首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We examined the effect of urokinase (uPA) and its fragments on vascular smooth muscle cell contraction. Single-chain uPA inhibits phenylepherine (PE) -induced contraction of rat aortic rings, whereas two-chain uPA exerts the opposite effect. Two independent epitopes mediating these opposing activities were identified. A6, a capped peptide corresponding to amino acids 136-143 (KPSSPPEE) of uPA, increased the EC(50) of PE-induced vascular contraction sevenfold by inhibiting the release of calcium from intracellular stores. A6 activity was abolished by deleting the carboxyl-terminal Glu or by mutating the Ser corresponding to position 138 in uPA to Glu. A single-chain uPA variant lacking amino acids 136-143 did not induce vasorelaxation. A second epitope within the kringle of uPA potentiated PE-induced vasoconstriction. This epitope was exposed when single-chain uPA was converted to a two-chain molecule by plasmin. The isolated uPA kringle augmented vasoconstriction, whereas uPA variant lacking the kringle had no procontractile activity. These studies reveal previously undescribed vasoactive domains within urokinase and its naturally derived fragments.  相似文献   

2.
Vascular smooth muscle cell(VSMC) proliferation and migration are pivotal for the pathogenesis of atherosclerosis and post-angioplasty restenosis. We have recently reported that a disintegrin and metalloproteinase with thrombospondin motifs-7(ADAMTS-7), a novel metalloproteinase, contributes directly to neointima formation by mediating VSMC migration. However, whether ADAMTS-7 affects VSMC proliferation remains unclear. In this study, we found that luminal adenoviral delivery of ADAMTS-7 aggravated intimal hyperplasia 7 d after injury, paralleled by an increased percentage of PCNA-positive cells in both intima and media. In contrast, perivascular administration of ADAMTS-7 si RNA, but not scrambled si RNA to injured arteries attenuated intimal thickening at day 7, paralleled with reduced intimal VSMC replication, without alteration of VSMC proliferation in the media. In accordance, [3H]-thymidine incorporation assay in primary cultured rat VSMCs revealed an enhanced replication rate(by 61%) upon ADAMTS-7 overexpression and retarded proliferation(by 23%) upon ADAMTS-7 si RNA administration. Our data demonstrates that ADAMTS-7 promotes VSMC proliferation both in vitro and in vivo. ADAMTS-7 may therefore serve as a novel therapeutic target for atherosclerosis and post-angioplasty restenosis.  相似文献   

3.
4.
Hedgehog (Hh) signaling has recently been shown to be both responsive to mechanical loading in vitro and to control vascular development in vivo. We investigated the role of cyclic strain and pulsatile flow in modulating Hh signaling and growth of adult rat vascular smooth muscle cells (SMC) in culture. Exposure of SMC to defined equibiaxial cyclic strain (0% and 10% stretch, 60 cycles/min, for 24 h) significantly decreased sonic hedgehog (Shh) and patched 1 (Ptc1) expression while concurrently inhibiting Gli2-dependent promoter activity and mRNA expression, respectively. Cyclic strain significantly decreased SMC proliferation (cell counts and proliferating cell nuclear antigen expression) concomitant with a marked increase in SMC apoptosis (fluorescence-activated cell sorter analysis, acridine orange staining of apoptotic nuclei and Bax/Bcl-xL ratio). These strain-induced changes in proliferation and apoptosis were significantly attenuated following addition of either recombinant Shh (3.5 µg/ml) or overexpression of the Notch 3 intracellular domain (Notch IC). Further studies using a perfused transcapillary culture system demonstrated a significant decrease in Hh signaling in SMC following exposure of cells to increased pulsatile flow concomitant with a decrease in proliferation and an increase in apoptosis. Finally, the pulsatile flow-induced decreases in Hh signaling were validated in vivo following flow-induced rat carotid arterial remodeling after 28 days. These data suggest that Hh expression is diminished by biomechanical stimulation in vitro and in vivo and thus may play a fundamental role in arterial remodeling and atherogenesis in vivo. cyclic strain; apoptosis; proliferation  相似文献   

5.
BACKGROUND: Gene transfer into vascular smooth muscle cells (vsmcs) holds promise for studying the pathogenesis of arterial disorders. However, a potential limitation of vectors with heterologous promoters is organ toxicity resulting from unrestricted transgene expression. Vascular smooth muscle cell-specific gene expression could increase the safety of vectors for vascular diseases. MATERIALS AND METHODS: To develop vectors that target gene expression to vsmcs, we constructed vectors encoding human placental alkaline phosphatase (hpAP) and chloramphenicol transferase (CAT) driven by a 441-bp region of the murine SM22alpha promoter (AdSM22alpha-hpAP). RESULTS: Transfection of AdSM22alpha-hpAP into vascular and nonvascular cells resulted in the expression of alkaline phosphatase (AP) in primary arterial and venous smcs, but not in primary endothelial cells or National Institutes of Health (NIH) 3T3 cells. Expression of AP was observed on 32.5 +/- 1.4% of primary pig vsmcs-infected AdSM22alpha-hpAP at a multiplicity of infection (MOI) of 500; whereas, infection with AdCMV-hpAP resulted in 100 +/- 0.0% expression at a MOI of 250. In vitro, expression from the heterologous cytomegalovirus (CMV) promoter was approximately 10(3)-fold higher in vsmcs, compared with the SM22alpha promoter. Following introduction of AdSM22alpha-hpAP vectors into balloon-injured pig arteries, AP recombinant protein was detected in neointimal (2.23 +/- 1.14%) and medial (0.56 +/- 0.21%) smcs, but not in endothelial or adventitial cells. In contrast, AdCMV-hpAP vectors led to AP expression in intimal endothelial and smcs cells (39.14 +/- 10.09%) and medial smcs (2.84 +/- 1.05%). AP expression was not observed in endothelial or vsmcs following transfection with the control vector, adenoviral vector lacking E1 (AddeltaE1). CONCLUSIONS: The SM22alpha promoter programs recombinant gene expression exclusively to vascular smcs in vitro and in vivo. Although expression levels are lower than with heterologous promoters, these vectors may provide a safe and effective tool for gene therapy of vascular diseases.  相似文献   

6.
To dissect the effect of hyperinsulinemia versus hyperglycemia on TNF-related apoptosis inducing ligand (TRAIL) expression in the macrovascular district, we measured TRAIL mRNA and protein in four groups of animals: streptozotocin (SZT)-induced diabetic rats, vehicle-treated control animals, diabetic rats treated with insulin and non-diabetic rats treated with insulin. While the aortas of diabetic rats did not show significant differences in TRAIL expression with respect to vehicle-treated control animals, the aortas of both diabetic and non-diabetic rats treated in vivo for 16 days with insulin showed a significant decrease in TRAIL expression with respect to either diabetic and control rats. Moreover, in vitro treatment of both rat and human vascular smooth muscle cells (VSMC) with insulin induced the down-regulation of TRAIL protein. While the addition of recombinant TRAIL to rat VSMC promoted the dose-dependent release of bioactive nitric oxide (NO), this effect was significantly counteracted by pre-exposure of VSMC to insulin. These findings suggest that TRAIL might act as an endogenous regulator of the vascular tone and that chronic elevation of insulin might contribute to the vascular abnormalities characterizing type-2 diabetes mellitus by down-regulating TRAIL expression and activity.  相似文献   

7.
Vascular smooth muscle cells (VSMCs) are important targets in the treatment of atherosclerosis. However, the arterial media, where the majority of VSMCs reside, have proven to be a difficult target for drug/gene delivery. We have demonstrated that ultrasound enhances drug/gene delivery to VSMCs in vitro by using echogenic immunoliposomes (ELIPs) as the vector. This study aimed to evaluate whether ultrasound can similarly enhance the delivery of an agent to VSMCs, particularly within the arterial media, in vivo, using ELIP. Anti–smooth-muscle cell actin-conjugated calcein-loaded ELIP were injected into the peripheral arteries of Yucatan miniswine (n?=?8 arterial pairs). The right-sided porcine arteries were treated with 1-MHz continuous-wave ultrasound at a peak-to-peak pressure amplitude of 0.23?±?0.05?MPa for 2 minutes. The contralateral arteries served as controls. Arteries were harvested after 30 minutes and imaged with fluorescence microscopy. Image data were converted to grayscale and analyzed by using computer-assisted videodensitometry. There was significant improvement in calcein uptake in all three arterial layers in the arteries exposed to ultrasound (>?300%). This enhanced uptake was site specific and appeared limited to the ultrasound-treated arterial segment. We have demonstrated enhanced delivery of a small molecule to VSMCs in all arterial wall layers, particularly the arterial media, using ultrasound and targeted ELIP. The combined effect of ultrasound exposure and ELIP as a contrast agent and a drug/gene-bearing vector has the potential for site-specific therapy directed at VSMC function.  相似文献   

8.
Vitronectin, a multifunctional glycoprotein present in the plasma and interstitial tissues, has recently been found to be localized in atherosclerotic lesions. In this study we examined the effects of vitronectin on the migration of cultured bovine aortic smooth muscle cells using a modified Boyden chamber assay. The cells migrated to fluid-phase vitronectin in a concentration-dependent fashion. The cells also migrated to membrane filter surfaces precoated with vitronectin for a few minutes in the absence of additional vitronectin in the fluid phase, suggesting that this substance binds easily to the filters and stimulates cell migration by haptotaxis under the conditions described. These observations suggest that vitronectin deposited in the intima may be involved in the pathogenesis of atherosclerosis by recruiting smooth muscle cells from the media into the intima.  相似文献   

9.
The anti-inflammatory cytokine IL-10 inhibits intimal hyperplasia after stent implantation via a powerful inactivation of monocytes. We tested the hypothesis that IL-10 may also inhibit vascular smooth muscle cell (SMC) activation via the inhibition of the NF-kappaB/I-kappaB system. The IL-10 receptor was detected in rat SMCs in vitro and in vivo. In LPS-stimulated rat SMCs, 1 ng/ml recombinant murine IL-10 (mIL-10) reduced I-kappaBalpha and I-kappaBbeta degradation, NF-kappaB activation, as well as the expression of the NF-kappaB-dependent gene IL-6 by 32%, 31%, 75%, and 19%, respectively (P < 0.05 for all). Similar results were obtained in vivo 6 h and 4 days after balloon abrasion of the rat aorta, a model in which intimal hyperplasia results essentially from SMC activation. Moreover, mIL-10 reduced SMC proliferation and migration in vitro (by 60% for both, P < 0.0001), resulting in reduced SMC proliferation and intimal growth 14 days after balloon abrasion of the rat aorta (by 76% and 75%, respectively; P < 0.005). In conclusion, mIL-10 has a direct inhibitory effect on SMCs in vitro and in vivo. This effect is mediated in part by NF-kappaB inactivation and may participate in the overall protective effect of IL-10 on postangioplasty restenosis.  相似文献   

10.
Bladder cancer is one of the most common tumors of the genitourinary tract. Here, we use phage display to identify a peptide that targets bladder tumor cells. A phage library containing random peptides was screened for binding to cells from human bladder tumor xenografts. Phage clones were further selected for binding to a bladder tumor cell line in culture. Six clones displaying the consensus sequence CXNXDXR(X)/(R)C showed selective binding to cells from primary human bladder cancer tissue. Of these, the CSNRDARRC sequence was selected for further study as a synthetic peptide. Fluorescein-conjugated CSNRDARRC peptide selectively bound to frozen sections of human bladder tumor tissue, whereas only negligible binding to normal bladder tissue was observed. When the fluorescent peptide was introduced into the bladder lumen, in a carcinogen-induced rat tumor model, it selectively bound to tumor epithelium. Moreover, when the peptide was intravenously injected into the tail vein, it homed to the bladder tumor but was not detectable in normal bladder and control organs. Next, we examined whether the peptide can detect tumor cells in urine. The fluorescent peptide bound to cultured bladder tumor cells but not to other types of tumor cell lines. Moreover, it bound to urinary cells of patients with bladder cancer, while showing little binding to urinary cells of patients with inflammation or healthy individuals. The CSNRDARRC peptide may be useful as a targeting moiety for selective delivery of therapeutics and as a diagnostic probe for the detection of bladder cancer.  相似文献   

11.
Combinatorial discovery of tumor targeting peptides using phage display   总被引:9,自引:0,他引:9  
Peptides possess appropriate pharmacokinetic properties to serve as cancer imaging or therapeutic targeting agents. Currently, only a small number of rationally-derived, labeled peptide analogues that target only a limited subset of antigens are available. Thus, finding new cancer targeting peptides is a central goal in the field of molecular targeting. Novel tumor-avid peptides can be efficiently identified via affinity selections using complex random peptide libraries containing millions of peptides that are displayed on bacteriophage. In vitro and in situ affinity selections may be used to identify peptides with high affinity for the target antigen in vitro. Unfortunately, it has been found that peptides selected in vitro or in situ may not effectively target tumors in vivo due to poor peptide stability and other problems. To improve in vivo targeting, methodological combinatorial chemistry innovations allow selections to be conducted in the environment of the whole animal. Thus, new targeting peptides with optimal in vivo properties can be selected in vivo in tumor-bearing animals. In vivo selections have been proven successful in identifying peptides that target the vasculature of specific organs. In addition, in vivo selections have identified peptides that bind specifically to the surface of or are internalized into tumor cells. In the future, direct selection of peptides for cancer imaging may be expedited using genetically engineered bacteriophage libraries that encode peptides with intrinsic radiometal-chelation or fluorescent sequences.  相似文献   

12.
Wu SY  Zhang BH  Pan CS  Jiang HF  Pang YZ  Tang CS  Qi YF 《Peptides》2003,24(8):1149-1156
We observed changes of endothelin content and endothelin mRNA in vivo in vascular calcification and in vitro in calcification of vascular smooth muscle cells to explore the role of endothelin in vascular calcification. Calcification model in vivo was induced by administration of Vitamin D(3) plus nicotine. Calcification of vascular smooth muscle cells (VSMCs) was induced by beta-glycerophosphate. Endothelin content was measured by using radioimmunoassay. Endothelin mRNA amount was determined by using competitive quantitative RT-PCR. The results showed that calcium content, 45Ca(2+) uptake and alkaline phosphatase (ALP) activity were increased in calcified VSMCs, compared with controls, but were decreased, compared with calcified VSMCs plus BQ123 group. The endothelin content in the medium and endothelin mRNA in VSMCs were elevated by 35 and 120% (P<0.05), respectively, compared with those normal VSMCs. Calcium content, 45Ca(2+) accumulation and ALP activity in calcified arteries increased by 5.0-, 1.4-, and 1.4-fold. The endothelin levels in plasma and aorta as well as the amount of endothelin mRNA in calcified aorta were increased by 102, 103, and 22%, respectively, compared with control group. However, calcium content, 45Ca(2+) uptake and ALP activity in VDN plus bosentan group was 33, 36.7, and 40.4% lower than those in VDN group. These results indicated an upregulated endothelin gene expression as well as an increased production of endothelin in calcified aorta and VSMCs with BQ123 and bosentan significantly reducing vascular calcification. This suggested that endothelin might be involved in pathogenesis of vascular calcification.  相似文献   

13.
Borrelia burgdorferi, the agent of Lyme disease, disseminates from the site of deposition by Ixodes ticks to cause systemic infection. Dissemination occurs through the circulation and through tissue matrices, but the B. burgdorferi molecules that mediate interactions with the endothelium in vivo have not yet been identified. In vivo selection of filamentous phage expressing B. burgdorferi protein fragments on the phage surface identified several new candidate adhesins, and verified the activity of one adhesin that had been previously characterized in vitro. P66, a B. burgdorferi ligand for beta(3)-chain integrins, OspC, a protein that is essential for the establishment of infection in mammals, and Vls, a protein that undergoes antigenic variation in the mammal, were all selected for binding to the murine endothelium in vivo. Additional B. burgdorferi proteins for which no functions have been identified, including all four members of the OspF family and BmpD, were identified as candidate adhesins. The use of in vivo phage display is one approach to the identification of adhesins in pathogenic bacteria that are not easily grown in the laboratory, or for which genetic manipulations are not straightforward.  相似文献   

14.
Accumulation of beta amyloid (Abeta) in the brain is central to the pathogenesis of Alzheimer's disease. Abeta can bind to membrane lipids and this binding may have detrimental effects on cell function. In this study, surface plasmon resonance technology was used to study Abeta binding to membranes. Abeta peptides bound to synthetic lipid mixtures and to an intact plasma membrane preparation isolated from vascular smooth muscle cells. Abeta peptides were also toxic to vascular smooth muscle cells. There was a good correlation between the toxic effect of Abeta peptides and their membrane binding. 'Ageing' the Abeta peptides by incubation for 5 days increased the proportion of oligomeric species, and also increased toxicity and the amount of binding to lipids. The toxicities of various Abeta analogs correlated with their lipid binding. Significantly, binding was influenced by the concentration of cholesterol in the lipid mixture. Reduction of cholesterol in vascular smooth muscle cells not only reduced the binding of Abeta to purified plasma membrane preparations but also reduced Abeta toxicity. The results support the view that Abeta toxicity is a direct consequence of binding to lipids in the membrane. Reduction of membrane cholesterol using cholesterol-lowering drugs may be of therapeutic benefit because it reduces Abeta-membrane binding.  相似文献   

15.
A system is described which uses microcarrier culture techniques for the co-cultivation of different cell types without direct contact between cell populations. In co-cultivation, arterial endothelial cells induced proliferation in > 90% of quiescent homologous arterial smooth muscle cells in the absence of serum-derived growth factors. The microcarrier coculture system allows investigation of potent local humoral interactions between vascular cells in vitro.  相似文献   

16.
The vascular endothelium expresses differential receptors depending on the functional state and tissue localization of its cells. A method to characterize this receptor heterogeneity with phage display random peptide libraries has been developed. Using this technology, several peptide ligands have been isolated that home to tissue-specific endothelial cell receptors following intravenous administration. Such peptide ligands, or antibodies directed against specific vascular receptors, can be used to target therapeutic compounds or imaging agents to endothelial cells in vitro and in vivo. Recent advances in the field include identification of novel endothelial receptors expressed differentially in normal and pathological conditions and the isolation of peptides or antibody ligands to such receptors in in vitro assays, in animal models and in a human patient. These milestones, which extend the 'functional map' of the vasculature, should lead to clinical applications in diseases such as cancer and other conditions that exhibit distinct vascular characteristics.  相似文献   

17.
S-adenosylmethionine is a metabolite regulating many biological processes; S-adenosylmethionine effect on ubiquitin-proteasome system (UPS) has not been studied yet. We investigated S-adenosylmethionine effects on UPS activity both in vitro, by inhibitor screening assay, and in rat vascular smooth muscle cells, by Western Blot of proteasomal targets. We found that S-adenosylmethionine inhibited UPS activity.  相似文献   

18.
Norepinephrine directly induces growth of the vascular wall, which may involve not only proliferation of smooth muscle cells (SMCs) and adventitial fibroblasts (AFBs) but also augmentation of their migration. To test this hypothesis, growth-arrested SMCs and AFBs from rat aorta were exposed to norepinephrine. Norepinephrine caused dose-dependent migration of both cell types that was dependent on chemotaxis. In contrast, platelet-derived growth factor (PDGF)-BB, used as a positive control, stimulated both chemotaxis and chemokinesis. Only alpha(1D)-adrenoceptors (AR) and alpha(2)-AR antagonists inhibited norepinephrine migration of SMCs, whereas norepinephrine migration of AFBs was only inhibited by alpha(1A)-AR and alpha(1B)-AR antagonists; beta-AR blockade was without effect. Norepinephrine and PDGF-BB were additive for AFB, but not SMC, migration. Stimulation of migration was reversed at high norepinephrine concentrations (10 microM); this inhibition was mediated by alpha(2)- and beta-ARs in AFBs but not in SMCs. Thus norepinephrine induces migration of SMCs and AFBs via different alpha-ARs. This action may participate in wall remodeling and norepinephrine potentiation of injury-induced intimal lesion growth.  相似文献   

19.
20.
Vascular smooth muscle cell (SMC) apoptosis contributes to physiological and pathological vascular remodeling. Autocrine fibroblast growth factor (FGF) signaling promotes survival in SMC in vitro. Interruption of autocrine FGF signaling results in apoptosis that can be rescued by other growth factors such as PDGF (platelet-derived growth factor) or EGF (epidermal growth factor). Such heterologous growth factor rescue is prevented by pharmacological inhibition of MAPK, implicating signaling through Ras in mediating survival. This study was designed to test the hypothesis that signaling through Ras is both necessary and sufficient to mediate SMC survival in vitro. Recombinant adenoviruses encoding dominant-negative (Ras(N17)) and constitutively active (Ras(L61)) mutants of Ras were used. Ras(N17) blocks growth factor-mediated MAPK activation and can itself induce SMC apoptosis. Ras(N17) is synergistic with inhibition of autocrine FGF signaling in triggering apoptosis and prevents heterologous growth factor rescue. Conversely, Ras(L61) prevents apoptosis resulting from inhibition of autocrine FGF signaling. Rescue by Ras(L61) can be partially prevented by pharmacological inhibition of MEK or phosphatidylinositol 3-kinase, two downstream effectors of Ras. These results suggest that Ras signaling is both necessary and sufficient to mediate survival in SMC in vitro. Further work is required to determine how these signaling events are regulated in the context of vascular remodeling in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号