首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ultrastructure was correlated with growth kinetics of bdellophage VL-1 infecting host-dependent ("parasitic") Bdellovibrio bacteriovorus 109J in its Escherichia coli B host (the three-membered system), as well as in the host-independent ("saprophytic") derivative of the Bdellovibrio. Electron microscope observations showed the arrested growth of the phage-infected bdellovibrios, polar localization of the phage progeny, and stages in their release. Present evidence indicates that bdellophage DNA is derived from both the Bdellovibrio and its host cell.  相似文献   

2.
Facultatively Parasitic Strain of Bdellovibrio bacteriovorus   总被引:22,自引:18,他引:4       下载免费PDF全文
A strain of Bdellovibrio bacteriovorus (designated strain UKi2) was isolated which was capable of growing either saprophytically in host-free medium or endoparasitically in Escherichia coli B/r. It was quantitatively determined that each bdellovibrio could develop in solid medium to produce a colony, and 65% of the cells in a late exponential-phase culture were capable of inducing E. coli B/r spheroplasts. A photomicrographic sequence of single E. coli spheroplasts containing bdellovibrios demonstrated that parasitically derived B. bacteriovorus UKi2 could develop saprophytically after release from the host cells. Strain UKi2 appears to be morphologically quite similar to previously described obligately parasitic bdellovibrios; biochemical data on this strain suggests its close relationship to some of the previously described host-independent strains of Bdellovibrio.  相似文献   

3.
Obligate host-dependent and nonparasitic mutants were isolated from a facultative parasitic Bdellovibrio strain. Thus it is possible to separate host-dependency from the ability to parasitize in bdellovibrios.  相似文献   

4.
Deoxyribonucleic Acid Characterization of Bdellovibrios   总被引:5,自引:4,他引:1       下载免费PDF全文
The guanine plus cytosine (GC) content of the deoxyribonucleic acid (DNA) of 11 isolates of host-dependent (H-D) bdellovibrios and 18 host-independent (H-I) derivatives was determined from thermal denaturation curves and buoyant densities in CsCl. The H-D and respective H-I cultures have GC contents which are identical within the limits of experimental error. Most cultures of Bdellovibrio bacteriovorus, including the holotype culture, have 50.4 +/- 0.9 moles% GC in their DNA; two bdellovibrio isolates of presently uncertain nomenclatural status contain DNA of about 43% GC. Optical melting profiles of all the DNA from all of these organisms are particularly steep, indicating little compositional heterogeneity. Chromatography of acid hydrolysates of Bdellovibrio nucleic acids reveal no unusual components. The DNA content per cell of one H-I derivative is about one-third the amount per Escherichia coli cell growing at a comparable rate.  相似文献   

5.
Thirty new Bdellovibrio strains were isolated from an agricultural soil and from the rhizosphere of plants grown in that soil. Using a combined molecular and culture-based approach, we found that the soil bdellovibrios included subpopulations of organisms that differed from rhizosphere bdellovibrios. Thirteen soil and seven common bean rhizosphere Bdellovibrio strains were isolated when Pseudomonas corrugata was used as prey; seven and two soil strains were isolated when Erwinia carotovora subsp. carotovora and Agrobacterium tumefaciens, respectively, were used as prey; and one tomato rhizosphere strain was isolated when A. tumefaciens was used as prey. In soil and in the rhizosphere, depending on the prey cells used, the concentrations of bdellovibrios were between 3 x 10(2) to 6 x 10(3) and 2.8 x 10(2) to 2.3 x 10(4) PFU g(-1). A prey range analysis of five soil and rhizosphere Bdellovibrio isolates performed with 22 substrate species, most of which were plant-pathogenic and plant growth-enhancing bacteria, revealed unique utilization patterns and differences between closely related prey cells. An approximately 830-bp fragment of the 16S rRNA genes of all of the Bdellovibrio strains used was obtained by PCR amplification by using a Bdellovibrio-specific primer combination. Soil and common bean rhizosphere strains produced two and one restriction patterns for this PCR product, respectively. The 16S rRNA genes of three soil isolates and three root-associated isolates were sequenced. One soil isolate belonged to the Bdellovibrio stolpii-Bdellovibrio starrii clade, while all of the other isolates clustered with Bdellovibrio bacteriovorus and formed two distantly related, heterogeneous groups.  相似文献   

6.
A small rod, capable of formine crater-like plaques on lawns of Vibrio parahaemolyticus, was isolated from a marine environment. The isolate was a gram-negative straight rod with round ends and was small in size, equal to that of halophilic Bdellovibrio strain 5501. The isolate appeared to have close taxonomic relationships to Cytophaga, since this bacterium moved slowly in a gliding manner on a solid agar surface, hydrolyzed agar and starch, contained yellow pigment and was halophilic. The isolate was able to grow not only under host-dependent but also under host-independent conditions when low nutrient media were used for cultivation, and its bacteriolytic mode was different from that of Bdellovibrio, an endoparasite. The isolate was halophilic and required Mg++ and Ca++ in addition to 3% saline for growth. The isolate showed a broad host rnage when tested for plaque-forming activity on gram-negative bacteria but not on the gram-positive bacteria tested so far.  相似文献   

7.
Isolation and Characterization of Host-Independent Bdellovibrios   总被引:29,自引:22,他引:7       下载免费PDF全文
A reliable method has been developed for the isolation of host-independent (H-I; i.e., "saprophytic") strains of Bdellovibrio from host-dependent (H-D; i.e., "parasitic") cultures. The technique involves growing streptomycin-resistant (Sm(r)) H-D cultures on streptomycin-susceptible (Sm(8)) host cells. A lysate containing large numbers of the Sm(r) H-D cells and some remaining Sm(8) host cells is transferred to a selection medium which contains the antibiotic. The Sm(8) host cells in the lysate are killed, and the Sm(r) H-I strains develop in broth within 3 to 6 days. By use of this method, it has been possible to isolate H-I strains from 16 different H-D Bdellovibrio strains studied. The frequency of occurrence of host independence is in the range of one H-I colony per 10(6) to 10(7) plaque-forming units of H-D bdellovibrios. The H-I cultures are nonfermentative, do not reduce nitrate, are strongly proteolytic, are oxidase-positive, and do not utilize 14 different carbon compounds as sources of energy for growth. Most H-I cultures are catalase-positive upon initial isolation from H-D lysates, but some cultures lose this enzyme upon subsequent transfers through host-free media. Most H-I bdellovibrios are pleomorphic, consisting of vibrio- to spiral-shaped cells typically measuring 0.3 to 0.4 mum in width and 1 to 10 mum in length. All H-I bdellovibrios have a cytochrome a and c component (H-I A3.12 differs from the other strains in the location of the peaks of the cytochrome spectrum). All are sensitive to oxytetracycline and (except for strain H-I A3.12) to the vibriostatic pteridine 0/129; most bdellovibrios, except for H-I A3.12, are generally uniformly resistant or susceptible to a given antibiotic. Bdellovibrio and Vibrio spp. have common cytochrome difference spectra and susceptibilities to oxytetracycline and to the vibriostatic pteridine 0/129. All H-I bdellovibrios examined produce an exocellular protease which digests heat-killed host cells. Bdellovibrios possessing predatory and bacteriolytic properties could be reselected from H-I bdellovibrio cultures growing in the presence of living host cells. Attempts to select for bacteriolytic isolates from Vibrio and Spirillum spp. were unsuccessul.  相似文献   

8.
Bdellovibrio bacteriovorus are predatory bacteria that penetrate Gram-negative bacteria and grow intraperiplasmically at the expense of the prey. It was suggested that B. bacteriovorus partially degrade and reutilize lipopolysaccharide (LPS) of the host, thus synthesizing an outer membrane containing structural elements of the prey. According to this hypothesis a host-independent mutant should possess a chemically different LPS. Therefore, the lipopolysaccharides of B. bacteriovorus HD100 and its host-independent derivative B. bacteriovorus HI100 were isolated and characterized by SDS-polyacrylamide gel electrophoresis, immunoblotting, and mass spectrometry. LPS of both strains were identified as smooth-form LPS with different repeating units. The lipid As were isolated after mild acid hydrolysis and their structures were determined by chemical analysis, by mass spectrometric methods, and by NMR spectroscopy. Both lipid As were characterized by an unusual chemical structure, consisting of a beta-(1-->6)-linked 2,3-diamino-2,3-dideoxy-d-glucopyranose disaccharide carrying six fatty acids that were all hydroxylated. Instead of phosphate groups substituting position O-1 of the reducing and O-4' of the nonreducing end alpha-d-mannopyranose residues were found in these lipid As. Thus, they represent the first lipid As completely missing negatively charged groups. A reduced endotoxic activity as determined by cytokine induction from human macrophages was shown for this novel structure. Only minor differences with respect to fatty acids were detected between the lipid As of the host-dependent wild type strain HD100 and for its host-independent derivative HI100. From the results of the detailed analysis it can be concluded that the wild type strain HD100 synthesizes an innate LPS.  相似文献   

9.
The fatty acid composition of twelve Bdellovibrio strains isolated upon the growth on bacteria of various taxonomic groups was studied. A dependence of the lipid composition of bdellovibrios on that of bacteria they were parasitizing on was shown. Data pointing to the selective incorporation of fatty acids of host bacteria by bdellovibrios were obtained. Bdellovibrio membranes were shown to contain monounsatured fatty acids with different positions of double bonds indicating that there are at least two alternative mechanisms of synthesis of these acids in the parasites.  相似文献   

10.
Disrupted cells of Bdellovibrio bacteriovorus exhibited adenosine triphosphatase activity, 60 to 80% of which was in the soluble fraction. Dicyclohexylcarbodiimide did not inhibit the adenosine triphosphatase activity in membrane particles. The particles did not show energy-linked transhydrogenase activity. The activity of non-energy-linked transhydrogenase as well as the rate of oxygen consumption were higher in membrane particles of the host-independent strain than in the host-dependent strains. The uptake of amino acid uptake was inhibited by cyanide and by carbonyl cyanide p-trifluoromethoxyphenyl hydrazone. Valinomycin, in the presence of K+, did not inhibit the uptake, and only partial inhibition was exerted by arsenate and dicyclohexylarbodiimide. Sulfhydryl reagents inhibited amino acid uptake.  相似文献   

11.
Bdellovibrio bacteriovorus is a Gram-negative bacterium that belongs to the delta subgroup of proteobacteria and is characterized by a predatory life cycle. In recent years, work has highlighted the potential use of this predator to control bacteria and biofilms. Traditionally, the reduction in prey cells was used to monitor predation dynamics. In this study, we introduced pMQ414, a plasmid that expresses the tdTomato fluorescent reporter protein, into a host-independent strain and a host-dependent strain of B. bacteriovorus 109J. The new construct was used to conveniently monitor predator proliferation in real time, in different growth conditions, in the presence of lytic enzymes, and on several prey bacteria, replicating previous studies that used plaque analysis to quantify B. bacteriovorus. The new fluorescent plasmid also enabled us to visualize the predator in liquid cultures, in the context of a biofilm, and in association with human epithelial cells.  相似文献   

12.
Interactions between Bdellovibrio and its host cell.   总被引:1,自引:0,他引:1  
The bdellovibrios are extremely small bacteria with the unique property of being parasites of other (gram-negative) bacteria. In the presence of viable and susceptible bacteria a Bdellovibrio cell physically 'attacks' an individual host cell, attaches to its surface, penetrates the cell wall, and multiples within the periplasmic (intramural) space of its prey. The invading Bdellovibrio and its progeny degrade and consume the cellular constituents of the invaded host bacterium. This process finally results in complete lysis of the host cell and release of the Bdellovibrio progeny. From a population of parasitic bdellovibrios, derivatives can be selected that grow on complex nutrient media. Currently, none of the different nutritional types can be propagated in a fully defined synthetic medium. By degradation of the cellular constituents of the host the Bdellovibrio cell in its periplasmic space has available all the monomeric subunits needed to synthesis of the macromolecules. Peculiarities of Bdellovibrio metabolism with respect to uptake of preformed molecules and energy efficiency are discussed.  相似文献   

13.
A new model for the penetration of prey cells by bdellovibrios.   总被引:13,自引:3,他引:10       下载免费PDF全文
Bdellovibrio bacteriovorus 109J and most other bdellovibrios cause prey cells to round following penetration. Bdellovibrio sp. strain W does not cause rounding of the prey. Analysis of enzyme activities during the early stages of bdellovibrio attack indicated that strain W differs from most other bdellovibrios in that there is no glycanase activity produced during penetration. Likewise, heat-killed prey were penetrated normally by strain 109J, but the resulting bdelloplast did not become round and no glycanase was detected, indicating that glycanase is not essential for penetration. Peptidoglycan from prey cells penetrated by strain W was sensitive to lysozyme, but these cells were not susceptible to attack and penetration by strain 109J, indicating that peptidoglycan deacetylation is not the primary exclusion mechanism. We propose a model in which it is the peptidase activity of the bdellovibrios which allows them to breach the peptidoglycan of their prey and in which the glycanase activity exhibited by strain 109J and other bdellovibrios is responsible for the rounding of the bdelloplast.  相似文献   

14.
Two research groups showed that several Bdellovibrio strains incorporated into their outer membranes intact OmpF porin proteins derived from their Escherichia coli prey. These results could not be reproduced by another group using Bdellovibrio bacteriovorus 109J. They showed that a major protein appearing in the Bdellovibrio Triton X-100-insoluble outer membrane was coded for by the bdellovibrios. We reconciled these results by examining the strain used by this group and by reviving a freeze-dried culture of strain 109J which had been stored for almost 9 years. B. bacteriovorus 109J failed to acquire substantial amounts of the OmpF protein from E. coli ML35, and a protein coded for by the bdellovibrios was expressed in its place. However, B. bacteriovorus 109J incorporated the OmpF protein from rough K-12 strains of E. coli, and the revived 9-year-old culture of B. bacteriovorus 109J incorporated more of the OmpF protein from the smooth E. coli ML35 than did its contemporary counterpart. The protein isolated from the outer membrane of the bdellovibrios was identified as the OmpF protein of E. coli by its protease peptide profile on sodium dodecyl sulfate-polyacrylamide gel electrophoresis and by Western blot analysis. This confirmed that bdellovibrios relocalize outer membrane proteins from their prey, but relocalization may be an unstable trait which can be influenced by the prey.  相似文献   

15.
Bdellovibrio bacteriovorus is a predatory bacterium that is capable of invading a number of gram-negative bacteria. The life cycle of this predator can be divided into a nonreproductive phase outside the prey bacteria and a multiplication phase in their periplasm. It was suggested that during the reproduction phase, B. bacteriovorus reutilizes unmodified components of the prey's cell wall. We therefore examined the outer membranes of B. bacteriovorus strains HD100 (DSM 50701) and HD114 (DSM 50705) by using Escherichia coli, Yersinia enterocolitica, and Pseudomonas putida as prey organisms. The combined sodium dodecyl sulfate-polyacrylamide gel electrophoresis and mass spectrometric analyses revealed novel and innate major outer membrane proteins (OMPs) of B. bacteriovorus strains. An incorporation of prey-derived proteins into the cell wall of B. bacteriovorus was not observed. The corresponding genes of the B. bacteriovorus strains were elucidated by a reverse-genetics approach, and a leader peptide was deduced from the gene sequence and confirmed by Edman degradation. The host-independent mutant strain B. bacteriovorus HI100 (DSM 12732) growing in the absence of prey organisms possesses an OMP similar to the major OMPs of the host-dependent strains. The similarity of the primary structure of the OMPs produced by the three Bdellovibrio strains is between 67 and 89%. The leader peptides of all OMPs have a length of 20 amino acids and are highly conserved. The molecular sizes of the mature proteins range from 34.9 to 37.6 kDa. Secondary-structure predictions indicate preferential alpha-helices and little beta-barrel structures.  相似文献   

16.
Wild-type bdellovibrios are obligate intraperiplasmic parasites of other gram-negative bacteria. However, spontaneous mutants that can be cultured in the absence of host cells occur at a frequency of 10(-6) to 10(-7). Such host-independent (H-I) mutants generally display diminished intraperiplasmic-growth capabilities and form plaques that are smaller and more turbid than those formed by wild-type strains on lawns of host cells. An analysis of the gene(s) responsible for the H-I phenotype should provide significant insight into the nature of Bdellovibrio host dependence. Toward this end, a conjugation procedure to transfer both IncQ and IncP vectors from Escherichia coli to Bdellovibrio bacteriovorus was developed. It was found that IncQ-type plasmids were capable of autonomous replication in B. bacteriovorus, while IncP derivatives were not. However, IncP plasmids could be maintained in B. bacteriovorus via homologous recombination through cloned B. bacteriovorus DNA sequences. It was also found that genomic libraries of wild-type B. bacteriovorus 109J DNA constructed in the IncP cosmid pVK100 were stably maintained in E. coli; those constructed in the IncQ cosmid pBM33 were unstable. Finally, we used the conjugation procedure and the B. bacteriovorus libraries to identify a 5.6-kb BamHI fragment of wild-type B. bacteriovorus DNA that significantly enhanced the plaque-forming ability of an H-I mutant, B. bacteriovorus BB5.  相似文献   

17.
Interaction of Bdellovibrio bacteriovorus 100NCJB with bacteria Campylobacter jejuni (strains 1, 2, 3, 4, and 5) and Helicobacter pylori, strain TX30a, was confirmed. The results indicate that lytic activity of bdellovibrios both in liquid media and cells attached to a surface was observed. The potential use of the antimicrobial activity of predatory bacteria for environmental bioprotection and public health is discussed.  相似文献   

18.
Thirty new Bdellovibrio strains were isolated from an agricultural soil and from the rhizosphere of plants grown in that soil. Using a combined molecular and culture-based approach, we found that the soil bdellovibrios included subpopulations of organisms that differed from rhizosphere bdellovibrios. Thirteen soil and seven common bean rhizosphere Bdellovibrio strains were isolated when Pseudomonas corrugata was used as prey; seven and two soil strains were isolated when Erwinia carotovora subsp. carotovora and Agrobacterium tumefaciens, respectively, were used as prey; and one tomato rhizosphere strain was isolated when A. tumefaciens was used as prey. In soil and in the rhizosphere, depending on the prey cells used, the concentrations of bdellovibrios were between 3 × 102 to 6 × 103 and 2.8 × 102 to 2.3 × 104 PFU g−1. A prey range analysis of five soil and rhizosphere Bdellovibrio isolates performed with 22 substrate species, most of which were plant-pathogenic and plant growth-enhancing bacteria, revealed unique utilization patterns and differences between closely related prey cells. An approximately 830-bp fragment of the 16S rRNA genes of all of the Bdellovibrio strains used was obtained by PCR amplification by using a Bdellovibrio-specific primer combination. Soil and common bean rhizosphere strains produced two and one restriction patterns for this PCR product, respectively. The 16S rRNA genes of three soil isolates and three root-associated isolates were sequenced. One soil isolate belonged to the Bdellovibrio stolpii-Bdellovibrio starrii clade, while all of the other isolates clustered with Bdellovibrio bacteriovorus and formed two distantly related, heterogeneous groups.  相似文献   

19.
Symbiosis-independent (Sin) mutants were isolated from the symbiosis-dependent and symbiosis-competent (Sdcomp+) Bdellovibrio bacteriovorus 109J. Independently isolated Sin mutants were examined for their symbiosis competence and most were found to be comp+. Bdellovibrios comp- were selected from the Sincomp+ mutants. The Sincomp+ bdellovibrios are always at a selective disadvantage, either against Sincomp- bdellovibrios (in organic medium) or against Sdcomp+ bdellovibrios (in buffer with Escherichia coli cells).  相似文献   

20.
The effects of cadmium and diuron, typical environmental pollutants, on the survival of predatory bacteria of the genus Bdellovibrio were studied. The adhesion and cohesion of bdellovibrios were shown to enhance cell resistance to xenobiotics. The viability of Bdellovibrio cells was shown to be higher at the stage of bdelloplasts. The obtained results confirm the concept of the surface-associated existence of Bdellovibrio in the natural environment and serve as a basis for the employment of predatory bacteria to solve the problems of human population health, biological protection of ecosystems, and bioterrorism protection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号