首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Oligosaccharyl transferase (OT) catalyzes the transfer of a lipid-linked oligosaccharide to the nascent polypeptide emerging from the translocon. Currently, there is no structural information on the membrane-embedded OT complex, which consists of eight different polypeptide chains. We report a 12 A resolution cryo-electron microscopy structure of OT from yeast. We mapped the locations of four essential OT subunits through a maltose-binding protein fusion strategy. OT was found to have a large domain in the lumenal side of endoplasmic reticulum where the catalysis occurs. The lumenal domain mainly comprises the catalytic Stt3p, the donor substrate-recognizing Wbp1p, and the acceptor substrate-recognizing Ost1p. A prominent groove was observed between these subunits, and we propose that the nascent polypeptide from the translocon threads through this groove while being scanned by the Ost1p subunit for the presence of the glycosylation sequon.  相似文献   

2.
Yan A  Lennarz WJ 《Glycobiology》2005,15(12):1407-1415
Oligosaccharyl transferase (OT) scans and selectively glycosylates -Asn-X-Thr/Ser-motifs in nascent polypeptide chains in the endoplasmic reticulum (ER). Several groups have reported different results for the composition of this enzyme complex. In this study, using a membrane protein two-hybrid approach, the split-ubiquitin system, we show that except for Ost3p and Ost6p, all of the other subunits of OT exist as dimers or oligomers in the yeast, Saccharomyces cerevisiae. Ost3p and Ost6p behave strikingly similar in a series of genetic and biochemical assays, but clearly do not exist in the same OT complex. This observation, as well as the results in an accompanying study to analyze the composition of OT complex by blue native gel electrophoresis using a series of wild-type and mutant yeast strains strongly suggests that two isoforms of the OT complex exist in the ER, differing only in the presence of Ost3p or Ost6p. Each of these two isoforms of the OT complex specifically interacts with two structurally similar, but functionally different translocon complexes: the Sec61 and the Ssh1 translocon complexes.  相似文献   

3.
At present, there is very limited knowledge about the structural organization of the yeast oligosaccharyl transferase (OT) complex and the function of each of its nine subunits. Because of the failure of the yeast two-hybrid system to reveal interactions between luminal domains of these subunits, we utilized a membrane permeable, thiocleavable cross-linking reagent dithiobis-succinimidyl propionate to biochemically study the interactions of various OT subunits. Four essential gene products, Ost1p, Wbp1p, Swp1p, and Stt3p were shown to be cross-linked to each other in a pairwise fashion. In addition, Ost1p was found to be cross-linked to all other eight OT subunits individually. This led us to propose that Ost1p may reside in the core of the OT complex and could play an important role in its assembly. Ost4p and Ost5p were found to only interact with specific components of the OT complex and may function as an additional anchor for optimal stability of Stt3p and Ost1p in the membrane, respectively. Interestingly, Ost3p and Ost6p subunits exhibited a surprisingly identical pattern of cross-linking to other subunits, which is consistent with their proposed redundant function. Based on these findings, we analyzed the distribution of the lysine residues that are likely to be involved in cross-linking of OT subunits and propose that the OT subunits interact with each other through either their transmembrane domains and/or a region proximal to it, rather than through their luminal or cytoplasmic domains.  相似文献   

4.
Asparagine-linked glycosylation is the most common post-translational modification of proteins catalyzed in eukaryotes by the multiprotein complex oligosaccharyltransferase. Apart from the catalytic Stt3p, the roles of the subunits are ill defined. Here we describe functional investigations of the Ost3/6p components of the yeast enzyme. We developed novel analytical tools to quantify glycosylation site occupancy by enriching glycoproteins bound to the yeast polysaccharide cell wall, tagging glycosylated asparagines using endoglycosidase H glycan release, and detecting peptides and glycopeptides with LC-ESI-MS/MS. We found that the paralogues Ost3p and Ost6p were required for efficient glycosylation of distinct defined glycosylation sites. Our results describe a novel method for relative quantification of glycosylation occupancy in the genetically tractable yeast system and show that eukaryotic oligosaccharyltransferase isoforms have different activities toward protein substrates at the level of individual glycosylation sites.  相似文献   

5.
Following initiation of translocation across the membrane of the endoplasmic reticulum via the translocon, polypeptide chains are N-glycosylated by the oligosaccharyl transferase (OT) enzyme complex. Translocation and N-glycosylation are concurrent events and would be expected to require juxtaposition of the translocon and the OT complex. To determine whether any of the subunits of the OT complex and translocon mediate interactions between the two complexes, we initiated a systematic study in budding yeast using the split-ubiquitin approach. Interestingly, the OT subunit Stt3p was found to interact only with Sec61p, whereas another OT subunit, Ost4p, was found to interact with all three components of the translocon, Sec61p, Sbh1p, and Sss1p. The OT subunit Wbp1p was found to interact very strongly with Sec61p and Sbh1p and weakly with Sss1p. Other OT subunits, Ost1p, Ost2p, and Swp1p were found to interact with Sec61p and either Sbh1p or Sss1p. Ost3p exhibited a weak interaction with Sec61p and Sbh1p, whereas Ost5p and Ost6p interacted very weakly with Sec61p and failed to interact with Sbh1p or Sss1p. We were able to confirm these split-ubiquitin findings by a chemical cross-linking technique. Based on our findings using these two techniques, we conclude that the association of these two complexes is stabilized via multiple protein-protein contacts. Based on extrapolation of the structural parameters of the crystal structure of the prokaryotic Sec complex to the eukaryotic complex, we propose a working model to understand the organization of the translocon-OT supercomplex.  相似文献   

6.
In the yeast, Saccharomyces cerevisiae, oligosaccharyl transferase (OT) is composed of nine different transmembrane proteins. Using a glycosylatable peptide containing a photoprobe, we previously found that only one essential subunit, Ost1p, was specifically labeled by the photoprobe and recently have shown that it does not contain the recognition domain for the glycosylatable sequence Asn-Xaa-Thr/Ser. In this study we utilized additional glycosylatable peptides containing two photoreactive groups and found that these were linked to Stt3p and Ost3p. Stt3p is the most conserved subunit in the OT complex, and therefore 21 block mutants in the lumenal region were prepared. Of the 14 lethal mutant proteins only two, as well as one temperature-sensitive mutant protein, were incorporated into the OT complex. However, using microsomes prepared from these three strains, the labeling of Ost1p was markedly decreased upon photoactivation with the Asn-Bpa-Thr photoprobe. Based on the block mutants single amino acid mutations were prepared and analyzed. From all of these results, we conclude that the sequence from residues 516 to 520, WWDYG in Stt3p, plays a central role in glycosylatable peptide recognition and/or the catalytic glycosylation process.  相似文献   

7.
Spirig U  Bodmer D  Wacker M  Burda P  Aebi M 《Glycobiology》2005,15(12):1396-1406
In the central reaction of N-linked glycosylation, the oligosaccharyltransferase (OTase) complex catalyzes the transfer of a lipid-linked core oligosaccharide onto asparagine residues of nascent polypeptide chains in the lumen of the endoplasmic reticulum (ER). The Saccharomyces cerevisiae OTase has been shown to consist of at least eight subunits. We analyzed this enzyme complex, applying the technique of blue native gel electrophoresis. Using available antibodies, six different subunits were detected in the wild-type (wt) complex, including Stt3p, Ost1p, Wbp1p, Swp1p, Ost3p, and Ost6p. We demonstrate that the small 3.4-kDa subunit Ost4p is required for the incorporation of either Ost3p or Ost6p into the complex, resulting in two, functionally distinct OTase complexes in vivo. Ost3p and Ost6p are not absolutely required for OTase activity, but modulate the affinity of the enzyme toward different protein substrates.  相似文献   

8.
An evolving view of the eukaryotic oligosaccharyltransferase   总被引:1,自引:0,他引:1  
Asparagine-linked glycosylation (ALG) is one of the most common protein modification reactions in eukaryotic cells, as many proteins that are translocated across or integrated into the rough endoplasmic reticulum (RER) carry N-linked oligosaccharides. Although the primary focus of this review will be the structure and function of the eukaryotic oligosaccharyltransferase (OST), key findings provided by the analysis of the archaebacterial and eubacterial OST homologues will be reviewed, particularly those that provide insight into the recognition of donor and acceptor substrates. Selection of the fully assembled donor substrate will be considered in the context of the family of human diseases known as congenital disorders of glycosylation (CDG). The yeast and vertebrate OST are surprisingly complex hetero-oligomeric proteins consisting of seven or eight subunits (Ost1p, Ost2p, Ost3p/Ost6p, Ost4p, Ost5p, Stt3p, Wbp1p, and Swp1p in yeast; ribophorin I, DAD1, N33/IAP, OST4, STT3A/STT3B, Ost48, and ribophorin II in mammals). Recent findings from several laboratories have provided overwhelming evidence that the STT3 subunit is critical for catalytic activity. Here, we will consider the evolution and assembly of the eukaryotic OST in light of recent genomic evidence concerning the subunit composition of the enzyme in diverse eukaryotes.  相似文献   

9.
In yeast, OT consists of nine different subunits, all of which contain one or more predicted transmembrane segments. In yeast, five of these proteins are encoded by essential genes, Swp1p, Wbp1p, Ost2p, Ost1p and Stt3p. Four others are not essential Ost3p, Ost4p, Ost5p, Ost6p. All yeast OT subunits have been cloned and sequenced (Kelleher et al., 1992; 2003; Kelleher & Gilmore, 1997; Kumar et al., 1994; 1995; Breuer & Bause, 1995) and the structure of one of them, Ost4p, has been solved by NMR (Zubkov et al., 2004). Very recently, the preliminary crystal structure of the lumenal domain of an archaeal Stt3p homolog has been reported (Mayumi et al., 2007). Homologs of all OT subunits have been identified in higher eukaryotic organisms (Kelleher et al., 1992; 2003; Kumar et al., 1994; Kelleher & Gilmore, 1997).  相似文献   

10.
Kumar A  Ward P  Katre UV  Mohanty S 《Biopolymers》2012,97(7):499-507
Asparagine-linked glycosylation is an essential and highly conserved protein modification reaction. In eukaryotes, oligosaccharyl transferase (OT), a multi-subunit membrane-associated enzyme complex, catalyzes this reaction in newly synthesized proteins. In Saccharomyces cerevisiae, OT consists of nine nonidentical membrane proteins. Ost4p, the smallest subunit, bridges the catalytic subunit Stt3p with Ost3p. Mutation of transmembrane residues 18-24 in Ost4p has negative effect on OT activity, disrupts the Stt3p-Ost4p-Ost3p complex, results in temperature-sensitive phenotype, and hypoglycosylation. Heterologous expression and purification of integral membrane proteins are the bottleneck in membrane protein research. The authors report the cloning, successful overexpression and purification of recombinant Ost4p with a novel but simple method producing milligram quantities of pure protein. GB1 protein was found to be the most suitable tag for the large scale production of Ost4p. The cleavage of Ost4p conveniently leaves GB1 protein in solution eliminating further purification. The precipitated pure Ost4p is reconstituted in appropriate membrane mimetic. The recombinant protein is highly helical as indicated by the far-UV CD spectrum. The well-dispersed heteronuclear single quantum coherence spectrum indicates that this minimembrane protein is well-folded. The successful production of pure recombinant Ost4p with a novel yet simple method may have important ramification for the production of other membrane proteins.  相似文献   

11.
Asparagine-linked glycosylation is a common and vital co- and post-translocational modification of diverse secretory and membrane proteins in eukaryotes that is catalyzed by the multiprotein complex oligosaccharyltransferase (OTase). Two isoforms of OTase are present in Saccharomyces cerevisiae, defined by the presence of either of the homologous proteins Ost3p or Ost6p, which possess different protein substrate specificities at the level of individual glycosylation sites. Here we present in vitro characterization of the polypeptide binding activity of these two subunits of the yeast enzyme, and show that the peptide-binding grooves in these proteins can transiently bind stretches of polypeptide with amino acid characteristics complementary to the characteristics of the grooves. We show that Ost6p, which has a peptide-binding groove with a strongly hydrophobic base lined by neutral and basic residues, binds peptides enriched in hydrophobic and acidic amino acids. Further, by introducing basic residues in place of the wild type neutral residues lining the peptide-binding groove of Ost3p, we engineer binding of a hydrophobic and acidic peptide. Our data supports a model of Ost3/6p function in which they transiently bind stretches of nascent polypeptide substrate to inhibit protein folding, thereby increasing glycosylation efficiency at nearby asparagine residues.  相似文献   

12.
Li G  Yan Q  Oen HO  Lennarz WJ 《Biochemistry》2003,42(37):11032-11039
Wbp1p, a type I transmembrane protein, is an essential component of oligosaccharyl transferase (OT), which consists of nine different subunits in yeast. It has been proposed that three subunits, Wbp1p, Ost2p, and Swp1p, physically interact with each other, but the mechanism of these interactions is unknown. To explore the mode of interaction, we have focused on the single-transmembrane protein, Wbp1p, and made several deletions and mutations within the short cytosolic domain and the transmembrane domain. Our results show that the deletion of the cytosolic domain has no effect on cell growth, but mutation of all 17 amino acids in the transmembrane domain to 17 Leu residues or replacement of the transmembrane and cytosolic domains with the counterparts of Ost1p results in lethality. Immunoprecipitation experiments show that Wbp1p mutated in these two ways is not incorporated into the OT complex. This finding suggests that the transmembrane domain of Wbplp may mediate its association with the other subunits. A series of mutations of the transmembrane domain have revealed that block alterations in the half of the transmembrane domain facing the lumen of the endoplasmic reticulum (ER) impaired cell viability. Seven single-Lys mutants in the same domain were temperature sensitive for growth at 37 degrees C. In contrast, block mutations in the other half of the transmembrane domain facing the cytosol did not result in lethality and indicated that this portion of the transmembrane domain was not involved in stable incorporation of Wbp1p into the OT complex.  相似文献   

13.
Park H  Lennarz WJ 《Glycobiology》2000,10(7):737-744
Oligosaccharyltransferase (OT) in Saccharomyces cerevisiae is an enzyme complex consisting of 8 transmembrane proteins located in the endoplasmic reticulum (ER). Studies on potential protein-protein interactions in OT using a two-hybrid library screen revealed that protein kinase C (Pkc1p) interacted with the lumenal domains of several OT subunits. Additional genetic experiments revealed that overexpression of two OT subunits rescued the growth defect caused by overexpression of a Pkc1 active site mutant, implying that there are specific genetic interactions between PKC1 and OT. These in vivo findings were complemented by in vitro studies that showed that several of the OT subunits bound to a fusion protein consisting of glutathione S-transferase linked via its C-terminus to Pkc1p. Assays of OT activity, in which glycosylation of a simple acceptor peptide was assayed in microsomes from wild-type and a pkc1 null revealed a 50% reduction in activity in the microsomes from the null strain. In contrast, strains containing null mutations of two other genes known to be downstream of Pkc1p in the PKC1-MAP kinase pathway had a level of OT activity comparable to that of wild-type cells. These in vivo and in vitro experiments suggest that in yeast cells Pkc1p may be involved in regulation of the N-glycosylation of proteins.  相似文献   

14.
Oligosaccharyl transferase (OT) catalyzes the first committed step in N-linked protein glycosylation, a co-translational process that occurs in the lumen of the endoplasmic reticulum. The yeast Saccharomyces cerevisiae enzyme complex comprises nine integral membrane proteins, five of which are essential for catalysis. Due to the challenges with purifying the active enzyme complex for detailed biophysical studies, a systematic study to express, isolate, and characterize the soluble domains of three of the largest subunits in the complex (Nlt1p, Wbp1p, and Swp1p) is reported. The proteins are expressed using the lytic baculovirus expression system and the new constructs are well behaved, monomeric in solution, and glycosylated. Two of the proteins interact with each other as seen by gel filtration and circular dichroism. This study provides a framework to study the roles of these three essential subunits of the eukaryotic OT complex.  相似文献   

15.
Oligosaccharyltransferase (OST) is an integral membrane protein that catalyzes N-linked glycosylation of nascent proteins in the lumen of the endoplasmic reticulum. Although the yeast OST is an octamer assembled from nonhomologous subunits (Ost1p, Ost2p, Ost3p/Ost6p, Ost4p, Ost5p, Wbp1p, Swp1p, and Stt3p), the composition of the vertebrate OST was less well defined. The roles of specific OST subunits remained enigmatic. Here we show that genomes of most multicellular eukaryotes encode two homologs of Stt3p and mammals express two homologs of Ost3p. The Stt3p and Ost3p homologs are assembled together with the previously described mammalian OST subunits (ribophorins I and II, OST48, and DAD1) into complexes that differ significantly in enzymatic activity. Tissue and cell type-specific differences in expression of the Stt3p homologs suggest that the enzymatic properties of oligosaccharyltransferase are regulated in eukaryotes to respond to alterations in glycoprotein flux through the secretory pathway and may contribute to tissue-specific glycan heterogeneity.  相似文献   

16.
Oligosaccharyltransferase catalyzes the transfer of a preassembled high mannose oligosaccharide from a dolichol-oligosaccharide donor to consensus glycosylation acceptor sites in newly synthesized proteins in the lumen of the rough endoplasmic reticulum. The Saccharomyces cerevisiae oligosaccharyltransferase is an oligomeric complex composed of six non-identical subunits (alpha-zeta). The alpha, beta, gamma, and delta subunits of the oligosaccharyltransferase are encoded by the OST1, WBP1, OST3, and SWP1 genes, respectively. Here we describe the functional characterization of the OST2 gene that encodes the epsilon- subunit of the oligosaccharyltransferase. Genomic disruption of the OST2 locus was lethal in haploid yeast showing that expression of the Ost2 protein is essential for viability. Overexpression of the Ost2 protein suppresses the temperature-sensitive phenotype of the wbp1-2 allele and increases in vivo and in vitro oligosaccharyltransferase activity in a wbp1-2 strain. An analysis of a series of conditional ost2 mutants demonstrated that defects in the Ost2 protein cause pleiotropic underglycosylation of soluble and membrane-bound glycoproteins. Microsomal membranes isolated from ost2 mutant yeast show marked reductions in the in vitro transfer of high mannose oligosaccharide from exogenous lipid-linked oligosaccharide to a glycosylation site acceptor tripeptide. Surprisingly, the Ost2 protein was found to be 40% identical to the DAD1 protein (defender against apoptotic cell death), a highly conserved protein initially identified in vertebrate organisms. The protein sequence of ost2 mutant alleles revealed mutations at highly conserved residues in the Ost2p/DAD1 protein sequence.  相似文献   

17.
Schwarz M  Knauer R  Lehle L 《FEBS letters》2005,579(29):6564-6568
The key step of N-glycosylation of proteins in the endoplasmic reticulum is catalyzed by the hetero-oligomeric protein complex oligosaccharyltransferase (OST). It transfers the lipid-linked core-oligosaccharide to selected Asn-X-Ser/Thr-sequences of nascent polypeptide chains. Biochemical and genetic approaches have revealed that OST from Saccharomyces cerevisiae consists of nine subunits: Wbp1p, Swp1p, Stt3p, Ost1p, Ost2p, Ost4p, Ost5p, Ostp3 and Ost6p. By blue native polyacrylamide electrophoresis we show that yeast OST consists of two isoforms with distinct functions differing only in the presence of the two related Ost3 and Ost6p proteins. The OST6-complex was found to be important for cell wall integrity and temperature stress. Ost3p and Ost6p are not essential for OST activity, and can in part displace each other in the complex when overexpressed, suggesting a dynamic regulation of the complex formation.  相似文献   

18.
Oligosaccharyltransferase is a multiprotein complex that catalyzes asparagine-linked glycosylation of diverse proteins. Using yeast genetics and glycoproteomics, we found that transient interactions between nascent polypeptide and Ost3p/Ost6p, homologous subunits of oligosaccharyltransferase, were able to modulate glycosylation efficiency in a site-specific manner in vivo. These interactions were driven by hydrophobic and electrostatic complementarity between amino acids in the peptide-binding groove of Ost3p/Ost6p and the sequestered stretch of substrate polypeptide. Based on this dependence, we used in vivo scanning mutagenesis and in vitro biochemistry to map the precise interactions that affect site-specific glycosylation efficiency. We conclude that transient binding of substrate polypeptide by Ost3p/Ost6p increases glycosylation efficiency at asparagines proximal and C-terminal to sequestered sequences. We detail a novel mode of interaction between translocating nascent polypeptide and oligosaccharyltransferase in which binding to Ost3p/Ost6p segregates a short flexible loop of glycosylation-competent polypeptide substrate that is delivered to the oligosaccharyltransferase active site for efficient modification.Asparagine (N)-linked glycosylation is an essential post-translational modification of secretory and membrane proteins in eukaryota and also occurs in archaea and some bacteria (1). Oligosaccharyltransferase (OTase)1 is an integral membrane protein that catalyzes N-glycosylation of nascent polypeptides in the lumen of the endoplasmic reticulum (ER) (2). Eukaryotic OTase is physically associated with the translocon (3) and transfers oligosaccharide from a dolichol-pyrophosphate carrier onto asparagine side-chains of substrate polypeptides (2). The efficiency of glycosylation of asparagine residues is dramatically increased if they are present in glycosylation “sequons” (N-x-T/S; x ≠ P), the peptide recognition motifs of the catalytic site of OTase (4). After the transfer of glycan to protein, the presence of N-glycosylation assists efficient glycoprotein folding in the ER intrinsically and by locally recruiting the disulfide isomerase ERp57 through the lectins calnexin and calreticulin (5). Correctly folded glycoproteins are free to traffic through the Golgi, where further modification and extension of glycan structures can occur (6). The precise glycan structures present on mature glycoproteins are often vital for their biological functions, including those involved in immune response, embryonic development, and cancer (68).OTase in Baker''s yeast, Saccharomyces cerevisiae, is a multiprotein complex consisting of eight subunits (2). The catalytic site is located in Stt3p, and other protein subunits whose functions have been investigated are required for the integrity of the complex and for regulation of substrate specificity. It has been proposed that the requirement of Ost1p (human ribophorin I) for efficient glycosylation of a subset of integral membrane proteins (9) is due to direct physical association (10) to retain potential substrates in close proximity to Stt3p (11). The details and mechanisms of this association are not known. Ost3p and Ost6p are homologous proteins, and the incorporation of either into OTase defines two isoforms of the enzyme with distinct protein substrate specificities (Fig. 1) (1214). Efficient glycosylation of some asparagine residues requires Ost3p-OTase, whereas others require Ost6p-OTase (15). A model of Ost3p/Ost6p function in N-glycosylation site selection has been proposed (16) in which the ER-lumenal peptide-binding grooves transiently tether nascent polypeptide non-covalently or through mixed disulfides, inhibiting local protein folding and increasing the efficiency of glycosylation of nearby asparagine residues. Aspects of this model, including mixed-disulfide formation (17) and non-covalent peptide binding (18), have been tested in vitro. Although it has been established that Ost3p-OTase and Ost6p-OTase have different polypeptide substrate preferences in vivo (1215, 19), the physiological relevance and details of any interactions between Ost3p/Ost6p and substrate polypeptide are unclear.Open in a separate windowFig. 1.Overview of experimental manipulation of yeast OTase isoforms. A, OTase in wild-type yeast has eight subunits, with two isoforms defined by incorporation of either of the homologous Ost3p or Ost6p subunits. Yeast with only (B) Ost3p-OTase or (C) Ost6p-OTase was constructed via genomic deletion of OST3 and OST6 with overexpression of either Ost3p or Ost6p. D, yeast with a single variant OTase isoform was constructed through overexpression of variant Ost3p or Ost6p, for example, Ost3Q103K,Q106K.Here, we used in vivo yeast genetics, glycoproteomics, and in vitro biochemistry to identify the precise sites of interaction between Ost3p/Ost6p and substrate polypeptides that affect the efficiency of N-glycosylation at diverse asparagines. Based on these data, we present a model in which transient binding of nascent polypeptide by Ost3p/Ost6p isolates newly translocating polypeptide from pre-translocated polypeptide, resulting in the formation of a short flexible loop of glycosylation-competent polypeptide substrate in close proximity to the active site of OTase for efficient modification.  相似文献   

19.
Oligosaccharyltransferase mediates the transfer of a preassembled high mannose oligosaccharide from a lipid-linked oligosaccharide donor to consensus glycosylation acceptor sites in newly synthesized proteins in the lumen of the rough endoplasmic reticulum. The Saccharomyces cerevisiae oligosaccharyltransferase is an oligomeric complex composed of six nonidentical subunits (alpha-zeta), two of which are glycoproteins (alpha and beta). The beta and delta subunits of the oligosaccharyltransferase are encoded by the WBP1 and SWP1 genes. Here we describe the functional characterization of the OST1 gene that encodes the alpha subunit of the oligosaccharyltransferase. Protein sequence analysis revealed a significant sequence identity between the Saccharomyces cerevisiae Ost1 protein and ribophorin I, a previously identified subunit of the mammalian oligosaccharyltransferase. A disruption of the OST1 locus was not tolerated in haploid yeast showing that expression of the Ost1 protein is essential for vegetative growth of yeast. An analysis of a series of conditional ost1 mutants demonstrated that defects in the Ost1 protein cause pleiotropic underglycosylation of soluble and membrane-bound glycoproteins at both the permissive and restrictive growth temperatures. Microsomal membranes isolated from ost1 mutant yeast showed marked reductions in the in vitro transfer of high mannose oligosaccharide from exogenous lipid-linked oligosaccharide to a glycosylation site acceptor tripeptide. Microsomal membranes isolated from the ost1 mutants contained elevated amounts of the Kar2 stress-response protein.  相似文献   

20.
Rot1 is an essential yeast protein originally shown to be implicated in such diverse processes such as β-1,6-glucan synthesis, actin cytoskeleton dynamics or lysis of autophagic bodies. More recently also a role as a molecular chaperone has been discovered. Here, we report that Rot1 interacts in a synthetic manner with Ost3, one of the nine subunits of the oligosaccharyltransferase (OST) complex, the key enzyme of N-glycosylation. The deletion of OST3 in the rot1-1 mutant causes a temperature sensitive phenotype as well as sensitivity toward compounds interfering with cell wall biogenesis such as Calcofluor White, caffeine, Congo Red and hygromycin B, whereas the deletion of OST6, a functional homolog of OST3, has no effect. OST activity in vitro determined in membranes from rot1-1ost3Δ cells was found to be decreased to 45% compared with wild-type membranes, and model glycoproteins of N-glycosylation, like carboxypeptidase Y, Gas1 or dipeptidyl aminopeptidase B, displayed an underglycosylation pattern. By affinity chromatography, a physical interaction between Rot1 and Ost3 was demonstrated. Moreover, Rot1 was found to be involved also in the O-mannosylation process, as the glycosylation of distinct glycoproteins of this type were affected as well. Altogether, the data extend the role of Rot1 as a chaperone required to ensure proper glycosylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号