首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Suppressor of cytokine signaling (SOCS)-1 is a member of a family of proteins that negatively regulate cytokine signaling pathways. We have previously established that SOCS-1 is a key regulator of IFN-gamma signaling and that IFN-gamma is responsible for the complex inflammatory disease that leads to the death of SOCS-1-deficient mice. In this study, we provide evidence that SOCS-1 is also a critical regulator of IFN-gamma-independent immunoregulatory factors. Mice lacking both SOCS-1 and IFN-gamma, although outwardly healthy, have clear abnormalities in their immune system, including a reduced ratio of CD4:CD8 T cells in lymphoid tissues and increased expression of T cell activation markers. To examine the contribution of TCR Ag specificity to these immune defects, we have generated two lines of SOCS-1-deficient mice expressing a transgenic TCR specific for an exogenous Ag, OVA (OT-I and OT-II). Although TCR transgenic SOCS-1(-/-) mice have a longer lifespan than nontransgenic SOCS-1(-/-) mice, they still die as young adults with inflammatory disease and the TCR transgenic SOCS-1(-/-) T cells appear activated despite the absence of OVA. This suggests that both Ag-dependent and -independent mechanisms contribute to the disease in SOCS-1-deficient mice. Thus, SOCS-1 is a critical regulator of T cell activation and homeostasis, and its influence extends beyond regulating IFN-gamma signaling.  相似文献   

3.
T lymphocyte survival, proliferation, and death in the periphery are dependent on several cytokines. Many of these cytokines induce the expression of suppressor of cytokine signaling-1 (SOCS1), a feedback inhibitor of JAK kinases. However, it is unclear whether the cytokines that regulate T lymphocyte homeostasis are critically regulated by SOCS1 in vivo. Using SOCS1(-/-)IFN-gamma(-/-) mice we show that SOCS1 deficiency causes a lymphoproliferative disorder characterized by decreased CD4/CD8 ratio due to chronic accumulation of CD8+CD44(high) memory phenotype T cells. SOCS1-deficient CD8+ T cells express elevated levels of IL-2Rbeta, show increased proliferative response to IL-15 and IL-2 in vitro, and undergo increased bystander proliferation and vigorous homeostatic expansion in vivo. Sorted CD8+CD44(high) T cells from SOCS1(-/-)IFN-gamma(-/-) mice respond 5 times more strongly than control cells, indicating that SOCS1 is a critical regulator of IL-15R signaling. Consistent with this idea, IL-15 stimulates sustained STAT5 phosphorylation in SOCS1-deficient CD8+ T cells. IL-15 strongly induces TNF-alpha production in SOCS1-deficient CD8+ T cells, indicating that SOCS1 is also a critical regulator of CD8+ T cell activation by IL-15. However, IL-15 and IL-2 induce comparable levels of Bcl-2 and Bcl-x(L) in SOCS1-deficient and SOCS1-sufficient CD8+ T cells, suggesting that cytokine receptor signals required for inducing proliferation and cell survival signals are not identical. These results show that SOCS1 differentially regulates common gamma-chain cytokine signaling in CD8+ T cells and suggest that CD8+ T cell homeostasis is maintained by distinct mechanisms that control cytokine-mediated survival and proliferation signals.  相似文献   

4.
Previous experiments have shown that STAT-induced STAT inhibitor-1 (SSI-1; also named suppressors of cytokine signaling-1 (SOCS-1) or Janus kinase binding protein) is predominantly expressed in lymphoid organs and functions in vitro as a negative regulator of cytokine signaling. To determine the function of SOCS-1 in vivo, we generated SSI-1 transgenic mice using the lck proximal promoter that drives transgene expression in T cell lineage. In thymocytes expressing SSI-1 transgene, tyrosine phosphorylation of STATs in response to cytokines such as IFN-gamma, IL-6, and IL-7 was inhibited, suggesting that SSI-1 suppresses cytokine signaling in primary lymphocytes. In addition, lck-SSI-1 transgenic mice showed a reduction in the number of thymocytes as a result of the developmental blocking during triple-negative stage. They also exhibited a relative increase in the percentage of CD4+ T cells, a reduction in the number of gammadelta T cells, as well as the spontaneous activation and increased apoptosis of peripheral T cells. Thus, enforced expression of SSI-1 disturbs the development of thymocytes and the homeostasis of peripheral T cells. All these features of lck-SSI-1 transgenic mice strikingly resemble the phenotype of mice lacking common gamma-chain or Janus kinase-3, suggesting that transgene-derived SSI-1 inhibits the functions of common gamma-chain-using cytokines. Taken together, these results suggest that SSI-1 can also inhibit a wide variety of cytokines in vivo.  相似文献   

5.
Glucagon-like peptide 2 (GLP-2) is an important intestinal growth factor with anti-inflammatory activity. We hypothesized that GLP-2 decreases mucosal inflammation and the associated increased epithelial proliferation by downregulation of Th1 cytokines attributable to reprogramming of lamina propria immune regulatory cells via an interleukin-10 (IL-10)-independent pathway. The effects of GLP-2 treatment were studied using the IL-10-deficient (IL-10(-/-)) mouse model of colitis. Wild-type and IL-10(-/-) mice received saline or GLP-2 (50 microg/kg sc) treatment for 5 days. GLP-2 treatment resulted in significant amelioration of animal weight loss and reduced intestinal inflammation as assessed by histopathology and myeloperoxidase levels compared with saline-treated animals. In colitis animals, GLP-2 treatment also reduced crypt cell proliferation and crypt cell apoptosis. Proinflammatory (IL-1beta, TNF-alpha, IFN-gamma,) cytokine protein levels were significantly reduced after GLP-2 treatment, whereas IL-4 was significantly increased and IL-6 production was unchanged. Fluorescence-activated cell sorting analysis of lamina propria cells demonstrated a decrease in the CD4(+) T cell population following GLP-2 treatment in colitic mice and an increase in CD11b(+)/F4/80(+) macrophages but no change in CD25(+)FoxP3 T cells or CD11c(+) dendritic cells. In colitis animals, intracellular cytokine analysis demonstrated that GLP-2 decreased lamina propria macrophage TNF-alpha production but increased IGF-1 production, whereas transforming growth factor-beta was unchanged. GLP-2-mediated reduction of crypt cell proliferation was associated with an increase in intestinal epithelial cell suppressor of cytokine signaling (SOCS)-3 expression and reduced STAT-3 signaling. This study shows that the anti-inflammatory effects of GLP-2 are IL-10 independent and that GLP-2 alters the mucosal response of inflamed intestinal epithelial cells and macrophages. In addition, the suggested mechanism of the reduction in inflammation-induced proliferation is attributable to GLP-2 activation of the SOCS-3 pathway, which antagonizes the IL-6-mediated increase in STAT-3 signaling.  相似文献   

6.
TCR-dependent and costimulation signaling, cell division, and cytokine environment are major factors driving cytokines expression induced by CD4+ T cell activation. PEA-15 15 (Protein Enriched in Astrocyte / 15kDa) is an adaptor protein that regulates death receptor-induced apoptosis and proliferation signaling by binding to FADD and relocating ERK1/2 to the cytosol, respectively. By using PEA-15-deficient mice, we examined the role of PEA-15 in TCR-dependent cytokine production in CD4+ T cells. TCR-stimulated PEA-15-deficient CD4+ T cells exhibited defective progression through the cell cycle associated with impaired expression of cyclin E and phosphoRb, two ERK1/2-dependent proteins of the cell cycle. Accordingly, expression of the division cycle-dependent cytokines IL-2 and IFNγ, a Th1 cytokine, was reduced in stimulated PEA-15-deficient CD4+ T cells. This was associated with abnormal subcellular compartmentalization of activated ERK1/2 in PEA-15-deficient T cells. Furthermore, in vitro TCR-dependent differentiation of naive CD4+ CD62L+ PEA-15-deficient T cells was associated with a lower production of the Th2 cytokine, IL-4, whereas expression of the Th17-associated molecule IL4I1 was enhanced. Finally, a defective humoral response was shown in PEA-15-deficient mice in a model of red blood cell alloimmunization performed with Poly IC, a classical adjuvant of Th1 response in vivo. Collectively, our data suggest that PEA-15 contributes to the specification of the cytokine pattern of activated Th cells, thus highlighting a potential new target to interfere with T cell functional polarization and subsequent immune response.  相似文献   

7.
8.
WSX-1 (IL-27R) is a class I cytokine receptor with homology to gp130 and IL-12 receptors and is typically expressed on CD4+ T lymphocytes. Although previous reports have clarified that IL-27/WSX-1 signaling plays critical roles in both Th1 differentiation and attenuation of cell activation and proinflammatory cytokine production during some bacterial or protozoan infections, little is known about the importance of WSX-1 in cytokine-mediated diseases of allergic origin. To this aim, we took advantage of WSX-1-deficient (WSX-1(-/-)) mice and induced experimental asthma, in which Th2 cytokines are central modulators of the pathology. OVA-challenged WSX-1(-/-) mice showed marked enhancement of airway responsiveness with goblet cell hyperplasia, pulmonary eosinophil infiltration, and increased serum IgE levels compared with wild-type mice. Production of Th2 cytokines, which are largely responsible for the pathogenesis of asthma, was augmented in the lung or in the culture supernatants of peribronchial lymph node CD4+ T cells from WSX-1(-/-) mice compared with those from wild-type mice. Surprisingly, IFN-gamma production was also enhanced in WSX-1(-/-) mice, albeit at a low concentration. The cytokine overproduction, thus, seems independent from the Th1-promoting property of WSX-1. These results demonstrated that IL-27/WSX-1 also plays an important role in the down-regulation of airway hyper-reactivity and lung inflammation during the development of allergic asthma through its suppressive effect on cytokine production.  相似文献   

9.
Protective immunity to the fungus Candida albicans is mediated by Ag-specific Th1 cells. Paradoxically, some Th2 cytokines are required for the maintenance of Th1-mediated immune resistance to the fungus. Therefore, in addition to the Th1/Th2 balance, other mechanisms seem to be involved in the regulation of Th1 immunity to the fungus. Here we show that CD4(+)CD25(+) T cells, negatively regulating antifungal Th1 reactivity, are generated in mice with candidiasis. CD4(+)CD25(+) T cells were not generated in B7-2- or CD28-deficient mice or in condition of IL-10 signaling deficiency. Accordingly, although capable of efficiently restricting the fungal growth, these mice experienced inflammatory pathology and were incapable of resistance to reinfection. CD4(+)CD25(+) T cells poorly proliferated in vitro; were highly enriched for cells producing IL-4, IL-10, and TGF-beta; and required IL-10-producing, Candida hypha-activated dendritic cells for generation. Adoptive transfer of CD4(+)CD25(+) T cells or IL-10-producing dendritic cells restored resistance to reinfection and decreased inflammation in B7-2-deficient mice. These results show that oral tolerance induced by Candida hyphae is required for the occurrence of long-lasting protective immunity after yeast priming. The implication is that preventing reactivation rather than favoring sterilizing immunity to ubiquitous fungal pathogens may represent the ultimate expectation of vaccine-based strategies.  相似文献   

10.
IL-12 and IFN-gamma positively regulate each other and type 1 inflammatory responses, which are believed to cause tissue damage in autoimmune diseases. We investigated the role of the IL-12/IFN-gamma (Th1) axis in the development of autoimmune myocarditis. IL-12p40-deficient mice on a susceptible background resisted myocarditis. In the absence of IL-12, autospecific CD4(+) T cells proliferated poorly and showed increased Th2 cytokine responses. However, IFN-gamma-deficient mice developed fatal autoimmune disease, and blockade of IL-4R signaling did not confer susceptibility to myocarditis in IL-12p40-deficient mice, demonstrating that IL-12 triggers autoimmunity by a mechanism independent of the effector cytokines IFN-gamma and IL-4. In conclusion, our results suggest that the IL-12/IFN-gamma axis is a double-edged sword for the development of autoimmune myocarditis. Although IL-12 mediates disease by induction/expansion of Th1-type cells, IFN-gamma production from these cells limits disease progression.  相似文献   

11.
CD4+ T cells, particularly Th2 cells, play a pivotal role in allergic airway inflammation. However, the requirements for interactions between CD4+ and CD8+ T cells in airway allergic inflammation have not been delineated. Sensitized and challenged OT-1 mice in which CD8+ T cells expressing the transgene for the OVA(257-264) peptide (SIINFEKL) failed to develop airway hyperresponsiveness (AHR), airway eosinophilia, Th2 cytokine elevation, or goblet cell metaplasia. OT-1 mice that received naive CD4+IL-4+ T cells but not CD4+IL-4- T cells before sensitization developed all of these responses to the same degree as wild-type mice. Moreover, recipients of CD4+IL-4+ T cells developed significant increases in the number of CD8+IL-13+ T cells in the lung, whereas sensitized OT-1 mice that received primed CD4+ T cells just before challenge failed to develop these responses. Sensitized CD8-deficient mice that received CD8+ T cells from OT-1 mice that received naive CD4+ T cells before sensitization increased AHR and eosinophil numbers in bronchoalveolar lavage fluid when challenged with allergen. In contrast, sensitized CD8-deficient mice receiving CD8+ T cells from OT-1 mice without CD4+ T cells developed reduced AHR and eosinophil numbers in bronchoalveolar lavage fluid when challenged. These data suggest that interactions between CD4+ and CD8+ T cells, in part through IL-4 during the sensitization phase, are essential to the development of CD8+IL-13+ T cell-dependent AHR and airway allergic inflammation.  相似文献   

12.
Mice lacking CTLA-4 die at an age of 2-3 wk due to massive lymphoproliferation, leading to lymphocytic infiltration and destruction of major organs. The onset of the lymphoproliferative disease can be delayed by treatment with murine CTLA4Ig (mCTLA4Ig), starting day 12 after birth. In this study, we have characterized the T cells present in CTLA-4-deficient mice before and after mCTLA4Ig treatment. The T cells present in CTLA-4-deficient mice express the activation markers, CD69 and IL-2R; down-regulate the lymphoid homing receptor, CD62L; proliferate spontaneously in vitro and cannot be costimulated with anti-CD28 mAb consistent with a hyperactivated state. The T cells from CTLA-4-deficient mice survive longer in culture correlating with higher expression of the survival factor, Bcl-xL, in these cells. Most significantly, the CD4+ T cell subset present in CTLA-4-deficient mice secretes high levels of IL-4 and IL-5 upon TCR activation. Treatment of CTLA-4-deficient mice treated with mCTLA4Ig reverses the activation and hyperproliferative phenotype of the CTLA-4-deficient T cells and restores the costimulatory activity of anti-CD28 mAb. Furthermore, T cells from mCTLA4Ig-treated mice are not skewed toward a Th2 cytokine phenotype. Thus, CTLA-4 regulates CD28-dependent peripheral activation of CD4+ T cells. This process results in apoptosis-resistant, CD4+ T cells with a predominantly Th2 phenotype that may be involved in the lethal phenotype in these animals.  相似文献   

13.
CD1d1-restricted NK T (NKT) cells rapidly secrete both Th1 and Th2 cytokines upon activation and are therefore thought to play a regulatory role during an immune response. In this study we examined the role of CD1d1 molecules and NKT cells in regulating virus-induced cytokine production. CD1d1-deficient (CD1KO) mice, which lack NKT cells, were infected with lymphocytic choriomeningitis virus, and spontaneous cytokine release from splenocytes was measured. We found that CD1KO mice produce significantly higher amounts of IL-2, IL-4, and IFN-gamma compared with wild-type controls postinfection. Depletion studies of individual lymphocyte subpopulations suggested that CD4+ T cells are required; however, isolation of specific lymphocyte populations indicated that CD4+ T cells alone are not sufficient for the increase in cytokine production in CD1KO mice. Splenocytes from lymphocytic choriomeningitis virus-infected CD1KO mice continued to produce enhanced cytokine levels long after viral clearance and cleared viral RNA faster than wild-type mice. There was no difference in the number of splenocytes between uninfected wild-type and CD1KO mice, whereas the latter knockout mice had an increased number of splenocytes after infection. Collectively, these data provide clear evidence that the expression of CD1d1 molecules controls the magnitude of the cell-mediated immune response to an acute viral infection.  相似文献   

14.
Control of inflammation is crucial to prevent damage to the host during infection. Lipoxins and aspirin-triggered lipoxins are crucial modulators of proinflammatory responses; however, their intracellular mechanisms have not been completely elucidated. We previously showed that lipoxin A4 (LXA4) controls migration of dendritic cells (DCs) and production of interleukin (IL)-12 in vivo. In the absence of LXA4 biosynthetic pathways, the resulting uncontrolled inflammation during infection is lethal, despite pathogen clearance. Here we show that lipoxins activate two receptors in DCs, AhR and LXAR, and that this activation triggers expression of suppressor of cytokine signaling (SOCS)-2. SOCS-2-deficient DCs are hyper-responsive to microbial stimuli, as well as refractory to the inhibitory actions of LXA4, but not to IL-10. Upon infection with an intracellular pathogen, SOCS-2-deficient mice had uncontrolled production of proinflammatory cytokines, decreased microbial proliferation, aberrant leukocyte infiltration and elevated mortality. We also show that SOCS-2 is a crucial intracellular mediator of the anti-inflammatory actions of aspirin-induced lipoxins in vivo.  相似文献   

15.
CD69 is highly expressed by lymphocytes at mucosal surfaces. We aimed to investigate the role of CD69 in mucosal immune responses. The expression of CD69 by CD4 T cells isolated from the spleen, mesenteric lymph nodes, small intestinal lamina propria, and colonic lamina propria was determined in specific pathogen-free B6 and TCR transgenic animals, as well as in germ-free B6 mice. Transfer colitis was induced by transplanting RAG(-/-) mice with B6 or CD69(-/-)CD45RB(high) CD4 T cells. CD69 expression by CD4 T cells is induced by the intestinal microflora, oral delivery of specific Ag, and type I IFN (IFN-I) signals. CD4 T cells from CD69(-/-) animals produce higher amounts of the proinflammatory cytokines IFN-γ, TNF-α, and IL-21, whereas the production of TGF-β1 is decreased. CD69-deficient CD4 T cells showed reduced potential to differentiate into Foxp3(+) regulatory T cells in vivo and in vitro. The transfer of CD69(-/-)CD45RB(high) CD4 T cells into RAG(-/-) hosts induced an accelerated colitis. Oral tolerance was impaired in CD69(-/-) and IFN-I receptor 1-deficient mice when compared with B6 and OT-II × RAG(-/-) animals. Polyinosinic-polycytidylic acid treatment of RAG(-/-) mice transplanted with B6 but not CD69(-/-) or IFN-I receptor 1-deficient CD45RB(high) CD4 T cells attenuated transfer colitis. CD69 deficiency led to the increased production of proinflammatory cytokines, reduced Foxp3(+) regulatory T cell induction, impaired oral tolerance, and more severe colitis. Hence, the activation Ag CD69 plays an important role in regulating mucosal immune responses.  相似文献   

16.
Leading hypotheses to explain helminth-mediated protection against autoimmunity postulate that type 2 or regulatory immune responses induced by helminth infections in the host limit pathogenic Th1-driven autoimmune responses. We tested these hypotheses by investigating whether infection with the filarial nematode Litomosoides sigmodontis prevents diabetes onset in IL-4-deficient NOD mice and whether depletion or absence of regulatory T cells, IL-10, or TGF-β alters helminth-mediated protection. In contrast to IL-4-competent NOD mice, IL-4-deficient NOD mice failed to develop a type 2 shift in either cytokine or Ab production during L. sigmodontis infection. Despite the absence of a type 2 immune shift, infection of IL-4-deficient NOD mice with L. sigmodontis prevented diabetes onset in all mice studied. Infections in immunocompetent and IL-4-deficient NOD mice were accompanied by increases in CD4(+)CD25(+)Foxp3(+) regulatory T cell frequencies and numbers, respectively, and helminth infection increased the proliferation of CD4(+)Foxp3(+) cells. However, depletion of CD25(+) cells in NOD mice or Foxp3(+) T cells from splenocytes transferred into NOD.scid mice did not decrease helminth-mediated protection against diabetes onset. Continuous depletion of the anti-inflammatory cytokine TGF-β, but not blockade of IL-10 signaling, prevented the beneficial effect of helminth infection on diabetes. Changes in Th17 responses did not seem to play an important role in helminth-mediated protection against autoimmunity, because helminth infection was not associated with a decreased Th17 immune response. This study demonstrates that L. sigmodontis-mediated protection against diabetes in NOD mice is not dependent on the induction of a type 2 immune shift but does require TGF-β.  相似文献   

17.
Chronic elevation of proinflammatory markers in type 2 diabetes (T2D) is well defined, but the role of anti-inflammatory cytokines in T2D is less clear. In this study, we report that normal IL-4-dependent elaboration of IL-1 receptor antagonist (IL-1RA) requires IRS-2-mediated PI3K activity in primary macrophages. We also show that macrophages isolated from obese/diabetic db/db mice have impaired IRS-2-mediated PI3K activity and constitutively overexpress suppressor of cytokine signaling (SOCS)-3, which impairs an important IL-4 anti-inflammatory function. Peritoneal proinflammatory cytokine levels were examined in diabese (db/db) mice, and IL-6 was found to be nearly 7-fold higher than in nondiabese (db/+) control mice. Resident peritoneal macrophages were isolated from db/db mice and were found to constitutively overexpress IL-6 and were unable to elaborate IL-1RA in response to IL-4-like db/+ mouse macrophages. Inhibition of PI3K with wortmannin or blockage of IRS-2/PI3K complex formation with a cell permeable IRS-2-derived tyrosine phosphopeptide inhibited IL-4-dependent IL-1RA production in db/+ macrophages. Examination of IL-4 signaling in db/db macrophages revealed that IL-4-dependent IRS-2/PI3K complex formation and IRS-2 tyrosine phosphorylation was reduced compared with db/+ macrophages. SOCS-3/IL-4 receptor complexes, however, were increased in db/db mouse macrophages compared with db/+ mice macrophages as was db/db mouse macrophage SOCS-3 expression. These results indicate that in the db/db mouse model of T2D, macrophage expression of SOCS-3 is increased, and impaired IL-4-dependent IRS-2/PI3K formation induces a state of IL-4 resistance that disrupts IL-4-dependent production of IL-1RA.  相似文献   

18.
Resistance or susceptibility to most infectious diseases is strongly determined by the balance of type 1 vs type 2 cytokines produced during infection. However, for viruses, this scheme may be applicable only to infections with some cytopathic viruses, where IFN-gamma is considered as mandatory for host defense with little if any participation of type 2 responses. We studied the role of signature Th1 (IL-12, IFN-gamma) and Th2 (IL-4, IL-10) cytokines for immune responses against vaccinia virus (VV). IL-12-/- mice were far more susceptible than IFN-gamma-/- mice, and primary CTL responses against VV were absent in IL-12-/- mice but remained intact in IFN-gamma-/- mice. Both CD4+ and CD8+ T cells from IL-12-/- mice were unimpaired in IFN-gamma production, although CD4+ T cells showed elevated Th2 cytokine responses. Virus replication was impaired in IL-4-/- mice and, even more strikingly, in IL-10-/- mice, which both produced elevated levels of the proinflammatory cytokines IL-1alpha and IL-6. Thus, IL-4 produced by Th2 cells and IL-10 produced by Th2 cells and probably also by macrophages counteract efficient anti-viral host defense. Surprisingly, NO production, which is considered as a major type 1 effector pathway inhibited by type 2 cytokines, appears to play a limited role against VV, because NO sythetase 2-deficient mice did not show increased viral replication. Thus, our results identify a new role for IL-12 in defense beyond the induction of IFN-gamma and show that IL-4 and IL-10 modulate host protective responses to VV.  相似文献   

19.
Although it is established that failure of regulatory mechanisms underlies many autoimmune diseases, the stimuli that activate autoreactive lymphocytes remain poorly understood. Defining these stimuli will lead to therapeutic strategies for autoimmune diseases. IL-2-deficient mice develop spontaneous autoimmunity, because of a deficiency of regulatory T cells, and on the BALB/c background, they rapidly die from autoimmune hemolytic anemia. To define the importance of costimulatory pathways in various components of this autoimmune disorder, we first intercrossed IL-2-deficient mice with mice lacking CD28 or CD40L. Elimination of CD28 reduced the activation of autoreactive T cells and lymphoproliferation as well as production of autoantibodies, whereas elimination of CD40L reduced autoantibody production without affecting T cell expansion and accumulation. To examine the role of IL-7, we blocked IL-7R signaling with neutralizing Abs. This treatment inhibited the production of autoantibodies and the development of autoimmune hemolytic anemia. Together, these data indicate that specific costimulatory and cytokine signals are critical for the spontaneous autoantibody-mediated disease that develops in IL-2-deficient mice.  相似文献   

20.
We tested in B6 mice whether the local expansion of CD4 T cells producing proinflammatory cytokines including IL-17 (Th17 cells) in the colonic lamina propria (cLP) depends on the commensal microflora. High numbers of CD4 Th17 cells were found in the lamina propria of the ileum and colon but not the duodenum, jejunum, mesenteric lymph nodes, spleen, or liver of specific pathogen-free (SPF) mice. The microflora is required for the accumulation of cytokine (IL-17, IFN-gamma, TNF-alpha, IL-10)-producing CD4 T cells in the cLP because only low numbers of cytokine-producing cLP CD4 T cells were found in syngeneic (age- and sex-matched) germfree mice. The fraction of cLP Th17 cells was higher in (type I and type II) IFN- but not IL-4- or IL-12p40-deficient SPF congenics. cLP CD4 Th17 cells produce IL-17 but not IFN-gamma, TNF-alpha, IL-4, or IL-10. cLP CD4 Th17 cells accumulate locally in colitis induced by adoptive transfer of IFN-gamma+/+ or IFN-gamma-/- CD4 T cells into congenic SPF (but not germfree) RAG-/- hosts. In this colitis model, cLP CD4 T cells that "spontaneously" produce IL-17 progressively increase in number in the inflamed cLP, and increasing serum IL-17 levels appear as the disease progresses. Commensal bacteria-driven, local expansion of cLP CD4 Th17 cells may contribute to the pathogenesis of this inflammatory bowel disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号