首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 44 毫秒
1.
Using the technique of UV-mediated cross-linking of nucleotides to their acceptor sites (Modak, M. J., and Gillerman-Cox, E. (1982) J. Biol. Chem. 257, 15105-15109), we have labeled calf terminal deoxynucleotidyltransferase (TdT) with [32P]dTTP. The specificity of dTTP cross-linking at the substrate binding site in TdT is demonstrated by the competitive inhibition of the cross-linking reaction by other deoxynucleoside triphosphates, and ATP and its analogues, requiring concentrations consistent with their kinetic constants. Tryptic peptide mapping of the [32P]dTTP-labeled enzyme showed the presence of a single radioactive peptide fraction that contained the site of dTTP cross-linking. The amino acid composition and sequence analysis of the radioactive peptide fraction revealed it to contain two tryptic peptides, spanning residues 221-231 and 234-249. Since these two peptides were covalently linked to dTTP, the region encompassed by them constitutes a substrate binding domain in TdT. Further proteolytic digestion of the tryptic peptide-dTTP complex, using V8 protease, yielded a smaller peptide, and its analysis narrowed the substrate binding domain to 14 amino acids corresponding to residues 224-237 in the primary amino acid sequence of TdT. Furthermore, 2 cysteine residues, Cys-227 and Cys-234, within this domain were found to be involved in the cross-linking of dTTP, suggesting their participation in the process of substrate binding in TdT.  相似文献   

2.
Using the technique of ultraviolet-mediated cross-linking of substrate deoxynucleoside triphosphates (dNTPs) to their acceptor site [Abraham, K. I., & Modak, M. J. (1984) Biochemistry 23, 1176-1182], we have labeled the Klenow fragment of Escherichia coli DNA polymerase I (Pol I) with [alpha-32P]dTTP. Covalent cross-linking of [alpha-32P]dTTP to the Klenow fragment is shown to be at the substrate binding site by the following criteria: (a) the cross-linking reaction requires dTTP in its metal chelate form; (b) dTTP is readily competed out by other dNTPs as well as by substrate binding site directed reagents; (c) labeling with dTTP occurs at a single site as judged by peptide mapping. Under optimal conditions, a modification of approximately 20% of the enzyme was achieved. Following tryptic digestion of the [alpha-32P]dTTP-labeled Klenow fragment, reverse-phase high-performance liquid chromatography demonstrated that 80% of the radioactivity was contained within a single peptide. The amino acid composition and sequence of this peptide identified it as the peptide spanning amino acid residues 876-890 in the primary sequence of E. coli Pol I. Chymotrypsin and Staphylococcus aureus V8 protease digestion of the labeled tryptic peptide in each case yielded a single smaller fragment that was radioactive. Amino acid analysis and sequencing of these smaller peptides further narrowed the dTTP cross-linking site to within the region spanning residues 876-883. We concluded that histidine-881 is the primary attachment site for dTTP in E. coli DNA Pol I, since during amino acid sequencing analysis of all three radioactive peptides loss of the histidine residue at the expected cycle is observed.  相似文献   

3.
Nucleotide sequence analysis of the cDNA and the genomic clones for rat DNA polymerase beta revealed the existence of a 1,005-base pair open reading frame capable of encoding a Mr = 38,269 polypeptide of 335 amino acid residues. The region of 174 amino acid residues between the 42nd and 215th residues of the DNA polymerase beta polypeptide has extensive amino acid sequence homology with the region between the 195th and 366th residues of human terminal deoxynucleotidyltransferase. The two enzymes share extensive homology not only in primary structures but also in the computer-derived higher structures in these particular regions. The genes for DNA polymerase beta and terminal deoxynucleotidyltransferase are proposed to be derived from a common ancestral DNA polymerase gene.  相似文献   

4.
Poly(A)-rich RNA has been isolated from calf thymus and translated in vitro in a rabbit reticulocyte translation system. Three peptides with Mr = 58,000, 33,000, and 13,000 were specifically immunoprecipitated from the translation products with calf terminal deoxynucleotidyltransferase antiserum. An oligo(dT)-purified preparation of calf terminal transferase competed with only the Mr = 58,000 peptide in the immunoprecipitation reaction. The anti-terminal transferase serum did not precipitate a Mr = 58,000 peptide from translation products of spleen or liver mRNA, but it did precipitate the Mr = 33,000 and 13,000 peptides from products of spleen mRNA and a Mr = 13,000 peptide from products of liver mRNA. In addition, when an affinity-purified antibody to calf terminal transferase was used, only a Mr = 58,000 peptide was immunoprecipitated from the translation products of calf thymus mRNA, and none was immunoprecipitated from spleen or liver mRNA products. This antibody also precipitated a Mr = 58,000 peptide from the cell lysates of calf thymocytes labeled in vitro with [35S]methionine. These results demonstrate that calf terminal transferase is biosynthesized as a Mr = 58,000 peptide.  相似文献   

5.
V Pandey  M J Modak 《Biochemistry》1987,26(7):2033-2038
The catalysis of DNA synthesis by calf thymus terminal deoxynucleotidyltransferase (TdT) is strongly inhibited in the presence of Ap5A, while replicative DNA polymerases from mammalian, bacterial, and oncornaviral sources are totally insensitive to Ap5A addition. The Ap5A-mediated inhibition of TdT seems to occur via its interaction at both the substrate binding and primer binding domains as judged by classical competitive inhibition plots with respect to both substrate deoxynucleoside triphosphate (dNTP) and DNA primer and inhibition of ultraviolet light mediated cross-linking of substrate dNTP and oligomeric DNA primer to their respective binding sites. Further kinetic analyses of Ap5A inhibition revealed that the dissociation constant of the Ap5A-enzyme complex, with either substrate binding or primer binding domain participating in the complex formation, is approximately 6 times higher (Ki = 1.5 microM) compared to the dissociation constant (Ki = 0.25 microM) of the Ap5A-TdT complex when both domains are available for binding. In order to study the binding stoichiometry of Ap5A to TdT, an oxidized derivative of Ap5A, which exhibited identical inhibitory properties as its parent compound, was employed. The oxidation product of Ap5A, presumably a tetraaldehyde derivative, binds irreversibly to TdT when the inhibitor-enzyme complex is subjected to borohydride reduction. The presence of aldehyde groups in the oxidized Ap5A appeared essential for inhibitory activity since its reduction to alcohol via borohydride reduction or its linkage to free amino acids prior to use as an inhibitor rendered it completely ineffective.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The bacteriophage T4 regA protein (M(r) = 14,6000) is a translational repressor of a group of T4 early mRNAs. To identify a domain of regA protein that is involved in nucleic acid binding, ultraviolet light was used to photochemically cross-link regA protein to [32P]p(dT)16. The cross-linked complex was subsequently digested with trypsin, and peptides were purified using anion exchange high performance liquid chromatography. Two tryptic peptides cross-linked to [32P]p(dT)16 were isolated. Gas-phase sequencing of the major cross-linked peptide yielded the following sequence: VISXKQKHEWK, which corresponds to residues 103-113 of regA protein. Phenylalanine 106 was identified as the site of cross-linking, thus placing this residue at the interface of the regA protein-p(dT)16 complex. The minor cross-linked peptide corresponded to residues 31-41, and the site of cross-linking in the peptide was tentatively assigned to Cys-36. The nucleic acid binding domain of regA protein was further examined by chemical cleavage of regA protein into six peptides using CNBr. Peptide CN6, which extends from residue 95 to 122, retains both the ability to be cross-linked to [32P]p(dT)16 and 70% of the nonspecific binding energy of the intact protein. However, peptide CN6 does not exhibit the binding specificity of the intact protein. Three of the other individual CNBr peptides have no measurable affinity for nucleic acid, as assayed by photo-cross-linking or gel mobility shifts.  相似文献   

7.
The single-stranded DNA-binding proteins from bacteriophage T4, F plasmid, Escherichia coli, and calf thymus can all be covalently cross-linked in vitro to thymine oligonucleotides by irradiating the respective protein-oligonucleotide complexes with ultraviolet light. More extensive studies on the E. coli single-stranded DNA-binding protein (SSB) indicate that this reaction is dependent upon both the length of the oligonucleotide and the dose of ultraviolet irradiation. Using anion-exchange and reverse-phase ion-pairing high-performance liquid chromatography we have isolated a specific cross-linked tryptic peptide comprising residues 57-62 of the SSB protein with the sequence valine-valine-leucine-phenylalanine-glycine-lysine. Solid-phase sequence analysis of the covalent [32P] p(dT)8-peptide complex indicates that phenylalanine 60 is the site of cross-linking. This amino acid is located within the general region of SSB (residues 1-115) that has previously been shown to contain the DNA-binding site (Williams, K. R., Spicer, E. K., LoPresti, M. B., Guggenheimer, R. A., and Chase, J. W. (1983) J. Biol. Chem. 258, 3346-3355). The high-performance liquid chromatography purification procedure we have devised to isolate cross-linked peptide-oligonucleotide complexes should be of general applicability and should facilitate future structure/function studies on other nucleic acid-binding proteins.  相似文献   

8.
A and B subunits of the V-type Na+-ATPase from Enterococcus hirae were suggested to possess nucleotide binding sites (Murata, T. et al., J. Biochem., 132, 789-794 (2002)), although the B subunit did not have the consensus sequence for nucleotide binding. To further characterize the binding sites in the V-ATPase, we did the photoaffinity labeling study using 8-azido-[alpha-32P]ATP. A and B subunits were labeled with 8-azido-[alpha-32P]ATP when analysed with SDS polyacrylamide gel electrophoresis. The peptide fragment of A subunit obtained by lysyl endopeptidase digestion after labeling showed a molecular size of 9 kDa and its amino acid sequencing revealed that it corresponded to residues Arg423-Lys494. The peptide fragment from B subunit after photoaffinity labeling and lysyl endopeptidase digestion showed the size of 5 kDa and corresponded to residues Phe404-Lys443. In our structure model, these peptides were close to the adenine ring of ATP. We suggest that non-catalytic B subunit of E. hirae V-ATPase has a nucleotide binding site, similarly to eukaryotic V-ATPases and F-ATPases.  相似文献   

9.
A total of 56 stable murine hybridoma monoclones that produce homogeneous antibodies against human or calf terminal deoxynucleotidyltransferase have been established. All of the antibodies exhibited specific binding to various Mr forms of terminal transferase and eight possessed neutralizing activity. Results are presented that permitted characterization of ten of these antibodies with respect to their immunoglobulin class, their recognition of calf or human terminal-transferase Mr species by immunoblotting techniques and their recognition of distinct antigenic sites. Terminal transferase was purified in a single step by using an immunoaffinity column constructed with a monoclonal antibody exhibiting a high binding affinity for the enzyme. Single monoclonal antibodies were also used to bind selectively to terminal-transferase antigen in tissue slices and individual cells.  相似文献   

10.
The Protein Identification Resource (PIR) protein sequence data bank was searched for sequence similarity between known proteins and human DNA polymerase beta (Pol beta) or human terminal deoxynucleotidyltransferase (TdT). Pol beta and TdT were found to exhibit amino acid sequence similarity only with each other and not with any other of the 4750 entries in release 12.0 of the PIR data bank. Optimal amino acid sequence alignment of the entire 39-kDa Pol beta polypeptide with the C-terminal two thirds of TdT revealed 24% identical aa residues and 21% conservative aa substitutions. The Monte Carlo score of 12.6 for the entire aligned sequences indicates highly significant aa sequence homology. The hydropathicity profiles of the aligned aa sequences were remarkably similar throughout, suggesting structural similarity of the polypeptides. The most significant regions of homology are aa residues 39-224 and 311-333 of Pol beta vs. aa residues 191-374 and 484-506 of TdT. In addition, weaker homology was seen between a large portion of the 'nonessential' N-terminal end of TdT (aa residues 33-130) and the first region of strong homology between the two proteins (aa residues 31-128 of Pol beta and aa residues 183-280 of TdT), suggestive of genetic duplication within the ancestral gene. On the basis of nucleotide differences between conserved regions of Pol beta and TdT genes (aligned according to optimally aligned aa sequences) it was estimated that Pol beta and TdT diverged on the order of 250 million years ago, corresponding roughly to a time before radiation of mammals and birds.  相似文献   

11.
Incubation of human plasma with 27 nM [gamma-32P]ATP in the presence of 20 mM MnCl2 results in the phosphorylation of several proteins detected by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography. About 60% of the incorporated radioactivity is found in a 75-kDa protein containing [32P] phosphoserine. The amino-terminal amino acid sequence of the purified 75-kDa [32P]phosphoprotein is identical to that of vitronectin (also termed serum spreading factor or complement S protein). Rabbit antiserum against vitronectin precipitates greater than 90% of the 75-kDa [32P]phosphoprotein from plasma. Reverse phase chromatography of [32P]vitronectin degraded sequentially with CNBr and chymotrypsin yields one major labeled peptide. The sequence of the peptide, Ser-Arg-Arg-Pro-[32PO4]Ser-Arg-Ala-Thr, corresponds to residues 374-381 which are located in the heparin-binding fragment of vitronectin identified by Suzuki et al. [1984) J. Biol. Chem. 259, 15307-15314). Vitronectin could potentially be phosphorylated in vivo with ATP released from injured cells or secreted by platelets activated during hemostasis.  相似文献   

12.
Terminal deoxynucleotidyl transferase (terminal transferase) was specifically modified in the DNA binding site by a photoactive DNA substrate (hetero-40-mer duplex containing eight 5-azido-dUMP residues at one 3' end). Under optimal photolabeling conditions, 27-40% of the DNA was covalently cross-linked to terminal transferase. The specificity of the DNA and protein interaction was demonstrated by protection of photolabeling at the DNA binding domain with natural DNA substrates. In order to recover high yields of modified peptides from limited amounts of starting material, protein modified with 32P-labeled photoactive DNA and digested with trypsin was extracted 4 times with phenol followed by gel filtration chromatography. All peptides not cross-linked to DNA were extracted into the phenol phase while the photolyzed DNA and the covalently cross-linked peptides remained in the aqueous phase. The 32P-containing peptide-DNA fraction was subjected to amino acid sequence analysis. Two sequences, Asp221-Lys231 (peptide B8) and Cys234-Lys249 (peptide B10), present in similar yield, were identified. Structure predictions placed the two peptides in an alpha-helical array of 39 A which would accommodate a DNA helix span of 11 nucleotides. These peptides share sequence similarity with a region in DNA polymerase beta that has been implicated in the binding of DNA template.  相似文献   

13.
We have previously demonstrated that the two heads of chicken gizzard heavy meromyosin (HMM) in a rigor complex with rabbit skeletal F-actin could be cross-linked by the water-soluble carbodiimide 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide. Here, we report the location of the cross-linked sites in the amino acid sequence of the HMM heavy chain. One of the cross-linked residues was identified as Glu-168 by sequencing the CN1.CN6 cross-linked peptide containing residues 1-77 (CN1) and 164-203 (CN6). This site is located close to the ATP-binding site of HMM. Since the other site was further into the amino acid sequence of CN1, another cross-linked peptide corresponding to residues 53-66 and 145-182 was isolated from the 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide-treated acto-tryptic gizzard HMM digested further by other proteolytic enzymes. The amino acid sequence of this peptide and its cyanogen bromide fragment indicated that the cross-linking occurred between Glu-168 and Lys-65. Our results suggests that these two amino acid side chains are in contact with each other in the acto-gizzard HMM rigor complex and participate in the electrostatic interaction between the two HMM heads bound to F-actin. Based on the head-to-head contact, we propose a three-dimensional model for the attachment of gizzard HMM heads to F-actin.  相似文献   

14.
15.
Actin-fragmin interactions as revealed by chemical cross-linking   总被引:6,自引:0,他引:6  
K Sutoh  S Hatano 《Biochemistry》1986,25(2):435-440
A one to one complex of actin and fragmin (a capping protein from Physarum polycephalum plasmodia) was cross-linked with 1-ethyl-3-[3-(dimethylamino)propyl] carbodiimide. The cross-linking reaction generated two cross-linked products with slightly different molecular weights (88 000 and 90 000) as major species. They were cross-linked products of one actin and one fragmin. The cross-linking site of fragmin in the actin sequence was determined by peptide mappings [Sutoh, K. (1982) Biochemistry 21, 3654-3661] after partial chemical cleavages of cross-linked products with hydroxylamine. The results indicated that the N-terminal segment of actin spanning residues 1-12 participated in cross-linking with fragmin. The cross-linker used in this study covalently bridges lysine side chains and side chains of acidic residues when they are in direct contact. Therefore, it seems that acidic residues in the N-terminal segment of actin (Asp-1, Glu-2, Asp-3, Glu-4, and Asp-11), at least some of them, are in the binding site of fragmin. It has already been shown that the same acidic segment of actin is in the binding site of myosin or depactin (an actin-depolymerizing protein isolated from starfish oocytes). We suggest that the unusual amino acid sequence of the N-terminal segment of actin makes its N-terminal region a favorable anchoring site for various types of actin-binding proteins.  相似文献   

16.
Granulocyte/macrophage-colony stimulating factor (GM-CSF) is a regulatory cytokine important in the proliferative and functional activation of hematopoietic cells. It belongs to a family of 20 kDa or less acidic glycoprotein molecules found in a broad range of cellular sources. On the basis of the previously reported nucleotide-binding properties of interleukin-2 (IL-2), atrial natriuretic factor (ANF), and glucagon, the interaction of GM-CSF with nucleotides was investigated. Using radiolabeled 8-azidoadenosine-containing photoprobes of ATP ([gamma-32P]-8N3ATP) and Ap4A, the putative biological alarmone ([beta'-32P]-8N3Ap4A), we have identified a nucleotide binding site on recombinant murine GM-CSF (rmGM-CSF). Specificity of binding was demonstrated by saturation and competition experiments. Saturation of photoinsertion by [gamma-32P]-8N3ATP and [beta'-32P]-8N3Ap4A occurs with apparent Kd's of 10 and 0.7 microM, respectively. Using an immobilized Fe3+ affinity chromatography technique, developed specifically for the isolation of photolabeled peptides, a single radiolabeled peptide was isolated. It was identified as amino acids 5-14 near the N-terminus of GM-CSF. This peptide region has been shown in previous studies to be critical for biological activity. Also consistent with this observation is our finding that the photolabeled GM-CSF has lost most, if not all, of its biological activity, as determined by a cellular proliferation assay.  相似文献   

17.
B Kierdaszuk  S Eriksson 《Biochemistry》1988,27(13):4952-4956
Subunit B1 of Escherichia coli ribonucleotide reductase contains one type of allosteric binding site that controls the substrate specificity of the enzyme. This site binds the allosteric effector dTTP as well as other nucleoside triphosphates. Cross-linking of dTTP to protein B1 by direct photoaffinity labeling, as well as the isolation and sequence determination of the labeled tryptic peptide, has recently been reported [Eriksson, S., Sj?berg, B.-M., J?rnwall, H., & Carlquist, M. (1986) J. Biol. Chem. 261, 1878-1882]. In this study, we have further purified the dTTP-labeled peptide and characterized it using UV spectroscopy. Two types of dTTP-cross-linked peptide were found: one having an absorbance maximum at 261 nm typical for a dTTP spectrum, i.e., containing an intact 5,6 double bond, and one minor form with low absorbance at 261 nm. In both cases, the same amino acid composition was found, corresponding to the peptide Ser291-X-Ser-Gln-Gly-Gly-Val-Arg299 in the B1 sequence with X being Cys-292 cross-linked to dTTP. Isotope labeling experiments revealed that one proton in the 5-methyl group of thymine was lost during photoincorporation. Therefore, the cross-linking occurs via the 5-methyl group to Cys-292 in a majority of incorporated dTTPs, but a second, possibly 5,6-saturated form of incorporated nucleotide was also detected. The reasons for the high stereospecificity of the reaction and the possible structure of the allosteric site of protein B1 are discussed.  相似文献   

18.
Eucaryotic initiation factor 4A (eIF-4A) is a member of a family of proteins believed to be involved in the ATP-dependent melting of RNA secondary structure. These proteins contain a derivative of the consensus ATP-binding site AXXGXGKT. To assess the importance of the consensus amino acid sequence in eIF-4A for ATP binding, we mutated the consensus amino-proximal glycine and lysine to isoleucine and asparagine, respectively. The effect of the mutations was examined by UV-induced cross-linking of [alpha-32P]dATP to eIF-4A. Mutation of the lysine residue (but not of the glycine residue) resulted in the loss of [alpha-32P]dATP cross-linking to eIF-4A, suggesting that the lysine is an important determinant in ATP binding to eIF-4A.  相似文献   

19.
The transforming growth factor beta (TGF-beta) type V receptor, a newly identified high molecular weight TGF-beta receptor (M(r) approximately 400,000) has been purified from bovine liver plasma membranes (O'Grady, P., Kuo, M.-D., Baldassare, J. J., Huang, S. S., and Huang, J. S. (1991) J. Biol. Chem. 266, 8583-8589). The purified TGF-beta type V receptor underwent autophosphorylation at serine residues when incubated with [gamma-32P]ATP in the presence of 0.1% beta-mercaptoethanol and 2.5 mM MnCl2. This phosphorylation was stimulated by preincubation with TGF-beta. The preferred exogenous substrate for the Ser/Thr-specific phosphorylation activity of the type V receptor was found to be bovine casein. The TGF-beta type V receptor could be affinity-labeled with 5'-p-[adenine-8-14C]fluorosulfonylbenzoyl adenosine. Polylysine appeared to stimulate the autophosphorylation of the TGF-beta type receptor in the presence of [gamma-32P]ATP and the incorporation of 5'-p-[adenine-8-14C]fluorosulfonylbenzoyl adenosine into the TGF-beta type V receptor. The amino acid sequence analysis of the peptide fragments produced by cyanogen bromide cleavage of the purified TGF-beta type V receptor revealed that a peptide, namely CNBr-19, contained an amino acid sequence which shows homology to the putative ATP binding site of the receptors for activin, the Caenorhabditis elegans daf-1 gene product, and TGF-beta type II receptor (Lin, H. Y., Wang, Y.-F., Ng-Eaton, E., Weinberg, R. A., and Lodish, H. F. (1992) Cell 68, 775-785). These results suggest that the TGF-beta type V receptor is a Ser/Thr-specific protein kinase and belongs to the new class of membrane receptors associated with a Ser/Thr-specific protein kinase activity.  相似文献   

20.
Escherichia coli DnaC protein bound to ATP forms a complex with DnaB protein. To identify the domain of DnaC that interacts with DnaB, a genetic selection was used based on the lethal effect of induced dnaC expression and a model that inviability arises by the binding of DnaC to DnaB to inhibit replication fork movement. The analysis of dnaC alleles that preserved viability under elevated expression revealed an N-terminal domain of DnaC involved in binding to DnaB. Mutant proteins bearing single amino acid substitutions (R10P, L11Q, L29Q, S41P, W32G, and L44P) that reside in regions of predicted secondary structure were inert in DNA replication activity because of their inability to bind to DnaB, but they retained ATP binding activity, as indicated by UV cross-linking to [alpha-(32)P]ATP. These alleles also failed to complement a dnaC28 mutant. Other selected mutations that map to regions carrying Walker A and B boxes are expected to be defective in ATP binding, a required step in DnaB-DnaC complex formation. Lastly, we found that the sixth codon from the N terminus encodes aspartate, resolving a reported discrepancy between the predicted amino acid sequence based on DNA sequencing data and the results from N-terminal amino acid sequencing (Nakayama, N., Bond, M. W., Miyajima, A., Kobori, J., and Arai, K. (1987) J. Biol. Chem. 262, 10475-10480).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号