首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 901 毫秒
1.
The uptake of beta-lactam antibiotics into small intestinal enterocytes occurs by the transport system for small peptides. The role of membrane-bound peptidases in the brush border membrane of enterocytes from rabbit and pig small intestine for the uptake of small peptides and beta-lactam antibiotics was investigated using brush border membrane vesicles. The enzymatic activity of aminopeptidase N was inhibited by beta-lactam antibiotics in a non-competitive manner whereas dipeptidylpeptidase IV was not affected. The peptidase inhibitor bestatin led to a strong competitive inhibition of aminopeptidase N whereas the uptake of cephalexin into brush border membrane vesicles was only slightly inhibited at high bestatin concentrations (greater than 1 mM). Modification of brush border membrane vesicles with the histidine-modifying reagent diethyl pyrocarbonate led to a strong irreversible inhibition of cephalexin uptake whereas the activity of aminopeptidase N remained unchanged. A modification of serine residues with diisopropyl fluorophosphate completely inactivated dipeptidylpeptidase IV whereas the transport activity for cephalexin and the enzymatic activity of aminopeptidase N were not influenced. With polyclonal antibodies raised against aminopeptidase N from pig renal microsomes the aminopeptidase N from solubilized brush border membranes from pig small intestine could be completely precipitated; the binding protein for beta-lactam antibiotics and oligopeptides of apparent Mr 127,000 identified by direct photoaffinity labeling with [3H]benzylpenicillin showed no crossreactivity with the aminopeptidase N anti serum and was not precipitated by the anti serum. These results clearly demonstrate that peptidases of the brush border membrane like aminopeptidase N and dipeptidylpeptidase IV are not directly involved in the intestinal uptake process for small peptides and beta-lactam antibiotics and are not a constituent of this transport system. This suggests that a membrane protein of Mr 127,000 is (a part of) the uptake system for beta-lactam antibiotics and small peptides in the brush border membrane of small intestinal enterocytes.  相似文献   

2.
The influence of chemical modification of functional amino acid side-chains in proteins on the H(+)-dependent uptake system for orally active alpha-amino-beta-lactam antibiotics and small peptides was investigated in brush-border membrane vesicles from rabbit small intestine. Neither a modification of cysteine residues by HgCl2, NEM, DTNB or PHMB and of vicinal thiol groups by PAO nor a modification of disulfide bonds by DTT showed any inhibition on the uptake of cephalexin, a substrate of the intestinal peptide transporter. In contrast, the Na(+)-dependent uptake systems for D-glucose and L-alanine were greatly inhibited by the thiol-modifying agents. With reagents for hydroxyl groups, carboxyl groups or arginine the transport activity for beta-lactam antibiotics also remained unchanged, whereas the uptake of D-glucose and L-alanine was inhibited by the carboxyl specific reagent DCCD. A modification of tyrosine residues with N-acetylimidazole inhibited the peptide transport system and did not affect the uptake systems for D-glucose and L-alanine. The involvement of histidine residues in the transport of orally active alpha-amino-beta-lactam antibiotics and small peptides (Kramer, W. et al. (1988) Biochim. Biophys. Acta 943, 288-296) was further substantiated by photoaffinity labeling studies using a new photoreactive derivative of the orally active cephalosporin cephalexin, 3-[phenyl-4-3H]azidocephalexin, which still carries the alpha-amino group being essential for oral activity. 3-Azidocephalexin competitively inhibited the uptake of cephalexin into brush-border membrane vesicles. The photoaffinity labeling of the 127 kDa binding protein for beta-lactam antibiotics with this photoprobe was decreased by the presence of cephalexin, benzylpenicillin or dipeptides. A modification of histidine residues in brush-border membrane vesicles with DEP led to a decreased labeling of the putative peptide transporter of Mr 127,000 compared to controls. This indicates a decrease in the affinity of the peptide transporter for alpha-amino-beta-lactam antibiotics by modification of histidine residues. The data presented demonstrate an involvement of tyrosine and histidine residues in the transport of orally active alpha-amino-beta-lactam antibiotics across the enterocyte brush-border membrane.  相似文献   

3.
The uptake of the alpha-aminocephalosporin cephalexin into brush-border membrane vesicles from rat renal cortex was independent on an inward H+-gradient in contrast to the intestinal transport system. The transport system could be irreversibly inhibited by photoaffinity labeling. Two binding polypeptides for beta-lactam antibiotics and dipeptides with apparent molecular weights 130,000 and 95,000 were identified by photoaffinity labeling with [3H]benzylpenicillin and N-(4-azido[3,5-3H]benzoyl) derivatives of cephalexin and glycyl-L-proline. The uptake of cephalexin and the labeling of the respective binding proteins was inhibited by beta-lactam antibiotics and dipeptides as with intestinal brush-border membranes. These data indicate that the transport systems for beta-lactam antibiotics and dipeptides in the brush-border membrane from rat kidney and small intestine are similar but not identical.  相似文献   

4.
The interaction of two renin inhibitors, S 86,2033 and S 86,3390, with the uptake system for beta-lactam antibiotics and small peptides in the brush border membrane of enterocytes from rabbit small intestine was investigated using brush border membrane vesicles. Both renin inhibitors inhibited the uptake of the orally active cephalosporin cephalexin into brush border membrane vesicles from rabbit small intestine in a concentration-dependent manner. 1.1 mM of S 86,3390 and 2.5 mM of S 86,2033 led to a half-maximal inhibition of the H(+)-dependent uptake of cephalexin. Both renin inhibitors were stable against peptidases of the brush border membrane. The uptake of cephalexin into brush border membrane vesicles (1 min of incubation) was competitively inhibited by S 86,2033 and S 86,3390 suggesting a direct interaction of these compounds with the intestinal peptide uptake system. The renin inhibitors are transported across the brush border membrane into the intravesicular space as was shown by equilibrium uptake studies dependent upon the medium osmolarity. The uptake of S 86,3390 was stimulated by an inwardly directed H(+)-gradient and occurred with a transient accumulation against a concentration gradient (overshoot phenomenon). The renin inhibitors S 86,2033 and 86,3390 also caused a concentration-dependent inhibition in the extent of photoaffinity labeling of the putative peptide transport protein of apparent Mr 127,000 in the brush border membrane of small intestinal enterocytes. In conclusion, these studies show that renin inhibitors specifically interact with the intestinal uptake system shared by small peptides and beta-lactam antibiotics.  相似文献   

5.
The uptake of a photolabile derivative of the orally effective cephalosporin cephalexin, N-(4-azidobenzoyl)cephalexin, was investigated in brush-border membrane vesicles. The compound was taken up into the intravesicular space and inhibited the active uptake of cephalexin in a concentration-dependent manner. Therefore, this probe interacts with the transport system shared by alpha-aminocephalosporins and dipeptides. Photoaffinity labeling of brush-border membrane vesicles from rat small intestine with N-(4-azido[3,5-3H]benzoyl) derivatives of the cephalosporin cephalexin and the dipeptide glycyl-L-proline resulted in the covalent incorporation of radioactivity into membrane polypeptides with apparent molecular weights of 127,000, 100,000, 94,000 and 86,000, the polypeptide of molecular weight 127,000 being predominantly labeled. The specificity of labeling was demonstrated by a decrease in the labeling of the polypeptide of apparent molecular weight 127,000 in the presence of beta-lactam antibiotics and dipeptides, whereas glucose, taurocholate or amino acids had no effect on the labeling pattern. These data demonstrate an interaction of cephalosporins and dipeptides with a common membrane protein of molecular weight 127,000, which could be a component of the intestinal transport system(s) responsible for the uptake of orally effective cephalosporins and dipeptides.  相似文献   

6.
To identify protein components of the intestinal cholesterol transporter, rabbit small intestinal brush border membrane vesicles were submitted to photoaffinity labeling using photoreactive derivatives of 2-azetidinone cholesterol absorption inhibitors. An integral membrane protein of M(r) 145.3+/-7.5 kDa was specifically labeled in brush border membrane vesicles from rabbit jejunum and ileum. Its labeling was concentration-dependently inhibited by the presence of cholesterol absorption inhibitors whereas bile acids, D-glucose, fatty acids or cephalexin had no effect. The inhibitory potency of 2-azetidinones to inhibit photolabeling of the 145 kDa protein correlated with their in vivo activity to inhibit intestinal cholesterol absorption. These results suggest that an integral membrane protein of M(r) 145 kDa is (a component of) the cholesterol absorption system in the brush border membrane of small intestinal enterocytes.  相似文献   

7.
The uptake system for beta-lactam antibiotics in the rabbit small intestine was investigated using brush-border membrane vesicles. After treatment of membrane vesicles with the reagent diethylpyrocarbonate (DEP), the uptake of orally active beta-lactam antibiotics with an alpha-amino group in the substituent at position 6 or 7 of the penam or cephem nucleus was significantly inhibited, whereas DEP-treatment had no inhibitory effect on the uptake of beta-lactam antibiotics without an alpha-amino group. The kinetic analysis revealed an apparent competitive inhibition indicating a decreased affinity of the transport system for alpha-amino-beta-lactam antibiotics. Substrates of the intestinal dipeptide transport system - dipeptides and alpha-amino-beta-lactam antibiotics - could protect the transport system from irreversible inhibition by DEP, whereas beta-lactam antibiotics without an alpha-amino group as well as amino acids or bile acids had no effect. Incubation of DEP-treated vesicles with hydroxylamine led to a partial restoration of the transport activity indicating that DEP may have led to a modification of a histidine residue of the transport protein. From the data presented we conclude that a specific interaction of the alpha-amino group in the substituent at position 6 or 7 of the penam or cephem nucleus presumably with a histidine residue of the transport protein is involved in the translocation process of orally active alpha-amino-beta-lactam antibiotics across the intestinal brush-border membrane.  相似文献   

8.
Lactoperoxidase and glucose oxidase catalyzed 125I-iodination was used to specifically label isolated rat renal brush border membrane vesicles from either side of the membrane. Autoradiography of total membrane proteins demonstrated that asymmetric labeling was achieved. Specific immunoprecipitates of aminopeptidase M, an established transmembrane protein, and of γ-glutamyltransferase were isolated from vesicles solubilized with Triton X-100 or with papain. Following electrophoresis and autoradiography, the immunoprecipitates of the two solubilized forms of each enzyme derived from externally labeled vesicles exhibited the same intensity of labeling. In these experiments, the small subunit of the γ-glutamyltransferase was preferentially labeled suggesting that, compared to the large subunit, it is more exposed on the external surface of the membrane. With the samples derived from internally labeled vesicles, the Triton-solubilized form of each enzyme was intensely labeled, whereas the papain-solubilized forms contained insignificant amounts of radioactivity. Thus, the extent of contramembrane labeling was minimal. In these experiments, the large subunit of the γ-glutamyltransferase was preferentially labeled. The similarity of the labeling patterns obtained for aminopeptidase M and γ-glutamyltransferase suggests that the hydrophobic domain of the two amphipathic enzymes are selectively labeled from the internal surface and that the γ-glutamyltransferase may also be a transmembrane protein.  相似文献   

9.
The brush border membrane of the proximal tubule contains two efflux pathways for organic cations from the cell to the tubular fluid: a P-glycoprotein and an organic cation/H+ exchanger. There is evidence that they transport many of the same substrates. Their structural relatedness is unknown and is the subject of this report. The experimental approach was to identify the exchanger with photoaffinity labeling reagents. The rationale was that if the P-glycoprotein and the organic cation/H+ exchanger transport many of the same substrates, then they might be photoaffinity labeled by the same reagents. [125I]Iodoarylazidoprazosin and [3H]azidopine are two reagents, which have been used, to photoaffinity label the P-glycoprotein. We found that several polypeptides were photolabeled in a time- and concentration-dependent manner. The photoincorporation into only two of these polypeptides (41 and 28 kDa) was blocked extensively by the presence of known substrates for the exchanger. The photoaffinity labeling of only the 41-kDa polypeptide was affected by treatment with the chemical reagents, N-ethylmaleimide and dithiothreitol, which are known to affect the exchanger reaction. The findings are consistent with the interpretation that a 41-kDa polypeptide is, or is a component of, the exchanger.  相似文献   

10.
The transport of dipeptides and beta-lactam antibiotics across the rat renal basolateral membrane was examined. The initial uptake of glycylsarcosine and cefadroxil by rat renal basolateral membrane vesicles was inhibited by the presence of all the di- and tripeptides and beta-lactam antibiotics that were tested in this study. However, the uptake of both substrates was not inhibited by glycine, an amino acid. The initial uptake of zwitterionic beta-lactam antibiotics, cefadroxil, cephradine, and cephalexin, was stimulated by preloaded glycylsarcosine (countertransport effect). On the other hand, the uptake of dianionic beta-lactam antibiotics, ceftibuten and cefixime, was not affected. A concentration-dependent initial uptake of glycylsarcosine and cefadroxil suggested the existence of a carrier-mediated mechanism, whereas the transport of ceftibuten did not show any saturated uptake. The transporter that participates in the permeation of dipeptides and beta-lactam antibiotics across basolateral membranes showed lower affinity than did PEPT1 and PEPT2. This is the first study that showed an evidence for a peptide transporter, expressed in the rat renal basolateral membrane, that recognizes zwitterionic beta-lactam antibiotics using basolateral membrane vesicles isolated from normal rat kidney.  相似文献   

11.
A method for the synthesis of the glutathione conjugate S-(4-azidophenacyl)[35S]glutathione is described. The compound was used for photoaffinity labeling of proteins present in canalicular membrane vesicles (CMV), sinusoidal membrane vesicles (SMV), mitochondria and microsomes from rat liver. Most of the radioactivity introduced by photoaffinity labeling of CMV appeared in the 25-29 kDa range. Further labeled proteins were observed in bands at 37, 105 and about 120 kDa. 79% of the 25-29 kDa associated radioactivity was recovered in the supernatant after extensive revesiculation (washing) of the vesicles, together with the 37 kDa protein. CMV and SMV contained glutathione S-transferase (GST) activity which in CMV was decreased by 75% by washing. Photolabeling of a mixture of purified basic GST subunits from rat liver resulted in a band pattern at 25-29 kDa similar to that in the membrane preparations. Isoelectric focusing of the CMV indicated the presence of basic soluble GST subunits. S-Hexylglutathione-Sepharose affinity chromatography showed reversible binding of photolabeled proteins at 25-29 kDa. Difference photoaffinity labeling with GSSG, S-hexylglutathione, taurocholate and phenylmethylsulfonyl fluoride decreased the radioactivity bound by GST, but not that introduced into the 105 kDa protein band present in CMV. It is concluded that membrane-associated basic GST isoenzymes are present in standard membrane vesicle preparations. In the cell, the function may be transport of GST-bound compounds across the membrane and protection of the membranes against electrophiles.  相似文献   

12.
A 99 kDa polypeptide in rat ileal brush border membrane (BBM), regarded as a component of the active bile acid transport system on account of photoaffinity labeling, has been purified by affinity chromatography and preparative gel electrophoresis and utilized as an immunogen for raising polyclonal antibody. Immune serum, but not preimmune serum, specifically recognized a single band of 99 kDa protein on immunoblots of ileal and renal BBM. In contrast, no reactivity was observed with proteins in jejunal BBM. This polyclonal antibody, compared with preimmune serum and anticytosolic bile acid binding protein (14 kDa) serum, significantly inhibited the Na+ dependent uptake of [3H] taurocholate by BBM vesicles (p less than 0.01). [14C] D-glucose uptake by BBM vesicles was not influenced by the immune serum (p less than 0.01). Thus, these studies provide further support for the specific role of a 99 kDa protein in ileal BBM bile acid transport.  相似文献   

13.
Canine renal brush border membrane proteins that bind stilbenedisulfonate inhibitors of anion exchange were identified by affinity chromatography. A 130-kDa integral membrane glycoprotein from brush border membrane was shown to bind specifically to 4-acetamido-4'-isothiocyanostilbene-2,2'-disulfonate immobilized on Affi-Gel 102 resin. The bound protein could be eluted effectively with 1 mM 4-benzamido-4'-aminostilbene-2,2'-disulfonate (BADS). The 130-kDa protein did not bind to the affinity resin in the presence of 1 mM BADS or when the solubilized extract was covalently labeled with 4,4'-diisothiocyanostilbene-2,2'-disulfonate (DIDS). This protein was labeled with [3H]H2DIDS, and the labeling was prevented by BADS. The 130-kDa protein did not cross-react with antibody raised against human or dog erythrocyte Band 3 protein. The 130-kDa protein was accessible to proteinase K and chymotrypsin digestion in vesicles but not to trypsin. The 130-kDa protein was sensitive to endo-beta-N-acetylglucosaminidase F treatment both in the solubilized state and in brush border membrane vesicles showing that it was a glycoprotein and that the carbohydrate was on the exterior of the vesicles. This glycoprotein was resistant to endo-beta-N-acetylglucosaminidase H treatment suggesting a complex-type carbohydrate structure. The protein bound concanavalin A, wheat germ agglutinin, and Ricinus communis lectins, and it could be purified using wheat germ agglutinin-agarose.  相似文献   

14.
The kinetics of hydrolysis of L-leucine p-nitroanilide and some p-nitrophenylalanine dipeptides by vesicular aminopeptidase N from the porcine small intestine brush border membrane was studied. It was shown that the catalytic properties of the vesicular enzyme are very similar to those known for its solubilized counterpart. Both enzymes are inhibited by o-phenanthroline, ZnCl2 and puromycin with Ki = 10(-5)-10(-6) M. The data obtained offer new possibilities for investigating the role of aminopeptidase N in the amino acid and peptide transport across the enterocyte membrane.  相似文献   

15.
J S Wu  J E Lever 《Biochemistry》1989,28(7):2980-2984
N5-Methyl-N5-isobutylamiloride (MIA) is one of a series of 5-N-substituted amiloride analogues which exhibit high affinity and specificity for inhibition of Na+/H+ antiport. Amiloride-sensitive [3H]MIA binding to renal brush border membranes exhibited a Kd of 250 nM and a Bmax of 8.6 pmol/mg of protein. Specific binding was optimal at pH 7.5 and inhibited in the presence of Na+ and Li+. Inhibition by amiloride exhibited biphasic kinetics. After resolution of solubilized membranes by high-pressure liquid chromatography, MIA binding activity cofractionated together with Na+/H+ antiport activity, measured after reconstitution in asolectin vesicles, into a major and a minor peak. When fractions containing the major peak of Na+/H+ antiport activity were incubated with [3H]MIA and then photolyzed with a mercury arc lamp, covalent incorporation of label into polypeptides of apparent molecular mass 81 and 107 kDa was observed. These photolabeled bands were also observed in intact brush border membranes in addition to labeled polypeptides of apparent molecular mass 60 and 46 kDa, respectively. Labeling was inhibited by amiloride, reduced in the presence of Na+, and not observed in the absence of photolysis. These data point to the 81- and 107-kDa polypeptides as candidates for identification as components of a Na+/H+ antiport system in renal brush border membranes.  相似文献   

16.
The Lactococcus lactis multidrug resistance ABC transporter protein LmrA has been shown to confer resistance to structurally and functionally diverse antibiotics and anti-cancer drugs. Using a previously characterized photoreactive drug analogue of Rhodamine 123 (iodo-aryl azido-Rhodamine 123 or IAARh123), direct and specific photoaffinity labeling of LmrA in enriched membrane vesicles could be achieved under non-energized conditions. This photoaffinity labeling of LmrA occurs at a physiologically relevant site as it was inhibited by molar excess of ethidium bromide>Rhodamine 6G>vinblastine>doxorubicin>MK571 (a quinoline-based drug) while colchicine had no effect. The MDR-reversing agents PSC 833 and cyclosporin A were similarly effective in inhibiting IAARh123 photolabeling of LmrA and P-glycoprotein. In-gel digestion with Staphyloccocus aureus V8 protease of IAARh123-photolabeled LmrA revealed several IAARh123 labeled polypeptides, in addition to a 6.8kDa polypeptide that comprises the last two transmembrane domains of LmrA.  相似文献   

17.
Analysis of brush border membrane proteins by gel electrophoresis has revealed a complex polypeptide composition. We have investigated the use of Triton X-114 phase partitioning to fractionate such proteins on the basis of their degree of hydrophobicity. Each of the fractions was composed of a complex but distinct set of proteins. Most proteins were solubilized by Triton X-114 and partitioned into the detergent-poor fraction. Trehalase, gamma-glutamyl transpeptidase, and leucine aminopeptidase were well solubilized (greater than 80%) and enriched 5.1-, 3.9-, and 2.5-fold in the detergent-rich fraction. In contrast, alkaline phosphatase and 5'-nucleotidase were poorly solubilized. The specific activities of these enzymes were increased 2.7- and 2.3-fold in the insoluble protein fraction. Maltase was almost completely solubilized and partitioned into the detergent-poor fraction with a small enrichment factor (1.3). These results suggest that Triton X-114 phase partitioning could be useful as a first step in the purification of many brush border membrane proteins.  相似文献   

18.
[3H]Cyclosporin diaziridine, a new photoaffinity label, enters rat liver cells in the dark. Photoaffinity labeling of isolated rat liver-cell plasma membranes with this probe modifies several polypeptides with molecular mass of 200, 85, 54, 50, 34 kDa. The major labeled protein of 85 kDa represents 2% of the total plasma membrane protein. A 50 kDa protein is heavily labeled in freshly isolated rat hepatocytes at low temperature and after short incubation in the dark. The 85 kDa protein becomes substituted after longer preincubation periods at temperatures above 10 degrees C. This suggests a localisation at the cytoplasmic side of the membrane. Several controls point to a specific interaction with the above mentioned proteins. Comparison of [3H]cyclosporin-diaziridine- and isothiocyanatobenzamido[3H] cholic acid-labeled membrane proteins reveals identity of binding proteins with the exception of the 85 kDa protein. However, the interaction of bile acids with the 85 kDa protein became apparent at higher concentrations as demonstrated by the differential photoaffinity labeling experiments. In the cytosol of rat liver cells, further [3H]cyclosporin-diaziridine binding proteins could be identified. In particular, a 17 kDa polypeptide was found which appears similar to cyclophilin, a protein known to be present in T-lymphocytes (R. Handschumacher et al. (1984) Science 226, 544-547: Cyclophilin. A specific cytosolic binding protein for cyclosporin A). Proteins with molecular mass of 90, 56, 30, 24, 20 kDa are labeled in AS-30D ascites hepatoma cells and those with molecular mass of 200, 150, 80, 70, 42, 25 kDa in Ehrlich ascites tumor cells.  相似文献   

19.
Absorption of cholesterol from the intestine is a central part of body cholesterol homeostasis. The molecular mechanisms of intestinal cholesterol absorption and the proteins mediating membrane transport are not known. We therefore aimed to identify the proteins involved in intestinal cholesterol absorption across the luminal brush border membrane of small intestinal enterocytes. By photoaffinity labeling using photoreactive derivatives of cholesterol and 2-azetidinone cholesterol absorption inhibitors, an 80-kDa and a 145-kDa integral membrane protein were identified as specific binding proteins for cholesterol and cholesterol absorption inhibitors, respectively, in the brush border membrane of small intestinal enterocytes. The 80-kDa cholesterol-binding protein did not interact with cholesterol absorption inhibitors and vice versa; cholesterol or plant sterols did not interfere with the 145-kDa molecular target for cholesterol absorption inhibitors. Both proteins showed an identical tissue distribution and were exclusively found at the anatomical sites of cholesterol absorption-duodenum, jejunum and ileum. Neither stomach, cecum, colon, rectum, kidney, liver nor fat tissue expressed the 80- or 145-kDa binding proteins for cholesterol and cholesterol absorption inhibitors. Both proteins are different from the hitherto described candidate proteins for the intestinal cholesterol transporter,-SR-BI, ABC G5/ABC G8 or ABC A1. Our data strongly suggest that intestinal cholesterol absorption is not facilitated by a single transporter protein but occurs by a complex machinery. Two specific binding proteins for cholesterol (80 kDa) and cholesterol absorption inhibitors (145 kDa) of the enterocyte brush border membrane are probable protein constituents of the mechanism responsible for the intestinal absorption of cholesterol.  相似文献   

20.
Intestinal cholesterol absorption is an important regulator of serum cholesterol levels. Ezetimibe is a specific inhibitor of intestinal cholesterol absorption recently introduced into medical practice; its mechanism of action, however, is still unknown. Ezetimibe neither influences the release of cholesterol from mixed micelles in the gut lumen nor the transfer of cholesterol to the enterocyte brush border membrane. With membrane-impermeable Ezetimibe analogues we could demonstrate that binding of cholesterol absorption inhibitors to the brush border membrane of small intestinal enterocytes from the gut lumen is sufficient for inhibition of cholesterol absorption. A 145-kDa integral membrane protein was identified as the molecular target for cholesterol absorption inhibitors in the enterocyte brush border membrane by photoaffinity labeling with photoreactive Ezetimibe analogues (Kramer, W., Glombik, H., Petry, S., Heuer, H., Schafer, H. L., Wendler, W., Corsiero, D., Girbig, F., and Weyland, C. (2000) FEBS Lett. 487, 293-297). The 145-kDa Ezetimibe-binding protein was purified by three different methods and sequencing revealed its identity with the membrane-bound ectoenzyme aminopeptidase N ((alanyl)aminopeptidase; EC 3.4.11.2; APN; leukemia antigen CD13). The enzymatic activity of APN was not influenced by Ezetimibe (analogues). The uptake of cholesterol delivered by mixed micelles by confluent CaCo-2 cells was partially inhibited by Ezetimibe and nonabsorbable Ezetimibe analogues. Preincubation of confluent CaCo-2 cells with Ezetimibe led to a strong decrease of fluorescent APN staining with a monoclonal antibody in the plasma membrane. Independent on its enzymatic activity, aminopeptidase N is involved in endocytotic processes like the uptake of viruses. Our findings suggest that binding of Ezetimibe to APN from the lumen of the small intestine blocks endocytosis of cholesterol-rich membrane microdomains, thereby limiting intestinal cholesterol absorption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号