文献   

4.
The 3-phosphoinositide-dependent protein kinase-1 (PDK1) mediates the cellular effect of insulin and growth factors by activating a group of kinases including PKB/Akt, S6K, RSK, SGK and PKC isoforms. PDK1 possesses two regulatory domains namely a Pleckstrin Homology (PH) domain that binds to the phosphatidylinositol 3,4,5-trisphosphate [PtdIns(3,4,5)P3] second messenger, and a substrate binding site termed the PIF-pocket. Employing a combination of biochemical, structural and mouse knock-in approaches we have been able to define the roles that the regulatory domains on PDK1 play. We have established that binding of PDK1 to PtdIns(3,4,5)P3 is essential for efficient activation of PKB isoforms as well as for maintaining normal cell size and insulin sensitivity. In contrast, the PIF-substrate binding pocket of PDK1 is not required for PKB activation, but is necessary for PDK1 to activate all of its other substrates.  相似文献   

5.
Recent studies have shown that phox homology (PX) domains act as phosphoinositide-binding motifs. The majority of PX domains studied show binding to phosphatidylinositol 3-monophosphate (PtdIns(3)P), an association that allows the host protein to localize to membranes of the endocytic pathway. One issue, however, is whether PX domains may have alternative phosphoinositide binding specificities that could target their host protein to distinct subcellular compartments or allow their allosteric regulation by phosphoinositides other than PtdIns(3)P. It has been reported that the PX domain of sorting nexin 1 (SNX1) specifically binds phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P(3)) (Zhong, Q., Lazar, C. S., Tronchere, H., Sato, T., Meerloo, T., Yeo, M., Songyang, Z., Emr, S. D., and Gill, G. N. (2002) Proc. Natl. Acad. Sci. U. S. A. 99, 6767-6772). In the present study, we have shown that whereas SNX1 binds PtdIns(3,4,5)P(3) in protein:lipid overlay assays, in liposomes-based assays, binding is observed to PtdIns(3)P and phosphatidylinositol 3,5-bisphosphate (PtdIns(3,5)P(2)) but not to PtdIns(3,4,5)P(3). To address the significance of PtdIns(3,4,5)P(3) binding, we examined the subcellular localization of SNX1 under conditions in which plasma membrane PtdIns(3,4,5)P(3) levels were significantly elevated. Under these conditions, we failed to observe association of SNX1 with this membrane. However, consistent with the binding to PtdIns(3)P and PtdIns(3,5)P(2) being of more physiological significance was the observation that the association of SNX1 with an early endosomal compartment was dependent on a 3-phosphoinositide-binding PX domain and the presence of PtdIns(3)P on this compartment. Finally, we have shown that the PX domain-dependent/early endosomal association of SNX1 is important for its ability to regulate the targeting of internalized epidermal growth factor receptor for lysosomal degradation.  相似文献   

6.
Mechanism of membrane binding of the phospholipase D1 PX domain   总被引:3,自引:0,他引:3  
Mammalian phospholipases D (PLD), which catalyze the hydrolysis of phosphatidylcholine to phosphatidic acid (PA), have been implicated in various cell signaling and vesicle trafficking processes. Mammalian PLD1 contains two different membrane-targeting domains, pleckstrin homology and Phox homology (PX) domains, but the precise roles of these domains in the membrane binding and activation of PLD1 are still unclear. To elucidate the role of the PX domain in PLD1 activation, we constructed a structural model of the PX domain by homology modeling and measured the membrane binding of this domain and selected mutants by surface plasmon resonance analysis. The PLD1 PX domain was found to have high phosphoinositide specificity, i.e. phosphatidylinositol 3,4,5-trisphosphate (PtdIns-(3,4,5)P(3)) > phosphatidylinositol 3-phosphate > phosphatidylinositol 5-phosphate > other phosphoinositides. The PtdIns(3,4,5)P(3) binding was facilitated by the cationic residues (Lys(119), Lys(121), and Arg(179)) in the putative binding pocket. Consistent with the model structure that suggests the presence of a second lipid-binding pocket, vesicle binding studies indicated that the PLD1 PX domain could also bind with moderate affinity to PA, phosphatidylserine, and other anionic lipids, which were mediated by a cluster of cationic residues in the secondary binding site. Simultaneous occupancy of both binding pockets synergistically increases membrane affinity of the PX domain. Electrostatic potential calculations suggest that a highly positive potential near the secondary binding site may facilitate the initial adsorption of the domain to the anionic membrane, which is followed by the binding of PtdIns(3,4,5)P(3) to its binding pocket. Collectively, our results suggest that the interaction of the PLD1 PX domain with PtdIns(3,4,5)P(3) and/or PA (or phosphatidylserine) may be an important factor in the spatiotemporal regulation and activation of PLD1.  相似文献   

7.
The cytokine-independent survival kinase (CISK) in the serum and glucocorticoid-regulated kinase family plays an important role in mediating cell growth and survival. N-terminal to its catalytic kinase domain, CISK contains a phox homology (PX) domain, a phosphoinositide-binding motif that directs the membrane localization of CISK and regulates CISK activity. We have determined the crystal structures of the mouse CISK-PX domain to unravel the structural basis of membrane targeting of CISK. In addition to the specific interactions conferred by the phosphoinositide-binding pocket, the structure suggests that a hydrophobic loop region and a hydrophilic beta-turn contribute to the interactions with the membrane. Furthermore, biochemical studies reveal that CISK-PX dimerizes in the presence of the linker between the PX domain and kinase domain, suggesting a multivalent mechanism in membrane localization of CISK.  相似文献   

8.
9.
Phox homology (PX) domains, which have been identified in a variety of proteins involved in cell signaling and membrane trafficking, have been shown to interact with phosphoinositides (PIs) with different affinities and specificities. To elucidate the structural origin of the diverse PI specificity of PX domains, we determined the crystal structure of the PX domain from Bem1p that has been reported to bind phosphatidylinositol 4-phosphate (PtdIns(4)P). We also measured the membrane binding properties of the PX domain and its mutants by surface plasmon resonance and monolayer techniques and calculated the electrostatic potentials for the PX domain in the absence and presence of bound PtdIns(4)P. The Bem1p PX domain contains a signature PI-binding site optimized for PtdIns(4)P binding and also harbors basic and hydrophobic residues on the membrane-binding surface. The membrane binding of the Bem1p PX domain is initiated by nonspecific electrostatic interactions between the cationic membrane-binding surface of the domain and anionic membrane surfaces, followed by the membrane penetration of hydrophobic residues. Unlike other PX domains, the Bem1p PX domain has high intrinsic membrane penetrating activity in the absence of PtdIns(4)P, suggesting that the partial membrane penetration may occur before specific PtdIns(4)P binding and last after the removal of PtdIns(4)P under certain conditions. This structural and functional study of the PtdIns(4)P-binding Bem1p PX domain provides new insight into the diverse PI specificities and membrane-binding mechanisms of PX domains.  相似文献   

10.
Phox homology (PX) domains, which have been identified in a variety of proteins involved in cell signaling and membrane trafficking, have been shown to interact with phosphoinositides (PIs) with different affinities and specificities. To elucidate the structural origin of diverse PI specificities of PX domains, we determined the crystal structure of the PX domain from phosphoinositide 3-kinase C2alpha (PI3K-C2alpha), which binds phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P(2)). To delineate the mechanism by which this PX domain interacts with membranes, we measured the membrane binding of the wild type domain and mutants by surface plasmon resonance and monolayer techniques. This PX domain contains a signature PI-binding site that is optimized for PtdIns(4,5)P(2) binding. The membrane binding of the PX domain is initiated by nonspecific electrostatic interactions followed by the membrane penetration of hydrophobic residues. Membrane penetration is specifically enhanced by PtdIns(4,5)P(2). Furthermore, the PX domain displayed significantly higher PtdIns(4,5)P(2) membrane affinity and specificity when compared with the PI3K-C2alpha C2 domain, demonstrating that high affinity PtdIns(4,5)P(2) binding was facilitated by the PX domain in full-length PI3K-C2alpha. Together, these studies provide new structural insight into the diverse PI specificities of PX domains and elucidate the mechanism by which the PI3K-C2alpha PX domain interacts with PtdIns(4,5)P(2)-containing membranes and thereby mediates the membrane recruitment of PI3K-C2alpha.  相似文献   

11.
We explore mechanisms that enable cancer cells to tolerate PI3K or Akt inhibitors. Prolonged treatment of breast cancer cells with PI3K or Akt inhibitors leads to increased expression and activation of a kinase termed SGK3 that is related to Akt. Under these conditions, SGK3 is controlled by hVps34 that generates PtdIns(3)P, which binds to the PX domain of SGK3 promoting phosphorylation and activation by its upstream PDK1 activator. Furthermore, under conditions of prolonged PI3K/Akt pathway inhibition, SGK3 substitutes for Akt by phosphorylating TSC2 to activate mTORC1. We characterise 14h, a compound that inhibits both SGK3 activity and activation in vivo, and show that a combination of Akt and SGK inhibitors induced marked regression of BT‐474 breast cancer cell‐derived tumours in a xenograft model. Finally, we present the kinome‐wide analysis of mRNA expression dynamics induced by PI3K/Akt inhibition. Our findings highlight the importance of the hVps34‐SGK3 pathway and suggest it represents a mechanism to counteract inhibition of PI3K/Akt signalling. The data support the potential of targeting both Akt and SGK as a cancer therapeutic.  相似文献   

12.
Endosomal trafficking is regulated by the recruitment of effector proteins to phosphatidylinositol 3-phosphate [PtdIns(3)P] on early endosomes. At the plasma membrane, phosphatidylinositol-(3,4)-bisphosphate [PtdIns(3,4)P2] binds the pleckstrin homology (PH) domain-containing proteins Akt and TAPP1. Type Ialpha inositol polyphosphate 4-phosphatase (4-phosphatase) dephosphorylates PtdIns(3,4)P2, forming PtdIns(3)P, but its subcellular localization is unknown. We report here in quiescent cells, the 4-phosphatase colocalized with early and recycling endosomes. On growth factor stimulation, 4-phosphatase endosomal localization persisted, but in addition the 4-phosphatase localized at the plasma membrane. Overexpression of the 4-phosphatase in serum-stimulated cells increased cellular PtdIns(3)P levels and prevented wortmannin-induced endosomal dilatation. Furthermore, mouse embryonic fibroblasts from homozygous Weeble mice, which have a mutation in the type I 4-phosphatase, exhibited dilated early endosomes. 4-Phosphatase translocation to the plasma membrane upon growth factor stimulation inhibited the recruitment of the TAPP1 PH domain. The 4-phosphatase contains C2 domains, which bound PtdIns(3,4)P2, and C2-domain-deletion mutants lost PtdIns(3,4)P2 4-phosphatase activity, did not localize to endosomes or inhibit TAPP1 PH domain membrane recruitment. The 4-phosphatase therefore both generates and terminates phosphoinositide 3-kinase signals at distinct subcellular locations.  相似文献   

13.
PDK1, the master regulator of AGC kinase signal transduction   总被引:2,自引:0,他引:2  
The interaction of insulin and growth factors with their receptors on the outside surface of a cell, leads to the activation of phosphatidylinositol 3-kinase (PI 3-kinase) and generation of the phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) second messenger at the inner surface of the cell membrane. One of the most studied signalling events controlled by PtdIns(3,4,5)P3, comprises the activation of a group of AGC family protein kinases, including isoforms of protein kinase B (PKB)/Akt, p70 ribosomal S6 kinase (S6K), serum- and glucocorticoid-induced protein kinase (SGK) and protein kinase C (PKC), which play crucial roles in regulating physiological processes relevant to metabolism, growth, proliferation and survival. Here, we review recent biochemical, genetic and structural studies on the 3-phosphoinositide-dependent protein kinase-1 (PDK1), which phosphorylates and activates the AGC kinase members regulated by PI 3-kinase. We also discuss whether inhibitors of PDK1 might have chemotherapeutic potential in the treatment of cancers in which the PDK1-regulated AGC kinases are constitutively activated.  相似文献   

14.
Signaling by phosphatidylinositol (PI) 3-kinases is mediated by 3-phosphoinositides, which bind to Pleckstrin homology (PH) domains that are present in a wide spectrum of proteins. PH domains can be classified into three groups based on their different lipid binding specificities. Distinct 3-phosphoinositides can accumulate upon PI 3-kinase activation in cells in response to different stimuli and mediate specific cellular responses. In Swiss 3T3 mouse fibroblasts, oxidative stress induced by 1 mM H(2)O(2) caused almost exclusive accumulation of phosphatidylinositol 3,4-bisphosphate (PtdIns(3, 4)P(2)), whereas osmotic stress increased both phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P(3)) and PtdIns(3,4)P(2) levels. The increase in PtdIns(3,4)P(2) levels, caused by oxidative stress, correlated with the activation of protein kinase B, which has a promiscuous PH domain that binds both PtdIns(3,4,5)P(3) and PtdIns(3, 4)P(2). p70 S6 kinase, another signaling component downstream of PI 3-kinase, however, was not activated by this oxidative stress-induced increase in PtdIns(3,4)P(2) levels. Increased PtdIns(3,4,5)P(3) and PtdIns(3,4)P(2) levels in response to osmotic stress did not correlate with protein kinase B activation, because of concomitant activation of an inhibitory pathway, but p70 S6 kinase was activated by osmotic stress. These results demonstrate that PtdIns(3,4)P(2) can accumulate independently of PtdIns(3,4, 5)P(3) and exerts a pattern of cellular responses that is distinct from that induced by accumulation of PtdIns(3,4,5)P(3).  相似文献   

15.
16.
Phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4)P2) and phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) are lipid second messengers that regulate various cellular processes by recruiting a wide range of downstream effector proteins to membranes. Several pleckstrin homology (PH) domains have been reported to interact with PtdIns(3,4)P2 and PtdIns(3,4,5)P3. To understand how these PH domains differentially respond to PtdIns(3,4)P2 and PtdIns(3,4,5)P3 signals, we quantitatively determined the PtdIns(3,4)P2 and PtdIns(3,4,5)P3 binding properties of several PH domains, including Akt, ARNO, Btk, DAPP1, Grp1, and C-terminal TAPP1 PH domains by surface plasmon resonance and monolayer penetration analyses. The measurements revealed that these PH domains have significant different phosphoinositide specificities and affinities. Btk-PH and TAPP1-PH showed genuine PtdIns(3,4,5)P3 and PtdIns(3,4)P2 specificities, respectively, whereas other PH domains exhibited less pronounced specificities. Also, the PH domains showed different degrees of membrane penetration, which greatly affected the kinetics of their membrane dissociation. Mutational studies showed that the presence of two proximal hydrophobic residues on the membrane-binding surface of the PH domain is important for membrane penetration and sustained membrane residence. When NIH 3T3 cells were stimulated with platelet-derived growth factor to generate PtdIns(3,4,5)P3, reversible translocation of Btk-PH, Grp1-PH, ARNO-PH, DAPP1-PH, and its L177A mutant to the plasma membrane was consistent with their in vitro membrane binding properties. Collectively, these studies provide new insight into how various PH domains would differentially respond to cellular PtdIns(3,4)P2 and PtdIns(3,4,5)P3 signals.  相似文献   

17.
NOXO1β [NOXO1 (Nox organizer 1) β] is a cytosolic protein that, in conjunction with NOXA1 (Nox activator 1), regulates generation of reactive oxygen species by the NADPH oxidase 1 (Nox1) enzyme complex. NOXO1β is targeted to membranes through an N-terminal PX (phox homology) domain. We have used NMR spectroscopy to solve the structure of the NOXO1β PX domain and surface plasmon resonance (SPR) to assess phospholipid specificity. The solution structure of the NOXO1β PX domain shows greatest similarity to that of the phosphatidylinositol 3-kinase-C2α PX domain with regard to the positions and types of residues that are predicted to interact with phosphatidylinositol phosphate (PtdInsP) head groups. SPR experiments identify PtdIns(4,5)P(2) and PtdIns(3,4,5)P(3) as preferred targets of NOXO1β PX. These findings contrast with previous lipid overlay experiments showing strongest binding to monophosphorylated PtdInsP and phosphatidylserine. Our data suggest that localized membrane accumulation of PtdIns(4,5)P(2) or PtdIns(3,4,5)P(2) may serve to recruit NOXO1β and activate Nox1.  相似文献   

18.
Serum- and glucocorticoid-regulated kinase (SGK) is a serine kinase that has a catalytic domain homologous to that of Akt, but lacks the pleckstrin homology domain present in Akt. Akt reportedly plays a key role in various cellular actions, including glucose transport, glycogen synthesis, DNA synthesis, anti-apoptotic activity, and cell proliferation. In this study, we attempted to reveal the different roles of SGK and Akt by overexpressing active mutants of Akt and SGK. We found that adenovirus-mediated overexpression of myristoylated (myr-) forms of Akt resulted in high glucose transport activity in 3T3-L1 adipocytes, phosphorylated glycogen synthase kinase-3 (GSK3) and enhanced glycogen synthase activity in hepatocytes, and the promotion of DNA synthesis in interleukin-3-dependent 32D cells. In addition, stable transfection of myr-Akt in NIH3T3 cells induced an oncogenic transformation in soft agar assays. The active mutant of SGK (D-SGK, substitution of Ser422 with Asp) and myr-SGK were shown to phosphorylate GSK3 and to enhance glycogen synthase activity in hepatocytes in a manner very similar to that observed for myr-Akt. However, despite the comparable degree of GSK3 phosphorylation between myr-Akt and d-SGK or myr-SGK, d-SGK and myr-SGK failed to enhance glucose transport activity in 3T3-L1 cells, DNA synthesis in 32D cells, and oncogenic transformation in NIH3T3 cells. Therefore, the different roles of SGK and Akt cannot be attributed to ability or inability to translocate to the membrane thorough the pleckstrin homology domain, but rather must be attributable to differences in the relatively narrow substrate specificities of these kinases. In addition, our observations strongly suggest that phosphorylation of GSK3 is either not involved in or not sufficient for GLUT4 translocation, DNA synthesis, or oncogenic transformation. Thus, the identification of substrates selectively phosphorylated by Akt, but by not SGK, may provide clues to clarifying the pathway leading from Akt activation to these cellular activities.  相似文献   

19.
The serine/threonine kinases of the Akt/protein kinase B family are regulated in part by recruitment to the plasma membrane, which is accomplished by the binding of an N-terminal PH domain to the phosphatidylinositol 3-kinase products phosphoinositol 3,4,5-trisphosphate and phosphoinositol 3,4-bisphosphate. We have examined Akt localization in a murine T cell clone (D10) before and after stimulation by APC/Ag, and we found that whereas the pleckstrin homology domain is required for plasma membrane recruitment of Akt upon T cell activation, the C terminus of the kinase restricts its cellular localization to the immunologic synapse formed at the site of T cell/APC contact. A recently described proline-rich motif in this region appears to be important for proper localization of full-length Akt. Moreover, a form of Akt in which this motif was mutated acts as a potent dominant negative construct to block T cell activation. Therefore, multiple mechanisms are involved in the proper targeting of Akt during the early events of T cell activation.  相似文献   

20.
Phosphoinositides (PIs) are concentrated in specific subcellular membranes in order to recruit and regulate cytosolic proteins responsible for vesicular trafficking, cytoskeletal rearrangement, and eukaryotic cell growth, differentiation, and survival. Phox homology (PX) domains are found in proteins that are integral players in endocytic pathways. For example, Vam7p is targeted by its PX domain to phosphatidylinositol 3-phosphate [PtdIns(3)P] in the yeast vacuole, where it interacts with other SNARE proteins and GTPases of the vesicular membrane fusion machinery. Although several PX structures have been solved, the role of dynamics in their interactions with membrane lipids is unclear. Here, we present the first detailed characterization of the backbone dynamics of a PX domain, that of Vam7p, in the presence and absence of its ligand. The structure appears to tumble more rapidly in solution upon binding PtdIns(3)P, revealing a conformational change that includes adjustments in the flexible membrane insertion loop (MIL). The flexibilities of the MIL and domain termini are pronounced in both states, while the alpha1 and alpha2 helices are rigid. Dynamic effects are spread across the binding pocket, with PtdIns(3)P inducing altered mobility of different residues on multiple timescales, including a shift in the MIL to slower timescale motions. The bound state is more dynamic overall, particularly in the beta-sheet lobe, which packs against the ligand's 3-phosphate. Thus, the induced dynamic and structural effects are transduced from the buried heart of the binding pocket in the helical lobe through the beta-sheet lobe to the exposed surface of the bilayer-inserted protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号