首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cold is one of the critical environmental conditions that negatively affects plant growth and development and determines the geographic distribution of plants. Cold stress signaling is dynamic and interacts with many other signal transduction pathways to efficiently cope with adverse stress effects in plants. The cold signal is primarily perceived via Ca2+ channel proteins, membrane histidine kinases, or unknown sensors, which then activate the sophisticated cold-responsive signaling pathways in concert with phytohormone signaling, the circadian clock, and the developmental transition to flowering, as a part of the stress adaptation response. In this review, we focus on crosstalk between cold signaling and other signal transduction pathways in Arabidopsis.  相似文献   

2.
Chemical signaling under abiotic stress environment in plants   总被引:1,自引:0,他引:1  
Many chemicals are critical for plant growth and development and play an important role in integrating various stress signals and controlling downstream stress responses by modulating gene expression machinery and regulating various transporters/pumps and biochemical reactions. These chemicals include calcium (Ca2+), cyclic nucleotides, polyphosphoinositides, nitric oxide (NO), sugars, abscisic acid (ABA), jasmonates (JA), salicylic acid (SA) and polyamines. Ca2+ is one of the very important ubiquitous second messengers in signal transduction pathways and usually its concentration increases in response to the stimuli including stress signals. Many Ca2+ sensors detect the Ca2+ signals and direct them to downstream signaling pathways by binding and activating diverse targets. cAMP or cGMP protects the cell with ion toxicity. Phosphoinositides are known to be involved both in transmission of signal across the plasma membrane and in intracellular signaling. NO activates various defense genes and acts as a developmental regulator in plants. Sugars affect the expression of many genes involved in photosynthesis, glycolysis, nitrogen metabolism, sucrose and starch metabolism, defense mechanisms and cell cycle regulation. ABA, JA, SA and polyamines are also involved in many stress responses. Cross-talk between these chemical signaling pathways is very common in plant responses to abiotic and bitotic factors. In this article we have described the role of these chemicals in initiating signaling under stress conditions mainly the abiotic stress.Key words: ABA, abiotic stress, Ca2+ binding proteins, calcium signaling, cyclic nucleotides, nitric oxide, phosphoinositides signaling, signal transduction, sugar signaling  相似文献   

3.
Calcium ion (Ca2+) is one of the very important ubiquitous intracellular second messenger molecules involved in many signal transduction pathways in plants. The cytosolic free Ca2+ concentration ([Ca2+]cyt) have been found to increased in response to many physiological stimuli such as light, touch, pathogenic elicitor, plant hormones and abiotic stresses including high salinity, cold and drought. This Ca2+ spikes normally result from two opposing reactions, Ca2+ influx through channels or Ca2+ efflux through pumps. The removal of Ca2+ from the cytosol against its electrochemical gradient to either the apoplast or to intracellular organelles requires energized ‘active’ transport. Ca2+-ATPases and H+/Ca2+ antiporters are the key proteins catalyzing this movement. The increased level of Ca2+ is recognised by some Ca2+-sensors or calcium-binding proteins, which can activate many calcium dependent protein kinases. These kinases regulate the function of many genes including stress responsive genes, resulted in the phenotypic response of stress tolerance. Calcium signaling is also involved in the regulation of cell cycle progression in response to abiotic stress. The regulation of gene expression by cellular calcium is also crucial for plant defense against various stresses. However, the number of genes known to respond to specific transient calcium signals is limited. This review article describes several aspects of calcium signaling such as Ca2+ requiremant and its role in plants, Ca2+ transporters, Ca2+-ATPases, H+/ Ca2+-antiporter, Ca2+-signature, Ca2+-memory and various Ca2+-binding proteins (with and without EF hand).Key Words: Calcium binding proteins, Ca2+ channel, Ca2+-dependent protein kinases, Ca2+/H+ antiport, calcium memory, calcium sensors, calcium signatures, Ca2+-transporters, EF hand motifs, plant signal transduction  相似文献   

4.
Plant Ca2+ signals are involved in a sizable array of intracellular signaling pathways after pest invasion. Upon herbivore feeding there is a dramatic Ca2+ influx, followed by the activation of Ca2+-dependent signal transduction pathways that include interacting downstream networks of kinases for defense responses. Notably, Ca2+-binding sensory proteins such as Ca2+-dependent protein kinases (CPKs) have recently been documented to mediate the signaling following Ca2+ influx after herbivory, in phytohormone-independent manners. Here, we review the sequence of signal transductions triggered by herbivory-evoked Ca2+ signaling leading to CPK actions for defense responses, and discuss in a comparative way the involvement of CPKs in the signal transduction of a variety of other biotic and abiotic stresses.  相似文献   

5.
In a given environment, plants are constantly exposed to multitudes of stimuli. These stimuli are sensed and transduced to generate a diverse array of responses by several signal transduction pathways. Calcium (Ca2+) signaling is one such important pathway involved in transducing a large number of stimuli or signals in both animals and plants. Ca2+ engages a plethora of decoders to mediate signaling in plants. Among these groups of decoders, the sensor responder complex of calcineurin B‐like protein (CBL) and CBL‐interacting protein kinases (CIPKs) play a very significant role in transducing these signals. The signal transduction mechanism in most cases is phosphorylation events, but some structural role for the pair has also come to light recently. In this review, we discuss the structural nature of the sensor‐responder duo; their mechanism of substrate phosphorylation and also their structural role in modulating targets. Moreover, the mechanism of complex formation and mechanistic role of protein phosphatases with CBL–CIPK module has been mentioned. A comparison of CBL–CIPK with other decoders of Ca2+ signaling in plants also signifies the relatedness and diversity in signaling pathways. Further an attempt has been made to compare this aspect of Ca2+ signaling pathways in different plant species to develop a holistic understanding of conservation of stimulus–response‐coupling mediated by this Ca2+–CBL–CIPK module.  相似文献   

6.
The role of changes in intracellular calcium ion concentration ([Ca2+]i) in low‐temperature signal transduction in plants has lately been supported by several studies. An analysis to determine whether the low‐temperature‐induced increase in cytosolic Ca2+ concentration ([Ca2+]cyt) could be correlated with a downstream response such as gene expression was carried out. The induction of the low‐temperature‐regulated gene LTI78 was used as an end point marker of the signal transduction pathway. It was found that this gene is induced by very brief low‐temperature exposures and that the induction does not depend on a continuous exposure to low temperature. By altering the cooling rate, different patterns of the Ca2+ response were obtained which could be correlated with different patterns of LTI78 induction. Furthermore, reducing the Ca2+ transients by pre‐treatment with the Ca2+ channel blocker La3+ also led to a reduced level of gene induction. The results show that brief exposures to low temperature results in the onset of a signalling pathway that leads to the induction of gene expression. This indicates the involvement of changes in [Ca2+]cyt in low‐temperature signalling leading to LTI78 expression but the presence of multiple signalling pathways is suggested.  相似文献   

7.
Phenylpropanoids are secondary metabolites produced by plants. They, by differential expression, are involved in responses to biotic and abiotic stresses and confer plant plasticity. In addition, they are synthesized under normal conditions during the fruit-ripening process. Therefore, the understanding of the mechanics involved in the accumulation of these compounds in plants is of extreme importance for the development of plants with greater resistance and tolerance to biotic and abiotic stresses, and plants with greater functional potential. There is evidence that one of the pathways of the induction of phenylpropanoids is dependent on abscisic acid (ABA) and it is generated by a signaling cascade involving calcium (Ca2+) and Ca2+-dependent protein kinases (CDPKs). Plants have several Ca2+ binding proteins that act as cellular sensors and represent the first points of signal transduction. CDPKs are mono-molecular Ca2+-sensor/kinase-effector proteins, which perceive Ca2+ signals and translate them into protein phosphorylation and thus represent an ideal tool for signal transduction. However, the mechanisms involved in the ABA–CDPK–phenylpropanoids crosstalk under stress conditions and during fruit ripening remains uncertain. Therefore, this review seeks to surface a new line of evidence as an attempt to understand the manner in which the induction of phenylpropanoids occurs in plants.  相似文献   

8.
Ca2+-dependent protein kinases (CDPKs) (EC 2.7.1.37) are the predominant Ca2+-regulated serine/threonine protein kinase in plants and their genes are encoded by a multigene family. CDPKs are important components in signal transduction, but the precise role of each individual CDPK is still largely unknown. A CDPK gene designated as OsCDPK13 was cloned from rice seedlings and it showed a high level of sequence similarities to rice and other plant CDPK genes. OsCDPK13 contains all conserved regions found in CDPKs. It was a single copy gene and was highly expressed in root and leaf sheath tissues of rice seedlings. OsCDPK13 expression was increased in leaf sheath segments treated with gibberellin or subjected to cold stress. The results in this investigation, together with our previous studies, suggest that OsCDPK13 may be an important signaling component in rice seedlings under cold stress condition and in response to gibberellin.  相似文献   

9.
Summary This review focusses on Ca2+-mediated plant cell signaling and optical methods for in vivo [Ca2+] monitoring and imaging in plants. The cytosolic free calcium concentration has long been considered the central cellular key in plants. However, more and more data are turning up that critically question this view. Conflicting arguments show that there are still many open questions. One conclusion is that the cytosolic free Ca2+ concentration is just one of many cellular network parameters orchestrating complex cellular signaling. Novel experimental strategies which unveil interference of cellular parameters and communication of transduction pathways are required to understand this network. To date only optical methods are able to provide both kinetic and spatial information about cellular key parameters simultaneously. Focussing on calcium there are currently three classes of calcium indicators employed (i.e., chemical fluorescent dyes, luminescent indicators, and green-fluorescent-protein-based indicators). Properties and capabilities as well as advantages and disadvantages of these indicators when used in plant systems are discussed. Finally, general experimental strategies are mentioned which are able to answer open questions raised here.Abbreviations CTZ coelenterazine - GFP green-fluorescent protein - FRET fluorescence resonance energy transfer - [Ca2+] calcium ion concentration - CaM calmodulin - CDPKs calmodulindomain protein kinases - IP3 inositol 1,4,5-trisphosphate  相似文献   

10.
Signal transduction during cold, salt, and drought stresses in plants   总被引:14,自引:0,他引:14  
Abiotic stresses, especially cold, salinity and drought, are the primary causes of crop loss worldwide. Plant adaptation to environmental stresses is dependent upon the activation of cascades of molecular networks involved in stress perception, signal transduction, and the expression of specific stress-related genes and metabolites. Plants have stress-specific adaptive responses as well as responses which protect the plants from more than one environmental stress. There are multiple stress perception and signaling pathways, some of which are specific, but others may cross-talk at various steps. In this review article, we first expound the general stress signal transduction pathways, and then highlight various aspects of biotic stresses signal transduction networks. On the genetic analysis, many cold induced pathways are activated to protect plants from deleterious effects of cold stress, but till date, most studied pathway is ICE-CBF-COR signaling pathway. The Salt-Overly-Sensitive (SOS) pathway, identified through isolation and study of the sos1, sos2, and sos3 mutants, is essential for maintaining favorable ion ratios in the cytoplasm and for tolerance of salt stress. Both ABA-dependent and -independent signaling pathways appear to be involved in osmotic stress tolerance. ROS play a dual role in the response of plants to abiotic stresses functioning as toxic by-products of stress metabolism, as well as important signal transduction molecules and the ROS signaling networks can control growth, development, and stress response. Finally, we talk about the common regulatory system and cross-talk among biotic stresses, with particular emphasis on the MAPK cascades and the cross-talk between ABA signaling and biotic signaling.  相似文献   

11.
12.
The molecular biology of the low-temperature response in plants   总被引:4,自引:0,他引:4  
Plants growing in temperate regions are able to survive freezing temperatures from -5 degrees to -30 degrees C, depending on the species, through a process known as cold acclimation. In the last decade much work has been done on the molecular mechanisms of low temperature (LT) signal transduction and cold acclimation. Mutant studies and microarray analyses have revealed C-Repeat binding factor (CBF) -dependent and -independent signaling pathways in plants. Experimental evidence suggests the existence of 'potential LT sensors' but as yet there is no direct proof. A number of signal transducers such as various kinases/phosphatases have been demonstrated but the signal transduction pathways have not been elucidated. An understanding of the molecular basis of the signaling process, however, is of potential practical application. Designing new strategies to improve cold tolerance in crop varieties could increase the plant productivity and also expand the area under cultivation.  相似文献   

13.
张国增  白玲  宋纯鹏 《植物学报》2009,44(3):283-289
低温严重影响植物的生长, 低温刺激可引起植物细胞中Ca2+浓度迅速升高。以拟南芥(Arabidopsis thaliana) CBF1 超表达突变体为材料, 研究了低温处理时CBF1基因的表达情况及胞质Ca2+的浓度变化。结果表明, CBF1本身可受低温诱导。同时将水母发光蛋白基因转入该拟南芥突变体中并检测Ca2+的浓度变化, 发现低温刺激时突变体细胞质中Ca2+的浓度变化幅度明显高于野生型, 但液泡的胞质面两侧Ca2+的浓度变化相似。用EGTA和LaCl3处理拟南芥后, 胞质Ca2+的浓度升高被抑制, 并且CBF1突变体及对照胞质中的Ca2+浓度下降到同一水平。上述结果表明, Ca2+参与了CBF1应答低温信号的转导过程, 并且CBF1超表达突变体可能是通过提高胞质Ca2+浓度来提高植物的抗低温胁迫能力。  相似文献   

14.
15.
Calcium is a crucial messenger in many growth and developmental processes in plants. The central mechanism governing how plant cells perceive and respond to environmental stimuli is calcium signal transduction, a process through which cellular calcium signals are recognized, decoded, and transmitted to elicit downstream responses. In the initial decoding of calcium signals, Ca2+ sensor proteins that bind Ca2+ and activate downstream signaling components are implicated, thereby regulating specific physiological and biochemical processes. After calcineurin B-like proteins (CBLs) sense these Ca2+ signatures, these proteins interact selectively with CBL-interacting protein kinases (CIPKs), thereby forming CBL/CIPK complexes, which are involved in decoding calcium signals. Therefore, specificity, diversity, and complexity are the main characteristics of the CBL-CIPK signaling system. However, additional CBLs, CIPKs, and CBL/CIPK complexes remain to be identified in plants, and the specific functions of their abiotic and biotic stress signaling will need to be further dissected. Therefore, a much-needed synthesis of recent findings is important to further the study of CBL-CIPK signaling systems. Here, we review the structure of CBLs and CIPKs, discuss the current knowledge of CBL–CIPK pathways that decode calcium signals in Arabidopsis, and link plant responses to a variety of environmental stresses with specific CBL/CIPK complexes. This will provide a foundation for future research on genetically engineered resistant plants with enhanced tolerance to various environmental stresses.  相似文献   

16.
Calcium is one of the essential nutrients for growth and development of plants. It is an important component of various structures in cell wall and membranes. Besides some fundamental roles under normal condition, calcium functions as a major secondary-messenger molecule in plants under different developmental cues and various stress conditions including salinity stress. Also changes in cytosolic pH, pHcyt, either individually, or in coordination with changes in cytosolic Ca2+ concentration, [Ca2+]cyt, evoke a wide range of cellular functions in plants including signal transduction in plant-defense responses against stresses. It is believed that salinity stress, like other stresses, is perceived at cell membrane, either extra cellular or intracellular, which then triggers an intracellular-signaling cascade including the generation of secondary messenger molecules like Ca2+ and protons. The variety and complexity of Ca2+ and pH signaling result from the nature of the stresses as well as the tolerance level of the plant species against that specific stress. The nature of changes in [Ca2+]cyt concentration, in terms of amplitude, frequency and duration, is likely very important for decoding the specific downstream responses for salinity stress tolerance in planta. It has been observed that the signatures of [Ca2+]cyt and pH differ in various studies reported so far depending on the techniques used to measure them, and also depending on the plant organs where they are measured, such as root, shoot tissues or cells. This review describes the recent advances about the changes in [Ca2+]cyt and pHcyt at both cellular and whole-plant levels under salinity stress condition, and in various salinity-tolerant and -sensitive plant species.Key words: cytosolic calcium, ionic toxicity, osmotic stress, pH, salinity stress, salt tolerance, signaling  相似文献   

17.
植物体内钙信号及其在调节干旱胁迫中的作用   总被引:1,自引:0,他引:1  
钙作为植物体内第二信使广泛参与了植物响应的各种非生物和生物胁迫的信号传导。胁迫信号通过激活位于细胞质膜上的钙离子通道,产生胞质内特异性的钙信号,传递至钙信号感受蛋白,如钙调素(calmodulin,CaM)、钙依赖蛋白激酶(Ca2+-dependent protein kinases,CDPK)和类钙调磷酸酶B蛋白(calcineurin B-like protein,CBL)等,进而引起胞内一系列生理生化变化,最终对胁迫做出响应。钙信号在植物响应干旱胁迫信号系统中起枢纽作用,主要通过调节气孔运动,水通道蛋白(aquaporin,AQP)和抗氧化酶活性来减少水分流失,提高水分利用率,最终降低干旱对植物细胞的伤害,并具有一定的生态学功能。该文对近年来国内外有关植物体内钙信号的研究进展以及在干旱逆境中的调节作用进行综述,并对今后的研究做了展望。  相似文献   

18.
Ca2+ is believed to be a critical second messenger in ABA signal transduction. Ca2+-dependent protein kinases (CDPKs) are the best characterized Ca2+ sensors in plants. Recently, we identified an Arabidopsis CDPK member CPK12 as a negative regulator of ABA signaling in seed germination and post-germination growth, which reveals that different members of the CDPK family may constitute a regulation loop by functioning positively and negatively in ABA signal transduction. We observed that both RNA interference and overexpression of CPK12 gene resulted in ABA-hypersensitive phenotypes in seed germination and post-germination growth, suggesting a high complexity of the CPK12-mediated ABA signaling pathway. CPK12 stimulates a negative ABA-signaling regulator (ABI2) and phosphorylates two positive ABA-signaling regulators (ABF1 and ABF4), which may partly explain the ABA hypersensitivity induced by both downregulation and upregulation of CPK12 expression. Our data indicate that CPK12 appears to function as a balancer in ABA signal transduction in Arabidopsis.  相似文献   

19.
Calcium ions as second messengers in guard cell signal transduction   总被引:21,自引:0,他引:21  
Ca2+ is a ubiquitous second messenger in plant cell signalling. In this review we consider the role of Ca2+-based signal transduction in stomatal guard cells focusing on three important areas: (1) the regulation of guard cell turgor relations and the control of gene expression in guard cells, (2) the control of specificity in Ca2+ signalling, (3) emerging technologies and new approaches for studying intracellular signalling. Stomatal apertures alter in response to a wide array of environmental stimuli as a result of changes in guard cell turgor. For example, the plant hormone abscisic acid (ABA) stimulates a reduction in stomatal aperture through a decrease in guard cell turgor. Furthermore, guard cells have been shown to be competent to relay an ABA signal from its site of perception to the nucleus. An increase in the concentration of cytosolic free Ca2+ ([Ca2+]1) is central to the mechanisms underlying ABA-induced changes in guard cell turgor. We describe a possible model of Ca2+-based ABA signal transduction during stomatal closure and discuss recent evidence which suggests that Ca2+ is also involved in ABA nuclear signal transduction. Many other environmental stimuli which affect stomatal apertures, in addition to ABA, induce an increase in guard cell [Ca2+]1) This raises questions regarding how increases in [Ca2+]1) can be a common component in the signal transduction pathways by which stimuli cause both stomatal opening and closure. We discuss several mechanisms of increasing the amount of information contained within the Ca2+ signal, including encoding information in a stimulus-specific Ca2+ signal or Ca2+ signature', the concept of the ‘physiological address’ of the cell, and the use of other second messengers. We conclude by addressing the emerging technologies and new approaches which can be used in conjunction with guard cells to dissect further the molecular mechanisms of Ca2+-mediated signalling in plants.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号