首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Primary cultures of neonatal rat cortical astrocytes contain low cellular levels (about 2 pg/mg of protein) of nerve growth factor (NGF), but secrete significant amounts of NGF into the culture medium (about 540 pg of NGF/mg of cell protein/38-h incubation). Incubation of astrocytes with interleukin-1 (IL-1) increased the cellular content of NGF and the amount secreted by about threefold. In comparison, cerebellar astrocytes secreted significant amounts of NGF, and the secretion was also stimulated by IL-1. The stimulatory action of IL-1 on astrocytes prepared from cortex was dose- and time-dependent. Concentrations of IL-1 causing half-maximal and maximal stimulation of NGF secretion were 1 and 10 U/ml, respectively). Maximal NGF secretion induced by IL-1 (10 U/ml) was seen following 38 h of incubation. The basal secretion of NGF was reduced by about 50% under Ca2(+)-free conditions; however, the percent stimulation of NGF secretion by IL-1 was the same in the absence or presence of Ca2+. The stimulatory action of IL-1 was specific, because other glial growth factors and cytokines were almost ineffective in stimulating NGF secretion from cortical astroglial cells. IL-1 treatment also increased cellular NGF mRNA content twofold. The results indicate that IL-1 specifically triggers a cascade of events, independent of cell growth, which regulate NGF mRNA content and NGF secretion by astrocytes.  相似文献   

2.
3.
We examined the short-term regulation of the phosphorylation of the mid-sized neurofilament subunit (NF-M) by kinases which were activated in rat pheochromocytoma (PC12) cells by nerve growth factor (NGF) and/or 12-O-tetradecanoylphorbol 13-acetate (TPA). We found that NGF and TPA, alone or in combination, increased (a) the incorporation of [32P]Pi into NF-M and (b) the rate of conversion of NF-M from a poorly phosphorylated to a more highly phosphorylated form. This was not due to increased synthesis of NF-M, because NGF alone did not increase NF-M synthesis and TPA alone or TPA and NGF together inhibited the synthesis of NF-M. Further, an increase in calcium/phospholipid-dependent kinase (PKC) activity resulting from the treatment of PC12 cells with NGF and TPA was observed concomitant with the increased phosphorylation of NF-M. This PKC activity was determined to be derived from the PKC alpha and PKC beta isozymes. Finally, when PC12 cells were rendered PKC-deficient by treatment with 1 muM TPA for 24 h, NGF maintained the ability to induce an increase in NF-M phosphorylation, though not to the level attained in cells which were not PKC-deficient. These data suggest that NGF with or without TPA stimulates NF-M phosphorylation as a result of a complex series of events which include PKC-independent and PKC-dependent pathways.  相似文献   

4.
Abstract: The involvement of protein kinase C and its interaction with interleukin 1β in the control of interleukin 6 release by cortical astrocytes was studied. The blockade of protein kinase C catalytic domain, by staurosporine, as well as the desensitization of protein kinase C by short-term phorbol 12-myristate 13-acetate pretreatment, increased the basal release of interleukin 6 by rat cortical astrocytes, whereas calphostin C, an antagonist of phorbol ester binding on protein kinase C regulatory domain, did not affect the basal release of the cytokine. The activation of protein kinase C by phorbol 12-myristate 13-acetate enhanced concentration- and time-dependently interleukin 6 release. This stimulatory action of phorbol 12-myristate 13-acetate was significantly reduced by staurosporine, by calphostin C, and by the desensitization of protein kinase C. Interleukin 1β increased interleukin 6 release in a concentration-related manner. Protein kinase C inhibition, by staurosporine or desensitization, potentiated severalfold, whereas calphostin C reduced interleukin 1β stimulation of interleukin 6 release. The treatment of cortical astrocytes with both interleukin 1β (3 ng/ml) and phorbol 12-myristate 13-acetate (10 nM) caused a synergistic stimulation of interleukin 6 release and its gene expression, an effect that was not relieved by either 20 nM staurosporine or by calphostin C but was slightly affected by protein kinase C desensitization. In conclusion, our data show that in rat cortical astrocytes the basal release of interleukin 6 is under a tonic inhibition exerted by a protein kinase C isoform or isoforms sensitive to blockade by staurosporine and desensitization but insensitive to calphostin C. Interleukin 1β stimulated interleukin 6 secretion via a mechanism that is also negatively modulated by a protein kinase C isoform or isoforms sensitive to staurosporine and desensitization. Finally, we showed that interleukin 1β and phorbol 12-myristate 13-acetate synergistically stimulated interleukin 6 release and its gene expression, operating in a manner insensitive to protein kinase C blockers and slightly reduced by protein kinase C desensitization.  相似文献   

5.
6.
Abstract: Growth factors are peptides that exert different activities in the CNS, supporting the survival of different cell populations and playing an important role in the maintenance of cell homeostasis. Much evidence has suggested that these molecules can protect neurons from degeneration induced by mechanical injury or excitotoxic stimuli. Different factors can contribute to the regulation of neurotrophic factor expression in the brain. Such mechanisms may therefore be important in the manipulation of the levels of these peptides in specific brain areas as a therapeutic intervention in acute and chronic neurodegenerative diseases. We have used a primary culture of rat cortical astrocytes to investigate the regulation of basic fibroblast growth factor (bFGF) gene expression in comparison with other neurotrophic molecules. Our results indicate that the glucocorticoid analogue dexamethasone markedly elevates bFGF mRNA levels but reduces the expression of nerve growth factor. The induction of bFGF was transient, as it peaked after 6 h and returned to basal levels within 24 h and was not blocked by coincubation of cycloheximide, thus indicating that it did not require de novo protein synthesis. This effect was also observed in vivo, as systemic injection of dexamethasone (1 or 10 mg/kg) produced a significant increase in the amount of bFGF mRNA in cerebral cortex and hippocampus. The effect we describe can contribute to the regulation of bFGF expression in the brain and may be important in relation to the protective effect exerted by this growth factor in different models of neuronal injury.  相似文献   

7.
Serum-free aggregating cell cultures of fetal rat telencephalon treated with the potent tumor promoter phorbol 12-myristate 13-acetate (PMA) showed a marked, rapid, and sustained increase in the activity of the astrocyte-specific enzyme glutamine synthetase (GS). This effect was accompanied by a small increase in RNA synthesis and a progressive reduction in DNA synthesis. Only mitotically active cultures were responsive to PMA treatments. Since in aggregate cultures astrocytes are the preponderant cell type, both in number and mitotic activity, it can be concluded that PMA induces and/or enhances the terminal differentiation of astrocytes. The developmental expression of GS was also greatly stimulated by mezerein, a potent nonphorbol tumor promoter, but not by 4 alpha-phorbol 12,13-didecanoate, a nonpromoting phorbol ester. Since both tumor promoters, PMA and mezerein, are potent and specific activators of C-kinase, it is suggested that C-kinase plays a regulatory role in the growth and differentiation of normal astrocytes.  相似文献   

8.
Certain biological actions of phorbol esters cannot be duplicated by diacylglycerol (DAG). Thus, the human neuroblastoma cell line SH-SY5Y differentiates when exposed to 12-tetradecanoyl-13-acetyl-beta-phorbol (TPA) and protein kinase C (PKC) inhibitors, but not when exposed to DAG. To investigate the specific features of the phorbol diester molecule that might be responsible for these effects, we examined the extension of neurites, expression of neuron-specific enolase, and appearance and localization of phosphorylated high molecular weight neurofilament subunits (NF-H). TPA, 12-deoxy-13-tetradecanoyl-beta-phorbol, and staurosporine, but not DAG or 4-O-methyl-TPA, caused neurite outgrowth. Neuron-specific enolase was expressed in cells treated with TPA and 12-deoxy-13-tetradecanoyl-beta-phorbol but not with DAG, staurosporine, or 4-O-methyl-TPA. NF-H increased in the perikarya of cells treated with DAG and 4-O-methyl-TPA, in processes and to varying degrees in perikarya of TPA- and 12-deoxy-13-tetradecanoyl-beta-phorbol-treated cells, but much more in the processes than in the perikarya of staurosporine-differentiated cells. These findings and additional differences between the differentiation induced by TPA (a PKC activator) and staurosporine (a PKC inhibitor), including distinct morphology of the cell body and processes and time of appearance of the morphological phenotype, suggest that activators and inhibitors of PKC induce differentiation of SH-SY5Y cells by different mechanisms, and that the five-membered/seven-membered terpene ring region present in TPA must be intact for the induction of morphological differentiation.  相似文献   

9.
Abstract: In astrocytes, thrombin and thrombin receptor-activating activating peptide (TRAP-14), a 14-amino-acid agonist of the proteolytic activating receptor for thrombin (PART), significantly increased cell division as assessed by [3H]thymidine incorporation into DNA (EC50 = 1 n M and +650% at 100 n M for thrombin; EC50 = 3 µ M and +600% at 100 µ M for TRAP-14) and nerve growth factor (NGF) secretion (approximately twofold at 100 n M thrombin or 100 µ M TRAP-14). The [3H]thymidine incorporation was prevented by protein kinase C inhibitors (staurosporine and H7) or by down-regulation of this enzyme by chronic exposure of astrocytes to phorbol 12-myristate 13-acetate (PMA). Thrombin-induced NGF secretion was completely inhibited by protein kinase C inhibitors. Treatment with PMA stimulated NGF secretion 19-fold, and this effect was not further enhanced by thrombin. These data suggest an absolute requirement of protein kinase C activity for thrombin-induced NGF secretion and cell division. Pretreatment of astrocytes with pertussis toxin (PTX) reduced thrombin- and TRAP-14-induced DNA synthesis. PART activation caused a decrease in forskolin-stimulated cyclic AMP accumulation. PTX treatment prevented the inhibitory effect of PART activation on cyclic AMP accumulation, suggesting that a PTX-sensitive G protein, such as Gi or Go, is involved in thrombin-induced cell division. In contrast, thrombin-induced NGF secretion was not inhibited by PTX. Finally, the protein tyrosine kinase inhibitor herbimycin A partially but significantly prevented thrombin- and TRAP-14-induced cell division but was without effect on NGF secretion. Taken together, these results demonstrate that, in astrocytes, PART(s)-triggered cell division or NGF secretion is mediated by distinct transduction mechanisms.  相似文献   

10.
Abstract: To elucidate mechanisms regulating the production of platelet-derived growth factor (PDGF) in the CNS, we analyzed the influence of a panel of cytokines on PDGF mRNA and protein levels in astrocyte-enriched cultures from the human embryonic brain and spinal cord. Using a specific ELISA, PDGF AB protein was detected in serum-free astrocyte supernatants and its levels were significantly increased after treatment of the cultures with transforming growth factor-β1 (TGF-β1) or tumor necrosis factor-α (TNF-α); the largest increase was detected after combined treatment with the two cytokines. Interleukin-1β (IL-1β) by itself had little or no effect but synergized with TGF-β1 in enhancing PDGF AB production. Supernatants from human astrocyte cultures stimulated the proliferation of rat oligodendrocyte progenitors, and most of the mitogenic activity could be accounted for by PDGF. By northern blot analysis, both PDGF A- and PDGF B-chain mRNAs were detected in untreated astrocytes. PDGF B-chain mRNA levels were increased by TGF-β1, TNF-α, TNF-α/TGF-β1, or IL-1β/TGF-β1, whereas PDGF A-chain mRNA levels were not consistently affected by cytokine treatments. These in vitro data indicate that TGF-β1, TNF-α, and IL-1β are able to stimulate astrocyte PDGF production. This cytokine network could play a role in CNS development and repair after injury or inflammation.  相似文献   

11.
12.
The possible role of the AMP-activated protein kinase (AMPK), a highly conserved stress-activated kinase, in the regulation of ketone body production by astrocytes was studied. AMPK activity in rat cortical astrocytes was three times higher than in rat cortical neurons. AMPK in astrocytes was shown to be functionally active. Thus, incubation of astrocytes with 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR), a cell-permeable activator of AMPK, stimulated both ketogenesis from palmitate and carnitine palmitoyltransferase I. This was concomitant to a decrease of intracellular malonyl-CoA levels and an inhibition of acetyl-CoA carboxylase/fatty acid synthesis and 3-hydroxy-3-methylglutaryl-CoA reductase/cholesterol synthesis. Moreover, in microdialysis experiments AICAR was shown to stimulate brain ketogenesis markedly. The effect of chemical hypoxia on AMPK and the ketogenic pathway was studied subsequently. Incubation of astrocytes with azide led to a remarkable drop of fatty acid beta-oxidation. However, activation of AMPK during hypoxia compensated the depression of beta-oxidation, thereby sustaining ketone body production. This effect seemed to rely on the cascade hypoxia --> increase of the AMP/ATP ratio --> AMPK stimulation --> acetyl-CoA carboxylase inhibition --> decrease of malonyl-CoA concentration --> carnitine palmitoyltransferase I deinhibition --> enhanced ketogenesis. Furthermore, incubation of neurons with azide blunted lactate oxidation, but not 3-hydroxybutyrate oxidation. Results show that (a) AMPK plays an active role in the regulation of ketone body production by astrocytes, and (b) ketone bodies produced by astrocytes during hypoxia might be a substrate for neuronal oxidative metabolism.  相似文献   

13.
Abstract: The effects of the protein kinase inhibitor H-7 on early and delayed responses to nerve growth factor (NGF) were investigated in PC12 cells. H-7 reduced the NGF-induced expression of c-Fos in a dose-dependent manner without affecting the time course of c-Fos appearance. Conversely, H-7 potentiated delayed NGF effects, i.e., neurite outgrowth and Ca2+/phospholipid-dependent protein kinase (PKC) induction, but not choline acetyltransferase induction. Long-term treatment with NGF resulted in an increase of at least four tyrosine-phosphorylated protein bands with molecular masses between 39 and 48 kDa, which was also potentiated by H-7. In the absence of NGF, H-7 had no significant effect on c-Fos expression, tyrosine phosphorylation of the 45 kDa protein, or choline acetyltransferase activity. However, 4 days of exposure to H-7 alone induced PKC activity and tyrosine phosphorylation of the 39-kDa protein. The action of H-7 derivatives on neurite outgrowth did not correlate with their inhibition profile of cyclic nucleotide-dependent protein kinases. Down-regulation of PKC activity by prolonged exposure to phorbol ester did not completely abolish the effects of NGF and H-7 on induction of c-Fos, choline acetyltransferase activity, and neurite outgrowth, indicating that PKC-independent pathways contribute to these actions. These results suggest that additional pathway(s) sensitive to H-7 may exist, which induce immediate early gene expression and suppress neuronal differentiation of PC12 cells.  相似文献   

14.
Growth inhibitory factor (GIF) is highly expressed in the CNS under physiological conditions, but its expression is reduced in neurodegenerative diseases, such as Alzheimer's disease. The results of this study show that the levels of GIF and GIF mRNA were not influenced by neuroglial interactions. GIF was highly expressed in confluent astrocytes, but the expression was down-regulated in low-density growing astrocytes. A high level of GIF was not observed in serum-starved low-density cultures. These findings suggest that GIF is a quiescent state-specific protein and that two different mechanisms may exist for the cells to enter the quiescent state. Among interleukin-1beta (IL-1beta), fibroblast growth factor-2, epidermal growth factor (EGF), amyloid beta1-42, and 50% O2, only EGF and IL-1beta altered the level of GIF in confluent astrocytes: EGF increased both GIF mRNA and protein, and IL-1beta decreased GIF mRNA, but did not alter GIF protein. Kinetic analysis of the GIF mRNA level revealed the biphasic regulation of GIF mRNA expression by IL-1beta, i.e., a transient up-regulation followed subsequently by down-regulation, explaining in part the discrepancy between the levels of GIF mRNA and protein in astrocytes treated with IL-1beta.  相似文献   

15.
The effects of phorbol esters were investigated on the survival of chick sympathetic neurons in a serum-free culture medium. The protein kinase C activator phorbol 12,13-dibutyrate (PDB) supported about 40% of the plated sympathetic neurons. This number was comparable to that supported by nerve growth factor (NGF). A combination of phorbol ester and NGF did not significantly increase the number of surviving neurons. Phorbol ester-supported sympathetic neurons possessed desipramine-sensitive [3H]-norepinephrine uptake mechanism, and therefore were noradrenegic in character. Two days after the start of cultures, if NGF was replaced by phorbol ester, or phorbol ester was replaced by NGF, the number of surviving sympathetic neurons was essentially the same in both groups, and the uptake of [3H]norepinephrine was also comparable when examined 2 days after the switchover. Interchangeability between phorbol ester and NGF in the survival of sympathetic neurons suggests that both agents act on the same subpopulation of neurons of the chick sympathetic ganglia. The protein kinase C activity of cytosol and particulate fractions of NGF-supported neurons was 0.14 and 0.09 pmol/min/mg protein, respectively. In phorbol ester-supported neurons the activity in the particulate fraction increased by about fivefold. Removal of the phorbol ester after 2 days resulted in restoration of the enzyme activity in less than 1 h, and readdition of the phorbol ester again increased the activity by fivefold. When NGF was added to these neurons (1 microgram for 15 min), there was no change in the enzyme activity. Phorbol 13-acetate was ineffective in supporting sympathetic neurons in culture, as well as in enhancing protein kinase C activity. We also compared the protein kinase C activity of sympathetic neurons supported in culture by NGF and excess potassium (35 mM K+) Neurons supported in culture by 35 mM K+ for 2 days had almost eightfold more protein kinase C activity in their particulate fraction than in cytosol fraction. In NGF-supported neurons were acutely treated with excess K+, the protein kinase C activity was increased in the particulate fraction by about sevenfold in a concentration- and time-dependent manner. Excess K+ plus phorbol ester did not produce an additive effect on protein kinase C activity. PDB and excess K+ had no effect on cyclic AMP content of sympathetic neurons. In summary, the present data suggest that the neurotrophic action of PDB and excess K+ is probably mediated through protein kinase C.  相似文献   

16.
Fibroblasts are one of several cell types producing nerve growth factor (NGF) in neuronal targets. In previous studies we found that NGF production is up-regulated by 12-O-tetradecanoylphorbol 13-acetate (TPA) and serum, down-regulated by corticosterone, and unaffected by dibutyryl-cyclic AMP (db-cyclic AMP) in fibroblasts. As fibroblasts in vivo are likely to be exposed to regulatory effects by more than one of these agents at any given time, we examined the effects of combinations of them on NGF production using L929 fibroblasts as a model system. TPA and serum together stimulated NGF production 10-fold more than either agent alone. Corticosterone reduced NGF mRNA and NGF production to less than 10% of basal levels whether or not TPA or serum, or both, were present but not in the presence of the glucocorticoid antagonist RU486. Corticosterone did not increase the rate of NGF mRNA degradation. Forskolin and db-cyclic AMP prevented NGF mRNA induction by TPA and serum without changing basal levels. TPA induced c-fos and junB mRNAs transiently and preceding NGF mRNA induction but c-jun mRNA remained undetectable. Forskolin enhanced the induction of both junB and c-fos mRNA whereas corticosterone prolonged junB mRNA induction. Thus, TPA induction of NGF mRNA is modulated differentially by corticosterone and cyclic AMP. c-fos and junB may play a role in the underlying mechanisms.  相似文献   

17.
Abstract: An 80-kDa protein labeled with [3H]myristic acid in C6 glioma and N1E-115 neuroblastoma cells has been identified as the myristoylated alanine-rich C kinase substrate (MARCKS protein) on the basis of its calmodulin-binding, acidic nature, heat stability, and immunochemical properties. When C6 cells preincubated with [3H]myristate were treated with 200 n M 4β-12- O -tetradecanoylphorbol 13-acetate (β-TPA), labeled MARCKS was rapidly increased in the soluble digitonin fraction (maximal, fivefold at 10 min) with a concomitant decrease in the Triton X-100–soluble membrane fraction. However, phosphorylation of this protein was increased in the presence of β-TPA to a similar extent in both fractions (maximal, fourfold at 30 min). In contrast, β-TPA–stimulated phosphorylation of MARCKS in N1E-115 cells was confined to the membrane fraction only and no change in the distribution of the myristoylated protein was noted relative to α-TPA controls. These results indicate that although phosphorylation of MARCKS by protein kinase C occurs in both cell lines, it is not directly associated with translocation from membrane to cytosol, which occurs in C6 cells only. The cell-specific translocation of MARCKS appears to correlate with previously demonstrated differential effects of phorbol esters on stimulation of phosphatidylcholine turnover in these two cell lines.  相似文献   

18.
To elucidate the role of the diacylglycerol-protein kinase C (PKC) pathway in beta-endorphin synthesis and secretion in anterior pituitary corticotrope tumor cells (AtT-20), a procedure for down-regulating PKC activity in the cells was developed. Treatment of AtT-20 cells with 12-O-tetradecanoylphorbol 13-acetate (TPA) led to an increase in [3H]phorbol 12,13-dibutyrate binding to PKC in the membrane fraction of these cells 30 s after its addition to the culture medium. Thereafter, a decrease in both [3H]phorbol 12,13-dibutyrate binding and PKC-specific phosphotransferase activity occurred in a time- and dose-dependent manner in both the cytosolic and membrane fractions. For example, treatment of the cells with 100 nM TPA for 24 h resulted in an almost complete depletion of PKC activity. Immunoreactive beta-endorphin secretion was found to be stimulated two- to fourfold in the control cells after incubation with corticotropin-releasing factor (10(-7) M), forskolin (10(-6) M), or TPA (10(-7) M) for 4 h. In cells rendered PKC deficient, TPA-stimulated immunoreactive beta-endorphin release was abolished, forskolin-stimulated release was unaffected, and corticotropin-releasing factor-stimulated release was depressed. Treatment of control cells with any one of the three stimulatory agents led to an increase in proopiomelanocortin mRNA levels, and these responses were also depressed after TPA pretreatment. The results suggest that physiological processes thought to be entirely cyclic AMP dependent, such as corticotropin-releasing factor-elicited secretion, may be partially dependent on PKC-mediated biochemical events.  相似文献   

19.
20.
Abstract: In astrocytes, nerve growth factor (NGF) synthesis has been described to be stimulated by the cytokines interleukin-1β (IL-1β) and transforming growth factor-β1 (TGF-β1) and inhibited by corticosterone. As all three factors are present in the brain under certain conditions, we investigated the effect of their combined application on NGF secretion in the astroglial cell line RC7 and, in addition, studied the effect of calcitriol (1α,25-dihydroxyvitamin D3). Calcitriol stimulated NGF secretion, whereas corticosterone reduced basal levels of NGF secretion as well as inhibited the NGF secretion induced by IL-1β, calcitriol, and TGF-β1. Calcitriol had an additive effect when applied together with IL-1β and a synergistic effect when applied with TGF-β1. Moreover, calcitriol not only counteracted the inhibitory effect of corticosterone on NGF secretion stimulated by TGF-β1 but even augmented it to a level more than threefold higher than that reached with TGF-β1 alone. Due to the trophic effect of NGF on basal forebrain cholinergic neurons, these findings might be of therapeutic relevance under conditions where cholinergic function is impaired and the endogenous levels of corticosterone, IL-1β, or TGF-β1 are elevated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号