首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Dehydrin gene (Dhn) expression is associated with plant response to dehydration. The aim of the present study was to investigate the association of differential expression of Dhn genes (Dhn 1, 3, 5, 6, and 9) with drought tolerance found in wild barley (Hordeum spontaneum). Tolerant and sensitive genotypes were identified from Israeli (Tabigha microsite) and Jordanian (Jarash and Waddi Hassa) populations (based on scoring of water loss rate of 390 genotypes). The five Dhn genes were up‐regulated by dehydration in resistant and sensitive wild barley genotypes. Notably, differences between resistant and sensitive genotypes were detected, mainly in the expression of Dhn1 and Dhn6 genes, depending on the duration of dehydration stress. Dhn1 tended to react earlier (after 3 h) and higher (12 h and 24 h) in resistant compared to sensitive genotypes. The level of expression of Dhn6 was significantly higher in the resistant genotypes at the earlier stages after stress. However, after 12 and 24 h Dhn6 expression was relatively higher in sensitive genotypes. The present results may indicate that these genes have some functional role in the dehydration tolerance in wild barley. The authors suggest that the observed differences of Dhn expression in wild barley, originating from different micro‐ and macro ecogeographic locations, may be the result of adaptive edaphic and climatic selective pressures.  相似文献   

2.
We previously identified 11 unique barley Dhn genes and found, using wheat-barley addition lines, that these genes are dispersed on four chromosomes 3H, 4H, 5H, 6H. In the present work, more precise positions of barley Dhn genes were determined using gene-specific PCR and 100 doubled haploid lines developed from a cross of Dicktoo and Morex barley. Dhn10 is located on 3H between saflp106 and ABG4. Dhn6 is at the previously determined position on 4H between SOLPRO and BCD265a. Dhn1 and Dhn2 are at the previously determined position on 5H between mR and saflp172. The Dhn locus previously called Dhn4a on barley 5H or Dhn2.2 on T. monococcum 5A is in fact Dhn9 and maps to a revised position between BCD265b and saflp218. Dhn3, Dhn4, Dhn7 and Dhn5 each map to the same position on chromosome 6H, suggesting that the previously reported separation of Dhn3, Dhn4 and Dhn5 may reflect limitations in the accuracy of Southern blot data. In addition to clarifying the map positions of these important stress-related genes, these results illustrate the advantage of gene-specific probes for the mapping of individual genes in a multi-gene family. Received: 11 August 1999 / Accepted: 16 December 1999  相似文献   

3.
Dehydrins are water-soluble lipid-associating proteins that accumulate during low-temperature or water-deficit conditions, and are thought to play a role in freezing- and drought-tolerance in plants. Dhn genes exist as multi-gene families in plants. Previously, we screened lambda genomic libraries of two barley cultivars in an effort to isolate all of the barley Dhn genes. We identified 11 unique Dhn genes and estimated a total of 13 Dhn genes in the barley genome. To extend the collection, we used an alternative source of clones, a 1.5×Morex barley BAC library. In this library, we found nine Dhn genes that we described previously and one new Dhn gene, Dhn12. The Dhn12 gene encodes an acidic YSK2 dehydrin. The Dhn12 gene is located on chromosome 6H, and shows a different expression pattern from all other Dhn genes identified previously. RT-PCR results show that Dhn12 expression is embryo-specific. Dhn12 is not expressed in seedling shoots under any of the conditions tested, including non-stressed as well as dehydrated, or cold-, ABA- or NaCl-treated seedlings. Received: 6 June 1999 / Accepted: 3 November 1999  相似文献   

4.
5.
The Arabidopsis Genome Initiative has released up to now more than 80% of the genome sequence of Arabidopsis thaliana. About 70% of the identified genes have at least one paralogue. In order to understand the biological function of individual genes, it is essential to study the structure, expression and organization of the entire multigene family. A systematic analysis of multigene families, made possible by the amount of genomic sequence data available, provides important clues for the understanding of genome evolution and plasticity. In this paper, four multigene families of A. thaliana are characterized, namely LCAD, HD-GL2, LGT and MYST. Members of HD-GL2 and LCAD have already been reported in plants. The LGT genes specify proteins containing motifs of glycosyl transferase. No plant genes similar to the LGT genes have been reported to date. The novel MYST family, most likely plant-specific, encodes proteins with no identified function. Sequencing and in silico analysis led to the characterization of 29 novel genes belonging to these four gene families. The organization, structure and evolution of all the members of the four families are discussed, as well as their chromosome location. Expression data of some of the paralogues of each family are also presented.  相似文献   

6.
The identification of molecular markers and marker-aided selection are essential to the efficient breeding of drought-tolerant plants. However, because that characteristic is controlled by many quantitative trait loci, such markers that can screen and trace desirable barley genotypes in a segregating population or germplasm have not yet been determined. Relative water content has been used to estimate drought tolerance in plants because it is highly correlated with the drought index of yield. To develop reliable gene-specific markers for identifying tolerant versus susceptible genotypes, we performed suppression subtractive hybridization to identify candidate genes. We used two domestic barley cultivars, one having the highest RWC (drought-tolerant ‘Chalbori’) and the other having the lowest (drought-susceptible ‘Daebaekbori’). In response to dehydration at the early seedling stage, rapid upregulation ofDehydrin3 (Dhn3) andDhn4 occurred in the drought-tolerant genotypes, but not in the susceptible ones. Similar results were obtained with mature plants growing under frequent drought stress in the greenhouse. In addition,Dhn3 andDhn4 conferred higher drought tolerance when they were over-expressed in transgenicArabidopsis. Thus, in addition to using assessments of RWC, we propose thatDhn3 andDhn4 expressions can serve as drought-induced gene-specific markers to determine drought-tolerant barley genotypes at the seedling stage.  相似文献   

7.
8.
 A collection of 200 wheat (Triticum aestivum L. cv ‘Chinese Spring’) cytogenetic stocks (nullisomic, tetrasomic, nulli-tetrasomic, ditelosomic and deletion lines, addition and substitution stocks from intra- and inter-specific crosses) was utilized to determine the proteins encoded by some of the wheat and barley dehydrin genes, using a western blot procedure. Proteins extracted from seeds were reacted with antibodies that recognize dehydrins in a wide range of plants, including wheat and barley. Proteins encoded by dehydrin loci in chromosome arms 4DS, 5BL and 6AL of ‘Chinese Spring’ wheat were assigned by this method. There was also evidence of a regulatory factor on 5B in the vicinity of the dhn genes, and on 5H in wheat-barley addition lines, that is required for a normal level of expression of seed dehydrins in hexaploid wheat. Further understanding of this putative regulatory factor would be helpful for the interpretation of linkage studies that may relate dehydrin gene expression to phenotypes such as dehydration, salinity or low-temperature tolerance. Received: 27 August 1997 / Accepted: 4 February 1998  相似文献   

9.
Acid soil/aluminium toxicity is one of the major constraints on barley production around the world. Genetic improvement is the best solution and molecular-marker-assisted selection has proved to be an efficient tool for developing barley cultivars with acid soil/aluminium tolerance. In this study, barley variety Svanhals—introduced from CYMMIT (International Maize and Wheat Improvement Center)—was identified as acid soil/aluminium tolerant and the tolerance was mapped to chromosome 4H in 119 doubled haploid (DH) lines from a cross of Hamelin/Svanhals. The HvMATE gene, encoding an aluminium-activated citrate transporter, was selected as a candidate gene and gene-specific molecular markers were developed to detect acid soil/aluminium tolerance based on the polymerase chain reaction. Sequence analysis of the HvMATE gene identified a 21-bp indel (insertion–deletion) between the tolerant and sensitive cultivars. The new marker was further mapped to the QTL (quantitative trait loci) region on chromosome 4H for acid soil tolerance and accounted for 66.9 % of phenotypic variation in the DH population. Furthermore, the polymorphism was confirmed in other tolerant varieties which have been widely used as a source of acid soil tolerance in Australian barley breeding programs. The new gene-specific molecular marker provides an effective and simple molecular tool for selecting the acid soil tolerance gene from multiple tolerance sources.  相似文献   

10.
A 14.5 kDa barley endosperm protein that is a major allergen in baker's asthma disease, as previously shown by both in vitro (IgE binding) and in vivo tests, has been identified as a glycosylated monomeric member of the multigene family of inhibitors of -amylase/trypsin from cereals. A cDNA encoding this allergen (renamed BMAI-1) has been isolated and characterized. The deduced sequence for the mature protein, which is 132 residues long, is identical in its N-terminal end to the 20 amino acid partial sequence previously determined from the purified allergen, and fully confirms that it is a member of the multigene family of cereal inhibitors. Southern-blot analysis of wheat/barley addition lines using the insert in the BMAI-1 cDNA clone as a probe, has led to the location of the allergen gene (Iam1) in barley chromosome 2, while another related member of this protein family, the barley dimeric -amylase inhibitor BDAI-1 gene (Iad1) has been located in chromosome 6. Iam1 is the first member of this inhibitor family in cereals to be assigned to chromosome group 2, thus extending the dispersion of genes in the family to five out of the seven homology groups of chromosomes in wheat and barley (chromosome 2, 3, 4, 6 and 7).  相似文献   

11.
Dehydrins, an important group of late embryogenesis abundant proteins, accumulate in response to dehydration stresses and play protective roles under stress conditions. Herein, phylogenetic analysis of the dehydrin family was performed using the protein sequences of 108 dehydrins obtained from 14 plant species based on plant taxonomy and protein subclasses. Sub-cellular localization and phosphorylation sites of these proteins were also predicted. The protein features distinguishing these dehydrins categories were identified using various attribute weighting and decision tree analyses. The results revealed that the presence of the S motif preceding the K motif (YnSKn, SKn, and SnKS) was more evident and the YnSKn subclass was more frequent in monocots. In barley, as one of the most drought-tolerant crops, there are ten members of YnSKn out of 13 HvDhns. In promoter regions, six types of abiotic stress-responsive elements were identified. Regulatory elements in UTR sequences of HvDhns were infrequent while only four miRNA targets were found. Furthermore, physiological parameters and gene expression levels of HvDhns were studied in tolerant (HV1) and susceptible (HV2) cultivars, and in an Iranian tolerant wild barley genotype (Spontaneum; HS) subjected to gradual water stress and after recovery duration at the vegetative stage. The results showed the significant impact of dehydration on dry matter, relative leaf water, chlorophyll contents, and oxidative damages in HV2 compared with the other studied genotypes, suggesting a poor dehydration tolerance, and incapability of recovering after re-watering in HV2. Under severe drought stress, among the 13 HvDhns genes, 5 and 10 were exclusively induced in HV1 and HS, respectively. The gene and protein structures and the expression patterns of HvDhns as well as the physiological data consistently support the role of dehydrins in survival and recovery of barley plants from drought particularly in HS. Overall, this information would be helpful for functional characterization of the Dhn family in plants.  相似文献   

12.
This work presents new information on the structure and organization of B hordein genes in the Hor 2 locus of barley. Data obtained by Southern blot analysis and cloning and sequencing of different members of this multigene family are discussed.  相似文献   

13.
The F-box protein-encoding gene family plays an essential role in plant stress resistance. In present study, 126 non-redundant F-box genes were identified in barley (Hordeum vulgare L., Hv). The corresponding proteins contained 165– 887 amino acid residues and all were amphiphilic, except 5 proteins. Phylogenetic analysis of F-box protein sequences in barley and stress-related F-box protein sequences in wheat and Arabidopsis thaliana (At) was used to classify barley F-box genes are divided into 9 subfamilies (A–I). A structure-based sequence alignment demonstrated that F-box proteins were highly conserved with a total of 10 conserved motifs. In total, 124 F-box genes were unevenly distributed on 7 chromosomes; another 2 genes have not been anchored yet. The gene structure analysis revealed high variability in the number of exons and introns in F-box genes. Comprehensive analysis of expression profiles and phylogenetic tree analysis, a total of 12 F-box genes that may be related to stress tolerance in barley were screened. Of the 12 detected F-box genes, 8 and 10 were upregulated after drought and salt stress treatments, respectively, using quantitative real-time polymerase chain reaction (qRT-PCR). This study is the first systematic analysis conducted on the F-box gene family in barley, which is of great importance for clarifying this family’s bioinformatic characteristics and elucidating its function in barley stress resistance. These results will serve as a theoretical reference for subsequent research on molecular regulation mechanisms, genetic breeding, and improvement.  相似文献   

14.
The genomic regions controlling caryopsis dormancy and seedling desiccation tolerance were identified using 152 F4 lines derived from a cross between Mona, a Swedish cultivar, and an Israeli xeric wild barley Hordeum spontaneum genotype collected at Wadi Qilt, Israel. Dormancy, the inability of a viable seed to germinate, and desiccation tolerance, the ability of the desiccated seedlings to revive after rehydration, were characterized by fitting the germination and revival data with growth curves, using three parameters: minimum, maximum, and slope of germination or revival rate derived by the least square method. The genetic map was constructed with 85 genetic markers (SSRs, AFLPs, STSs, and Dhn genes) using the multipoint-mapping algorithm. Quantitative trait loci (QTLs) mapping was conducted with the multiqtl package. Ten genomic regions were detected that affected the target traits, seven of which affected both dormancy and desiccation tolerance traits. Both the wild barley genotype and the Swedish cultivar contributed the favorite alleles for caryopsis dormancy, whereas seedling desiccation tolerance was attributed to alleles descending from the cultivar. The results indicate that some barley dormancy genes are lost during domestication and that dormancy QTLs are associated with abiotic stress tolerance.  相似文献   

15.
Detection and utilization of genetic variation available in the germplasm collection for crop improvement have been the prime activities of breeders. Here a set of ICARDA barley germplasm collection comprising of 185 cultivated (Hordeum vulgare L.) and 38 wild (H. spontaneum L.) genotypes originated from 30 countries of four continents was genotyped with 68 single nucleotide polymorphism (SNP) and 45 microsatellite or simple sequence repeat (SSR) markers derived from genes (expressed sequence tags, ESTs). As two SNP markers provided 2 and 3 datapoints, a total of 71 SNPs were surveyed that yielded a total of 143 alleles. The number of SSR alleles per locus ranged from 3 to 22 with an average of 7.9 per marker. Average PIC (polymorphism information content) value for SSR and SNP markers were recorded as 0.63 and 0.38, respectively. Heterogeneity was recorded at both SNP and SSR loci in an average of 5.72 and 12.42% accessions, respectively. Genetic similarity matrices for SSR and SNP allelic data were highly correlated (r = 0.75, P < 0.005) and therefore allelic data for both markers were combined and analyzed for understanding the genetic relationships among the germplasm surveyed. Majority of clusters/subclusters were found to contain genotypes from the same geographic origins. While comparing the genetic diversity, the accessions coming from Middle East Asia and North East Asia showed more diversity as compared to that of other geographic regions. Majority of countries representing Africa, Middle East Asia, North East Asia and Arabian Peninsula included the genotypes that contained rare alleles. As expected, spontaneum accessions, as compared to vulgare accessions, showed a higher number of total alleles, higher number of alleles per locus, higher effective number of alleles and higher allelic richness and a higher number of rare alleles were observed. In summary, the examined ICARDA germplasm set showed ample natural genetic variation that can be harnessed for future breeding of barley as climate change and sustainability have become important throughout all growing areas of the world, drought/heat tolerance being the most important ones.  相似文献   

16.
The plant cell wall is of supermolecular architecture, and is composed of various types of heterogeneous polymers. A few thousand enzymes and structural proteins are directly involved in the construction processes, and in the functional aspects of the dynamic architecture in Arabidopsis thaliana. Most of these proteins are encoded by multigene families, and most members within each family share significant similarities in structural features, but often exhibit differing expression profiles and physiological functions. Thus, for the molecular dissection of cell wall dynamics, it is necessary to distinguish individual members within a family of proteins. As a first step towards characterizing the processes involved in cell wall dynamics, we have manufactured a gene-specific 70-mer oligo microarray that consists of 765 genes classified into 30 putative families of proteins that are implicated in the cell wall dynamics of Arabidopsis. By using this array system, we identified several sets of genes that exhibit organ preferential expression profiles. We also identified gene sets that are expressed differentially at certain specific growth stages of the Arabidopsis inflorescence stem. Our results indicate that there is a division of roles among family members within each of the putative cell wall-related gene families.  相似文献   

17.
Frost tolerance is an important trait for barley breeding. Field selection for this trait is not always efficient since, especially in Southern Europe, severe winter frost occurs erratically. Recent advances of cloned genes and molecular markers in barley provide molecular breeders with the means to develop new, simple PCR-based molecular markers, which can be used to select frost-tolerant genotypes quickly without stress simulation. This paper reports the development of two STS markers derived from the RFLP probes WG644 and PSR637, chosen as they are located on the long arm of homoeologous group 5 chromosomes of Triticeae, known to harbour the most important loci for frost tolerance. The two STS markers were validated together with one selected RAPD marker, OPA17, by separating two sets of winter and spring barley genotypes with different levels of frost tolerance. The ability of the developed markers to select segregant frost-tolerant and frost-susceptible genotypes was then investigated in a population of doubled haploid lines derived from a cross between a highly tolerant ('Nure') and a susceptible ('Tremois') genotype. In this population only two markers, OPA17 and Psr637 demonstrated their efficiency in dividing the phenotypes according to the parental alleles. These two markers mapped on the long arm of chromosome 5H, tightly linked to two frost tolerance QTLs. Two polymorphic bands of the WG644 STS were mapped: the former on the long arm of chromosome 5H (Wg644c) and the latter (Wg644b) on the long arm of chromosome 2H.  相似文献   

18.
Barley (Hordeum vulgare L.) is a major cereal grain widely used for livestock feed, brewing malts and human food. Grain yield is the most important breeding target for genetic improvement and largely depends on optimal timing of flowering. Little is known about the allelic diversity of genes that underlie flowering time in domesticated barley, the genetic changes that have occurred during breeding, and their impact on yield and adaptation. Here, we report a comprehensive genomic assessment of a worldwide collection of 895 barley accessions based on the targeted resequencing of phenology genes. A versatile target‐capture method was used to detect genome‐wide polymorphisms in a panel of 174 flowering time‐related genes, chosen based on prior knowledge from barley, rice and Arabidopsis thaliana. Association studies identified novel polymorphisms that accounted for observed phenotypic variation in phenology and grain yield, and explained improvements in adaptation as a result of historical breeding of Australian barley cultivars. We found that 50% of genetic variants associated with grain yield, and 67% of the plant height variation was also associated with phenology. The precise identification of favourable alleles provides a genomic basis to improve barley yield traits and to enhance adaptation for specific production areas.  相似文献   

19.
20.
The genetic basis of plant tolerance to parasites is poorly understood. We have previously shown that tolerance of Arabidopsis thaliana to its pathogen cucumber mosaic virus is achieved through changes in host life-history traits on infection that result in delaying flowering and reallocating resources from vegetative growth to reproduction. In this system we analyse here genetic determinants of tolerance using a recombinant inbred line family derived from a cross of two accessions with extreme phenotypes. Three major quantitative trait loci for tolerance were identified, which co-located with three flowering repressor genes, FLC, FRI, and HUA2. The role of these genes in tolerance was further examined in genotypes carrying functional or nonfunctional alleles. Functional alleles of FLC together with FRI and/or HUA2 were required for both tolerance and resource reallocation from growth to reproduction. Analyses of FLC alleles from wild accessions that differentially modulate flowering time showed that they ranked differently for their effects on tolerance and flowering. These results pinpoint a role of FLC in A. thaliana tolerance to cucmber mosaic virus, which is a novel major finding, as FLC has not been recognized previously to be involved in plant defence. Although tolerance is associated with a delay in flowering that allows resource reallocation, our results indicate that FLC regulates tolerance and flowering initiation by different mechanisms. Thus, we open a new avenue of research on the interplay between defence and development in plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号