首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The 300-kDa cation-independent mannose 6-phosphate receptor (CI-MPR), which contains multiple mannose 6-phosphate (Man-6-P) binding sites that map to domains 3, 5, and 9 within its 15-domain extracytoplasmic region, functions as an efficient carrier of Man-6-P-containing lysosomal enzymes. To determine the types of phosphorylated N-glycans recognized by each of the three carbohydrate binding sites of the CI-MPR, a phosphorylated glycan microarray was probed with truncated forms of the CI-MPR. Surface plasmon resonance analyses using lysosomal enzymes with defined N-glycans were performed to evaluate whether multiple domains are needed to form a stable, high affinity carbohydrate binding pocket. Like domain 3, adjacent domains increase the affinity of domain 5 for phosphomannosyl residues, with domain 5 exhibiting ∼60-fold higher affinity for lysosomal enzymes containing the phosphodiester Man-P-GlcNAc when in the context of a construct encoding domains 5–9. In contrast, domain 9 does not require additional domains for high affinity binding. The three sites differ in their glycan specificity, with only domain 5 being capable of recognizing Man-P-GlcNAc. In addition, domain 9, unlike domains 1–3, interacts with Man8GlcNAc2 and Man9GlcNAc2 oligosaccharides containing a single phosphomonoester. Together, these data indicate that the assembly of three unique carbohydrate binding sites allows the CI-MPR to interact with the structurally diverse phosphorylated N-glycans it encounters on newly synthesized lysosomal enzymes.  相似文献   

2.
We have investigated the distribution of newly synthesized lysosomal enzymes in endocytic compartments of normal rat kidney (NRK) cells. The mannose-6-phosphate (Man6-P) containing lysosomal enzymes could be iodinated in situ after internalization of lactoperoxidase (LPO) by fluid phase endocytosis and isolated on CI-MPR affinity columns. For EM studies, the ectodomain of the CI-MPR conjugated to colloidal gold was used as a probe specific for the phosphomannosyl marker of the newly synthesized hydrolases. In NRK cells, approximately 20-40% of the phosphorylated hydrolases present in the entire pathway were found in early endocytic structures proximal to the 18 degrees C temperature block including early endosomes. These structures were characterized by a low content of endogenous CI-MPR and were accessible to fluid phase markers internalized for 5-15 min at 37 degrees C. The bulk of the phosphorylated lysosomal enzymes was found in late endocytic structures distal to the 18 degrees C block, rich in endogenous CI-MPR and accessible to endocytic markers internalized for 30-60 min at 37 degrees C. The CI-MPR negative lysosomes were devoid of phosphorylated hydrolases. This distribution was unchanged in cells treated with Man6-P to block recapture of secreted lysosomal enzymes. However, lysosomal enzymes were no longer detected in the early endosomal elements of cells treated with cycloheximide. Immunoprecipitation of cathepsin D from early endosomes of pulse-labeled cells showed that this hydrolase is a transient component of this compartment. These data indicate that in NRK cells, the earliest point of convergence of the lysosomal biosynthetic and the endocytic pathways is the early endosome.  相似文献   

3.
Olson LJ  Yammani RD  Dahms NM  Kim JJ 《The EMBO journal》2004,23(10):2019-2028
The 300 kDa cation-independent mannose 6-phosphate receptor (CI-MPR) mediates the intracellular transport of newly synthesized lysosomal enzymes containing mannose 6-phosphate on their N-linked oligosaccharides. In addition to its role in lysosome biogenesis, the CI-MPR interacts with a number of different extracellular ligands at the cell surface, including latent transforming growth factor-beta, insulin-like growth factor-II, plasminogen, and urokinase-type plasminogen activator receptor (uPAR), to regulate cell growth and motility. We have solved the crystal structure of the N-terminal 432 residues of the CI-MPR at 1.8 A resolution, which encompass three out of the 15 repetitive domains of its extracytoplasmic region. The three domains, which exhibit similar topology to each other and to the 46 kDa cation-dependent mannose 6-phosphate receptor, assemble into a compact structure with the uPAR/plasminogen and the carbohydrate-binding sites situated on opposite faces of the molecule. Knowledge of the arrangement of these three domains has allowed us to propose a model of the entire extracytoplasmic region of the CI-MPR that provides a context with which to envision the numerous binding interactions carried out by this multi-faceted receptor.  相似文献   

4.
The specificity of the cation-independent and -dependent mannose 6-phosphate receptors (CI-MPR and CD-MPR) for high mannose-type N-glycans of defined structure containing zero, one, or two Man-P-GlcNAc phosphodiester or Man-6-P phosphomonoester residues was determined by analysis on a phosphorylated glycan microarray. Amine-activated glycans were covalently printed on N-hydroxysuccinimide-activated glass slides and interrogated with different concentrations of recombinant CD-MPR or soluble CI-MPR. Neither receptor bound to non-phosphorylated glycans. The CD-MPR bound weakly or undetectably to the phosphodiester derivatives, but strongly to the phosphomonoester-containing glycans with the exception of a single Man7GlcNAc2-R isomer that contained a single Man-6-P residue. By contrast, the CI-MPR bound with high affinity to glycans containing either phospho-mono- or -diesters although, like the CD-MPR, it differentially recognized isomers of phosphorylated Man7GlcNAc2-R. This differential recognition of phosphorylated glycans by the CI- and CD-MPRs has implications for understanding the biosynthesis and targeting of lysosomal hydrolases.  相似文献   

5.
The 300 kDa cation-independent mannose 6-phosphate receptor (CI-MPR) and the 46 kDa cation-dependent MPR (CD-MPR) are key components of the lysosomal enzyme targeting system that bind newly synthesized mannose 6-phosphate (Man-6-P)-containing acid hydrolases and divert them from the secretory pathway. Previous studies have mapped two high-affinity Man-6-P binding sites of the CI-MPR to domains 1-3 and 9 and one low-affinity site to domain 5 within its 15-domain extracytoplasmic region. A structure-based sequence alignment predicts that domain 5 contains the four conserved residues (Gln, Arg, Glu, Tyr) identified as essential for Man-6-P binding by the CD-MPR and domains 1-3 and 9 of the CI-MPR. Here we show by surface plasmon resonance (SPR) analyses of constructs containing single amino acid substitutions that these conserved residues (Gln-644, Arg-687, Glu-709, Tyr-714) are critical for carbohydrate recognition by domain 5. Furthermore, the N-glycosylation site at position 711 of domain 5, which is predicted to be located near the binding pocket, has no influence on the carbohydrate binding affinity. Endogenous ligands for the MPRs that contain solely phosphomonoesters (Man-6-P) or phosphodiesters (mannose 6-phosphate N-acetylglucosamine ester, Man-P-GlcNAc) were generated by treating the lysosomal enzyme acid alpha-glucosidase (GAA) with recombinant GlcNAc-phosphotransferase and uncovering enzyme (N-acetylglucosamine-1-phosphodiester alpha-N-acetylglucosaminidase). SPR analyses using these modified GAAs demonstrate that, unlike the CD-MPR or domain 9 of the CI-MPR, domain 5 exhibits a 14-18-fold higher affinity for Man-P-GlcNAc than Man-6-P, implicating this region of the receptor in targeting phosphodiester-containing lysosomal enzymes to the lysosome.  相似文献   

6.
Transport of lysosomal enzymes is mediated by two mannose 6-phosphate receptors: a cation dependent (CD-MPR) and a cation independent receptor (CI-MPR). In the present study the effect of MPR-deficiency on the lysosomal system of neonatal mouse hepatocytes was studied by ultrastructural morphometric analyses. The volume density of the lysosomal system in hepatocytes of mice that lack both receptors was significantly increased in comparison with controls and with mice deficient for CI-MPR only. This higher volume density was due to a nine-fold increase of residual bodies. In CI-MPR-deficient mice the volume density of the lysosomal system was not different from controls and no increase of residual bodies was observed. It is concluded that in hepatocytes of MPR-deficient neonatal mice lysosomal storage occurs when both MPRs are lacking, whereas deficiency of CI-MPR only has no effect on the ultrastructure of the lysosomal system.  相似文献   

7.
《The Journal of cell biology》1989,108(6):2149-2162
We have developed a method for the isolation of the subcellular organelles from bovine liver which are enriched in the cation- independent mannose 6-phosphate receptor (CI-MPR) and the cation- dependent mannose 6-phosphate receptor (CD-MPR). The purification scheme consists of sedimentation of a postnuclear supernatant fraction on a sucrose gradient followed by immunoisolation using specific anti- peptide antibodies conjugated to magnetic polystyrene beads. Antibodies that recognize the cytoplasmic domain of either the CI-MPR or the CD- MPR routinely give membrane preparations that are approximately 50-fold enriched in each of the respective receptors, as determined by quantitative Western blotting. The immunoisolated membranes are also enriched in the other MPR, as well as in the asialoglycoprotein receptor. They contain significantly lower levels of enzyme activities representative of the plasma membrane (5' nucleotidase) or the Golgi complex (galactosyltransferase and sialyltransferase). There is little or no enrichment for either the lysosomal enzymes beta-hexosaminidase and tartrate-resistant acid phosphatase, or the mitochondrial enzyme succinate-tetrazolium reductase. These data, together with electron microscopy of the immunoisolated material, suggest that the bulk of MPR- containing membranes we have isolated from bovine liver correspond to endosomes. Analysis by SDS-PAGE indicates that several proteins, including two with apparent molecular weights of 170 K and 400 K, are significantly enriched in the purified fractions and may represent potential markers for MPR-containing endosomes.  相似文献   

8.
The neuronal ceroid lipofuscinoses (NCLs, Batten disease) are a group of inherited childhood-onset neurodegenerative disorders characterized by the lysosomal accumulation of undigested material within cells. To understand this dysfunction, we analysed trafficking of the cation-independent mannose 6-phosphate receptor (CI-MPR), which delivers the digestive enzymes to lysosomes. A common form of NCL is caused by mutations in CLN3, a multipass transmembrane protein of unknown function. We report that ablation of CLN3 causes accumulation of CI-MPR in the trans Golgi network, reflecting a 50% reduction in exit. This CI-MPR trafficking defect is accompanied by a fall in maturation and cellular activity of lysosomal cathepsins. CLN3 is therefore essential for trafficking along the route needed for delivery of lysosomal enzymes, and its loss thereby contributes to and may explain the lysosomal dysfunction underlying Batten disease.  相似文献   

9.
The human colon adenocarcinoma cell lines SW 948, SW 1116, and SW 1222 were tested for their ability to sort and internalize lysosomal enzymes. The biosynthesis of the lysosomal enzymes cathepsin B, arylsulfatase A, and beta-hexosaminidase in these cell lines exhibits no significant differences to that in human fibroblasts. The intracellular targeting of newly synthesized hydrolases to the lysosomes relies in colon carcinoma cells on the mannose 6-phosphate receptor system. Both the cation-independent mannose 6-phosphate receptor (CI-MPR) and the cation-dependent mannose 6-phosphate receptor are expressed in all colon carcinoma cell lines investigated. Endocytosis of lysosomal enzymes via mannose 6-phosphate receptors is reduced in colon carcinoma cells as compared with human fibroblasts. SW 1116 cells were shown to be deficient in receptor-mediated endocytosis of mannose 6-phosphate containing ligands. Ligands of other endocytic receptors as well as the fluid-phase marker horseradish peroxidase were internalized at normal rates. While antibodies against CI-MPR bind to the surface of SW 1116 cells, these antibodies cannot be internalized. These data suggest that the cycling of CI-MPR is specifically impaired in SW 1116 cells.  相似文献   

10.
In higher eukaryotes, the transport of soluble lysosomal enzymes involves the recognition of their mannose 6-phosphate signal by two receptors: the cation-independent mannose 6-phosphate/insulin-like growth factor II receptor (CI-MPR) and the cation-dependent mannose 6-phosphate receptor (CD-MPR). It is not known why these two different proteins are present in most cell types. To investigate their relative function in lysosomal enzyme targeting, we created cell lines that lack either or both MPRs. This was accomplished by mating CD-MPR-deficient mice with Thp mice that carry a CI-MPR deleted allele. Fibroblasts prepared from embryos that lack the two receptors exhibit a massive missorting of multiple lysosomal enzymes and accumulate undigested material in their endocytic compartments. Fibroblasts that lack the CI-MPR, like those lacking the CD-MPR, exhibit a milder phenotype and are only partially impaired in sorting. This demonstrates that both receptors are required for efficient intracellular targeting of lysosomal enzymes. More importantly, comparison of the phosphorylated proteins secreted by the different cell types indicates that the two receptors may interact in vivo with different subgroups of hydrolases. This observation may provide a rational explanation for the existence of two distinct mannose 6-phosphate binding proteins in mammalian cells.  相似文献   

11.
Thyroglobulin has been shown to be phosphorylated and to carry the mannose 6-phosphate (M6P) signal in terminal position. In order to investigate whether the cation-independent mannose 6-phosphate receptor (CI-MPR) can possibly play a role in the transport of thyroglobulin the localization of the receptor was analyzed in thyroid follicle cells. The immunocytochemical observations showed that the CI-MPR is primarily located in elements of the endocytic pathway such as coated pits and endosomes. This localization of the CI-MPR in thyrocytes differs from the receptor sites in other cell types by the rare occurrence of the CI-MPR in cisternae of the Golgi complex. The observations are interpreted as an indication that the relatively small amount of receptor in the Golgi complex might be occupied primarily by lysosomal hydrolases. The CI-MPR in thyrocytes might, therefore, be unable to bind and to convey thyroglobulin efficiently. The receptor is, however, a binding site for thyroglobulin at the apical plasma membrane and may, therefore, be involved in the binding of thyroglobulin and its transfer from the follicle lumen to lysosomes.  相似文献   

12.
Mouse L cells deficient in expression of the murine cation-independent mannose 6-phosphate receptor/insulin-like growth factor II receptor (CI-MPR/IGF-IIR) were stably transfected with a plasmid containing the cDNA for the human receptor. Transfected cells expressed high levels of the human receptor which functioned in the transport of lysosomal enzymes and was capable of binding 125I-IGF-II, both at the cell surface and intracellularly. Cell surface binding of 125I-IGF-II by the receptor could be inhibited by pretreatment of cells with antibodies to the receptor or by coincubation with the lysosomal enzyme, beta-glucuronidase. Expression of the receptor conferred on transfected cells the ability to internalize and degrade 125I-IGF-II. Cells transfected with the parental vector and those expressing the human CI-MRP/IGF-IIR were found to express an atypical binding site for IGF-II that was distinct from the CI-MPR/IGF-IIR and the type I IGF-receptor. The availability of two cell lines, one of which overexpresses the human CI-MPR/IGF-IIR and one deficient in expression of the murine receptor, may help in the analysis of the role of the receptor in mediating the biological effects of IGF-II. They should also be useful in examining the significance of binding of ligands, such as transforming growth factor-beta 1 precursor and proliferin to this receptor.  相似文献   

13.
The endocytic trafficking of the cation-independent mannose 6-phosphate receptor (CI-MPR) involves multiple sorting steps. A cluster of acidic amino acids followed by a dileucine motif in the cytoplasmic tail has been proposed to mediate receptor sorting from the trans Golgi network (TGN) to late endosomes. Mutations in this motif impair lysosomal enzyme sorting by preventing association of CI-MPR with coat proteins. The role of the acidic cluster/dileucine motif in the post-endocytic transport of the receptor was examined using the CI-MPR mutants, AC01 and D160E (Chen HJ, Yuan J, Lobel P. J Biol Chem 1997;272:7003-7012). Following internalization, wild type (WT) CI-MPR is transported through sorting endosomes into the endocytic recycling compartment (ERC), after which it traffics to the TGN and other organelles. However, the mutants localize mostly to the ERC and only a small portion reaches the TGN, suggesting that the sorting of the CI-MPR mutants from the ERC into the TGN is severely impaired. We observed no defect in receptor internalization or in the rate of tail mutant recycling to the cell surface compared to the WT. These results demonstrate that the acidic cluster/dileucine motif of CI-MPR is critical for receptor sorting at early stages of intracellular transport following endocytosis.  相似文献   

14.
Mouse LSECtin as a model for a human Ebola virus receptor   总被引:1,自引:0,他引:1  
The biochemical properties of mouse LSECtin, a glycan-binding receptor that is a member of the C-type lectin family found on sinusoidal endothelial cells, have been investigated. The C-type carbohydrate-recognition domain of mouse LSECtin, expressed in bacteria, has been used in solid-phase binding assays, and a tetramerized form has been used to probe a glycan array. In spite of sequence differences near the glycan-binding sites, the mouse receptor closely mimics the properties of the human receptor, showing high affinity binding to glycans bearing terminal GlcNAcβ1-2Man motifs. Site-directed mutagenesis has been used to confirm that residues near the binding site that differ between the human and the mouse proteins do not affect this binding specificity. Mouse and human LSECtin have been shown to bind Ebola virus glycoprotein with equivalent affinities, and the GlcNAcβ1-2Man disaccharide has been demonstrated to be an effective inhibitor of this interaction. These studies provide a basis for using mouse LSECtin, and knockout mice lacking this receptor, to model the biological properties of the human receptor.  相似文献   

15.
A kinase activity of purified bovine brain clathrin-coated vesicles phosphorylates the bovine cation-independent mannose 6-phosphate receptor (CI-MPR) with high efficiency (Km approximately 50-100 nM). The kinase copurifies in gel filtration, adsorption on hydroxylapatite, and ion exchange chromatography with the HAI assembly proteins which are part of the coat of Golgi-derived clathrin-coated vesicles. The kinase is associated to the 47-kDa subunit of the complex and exhibits properties similar to a casein kinase II: it uses either ATP or GTP as substrate and its activity is stimulated by poly-L-lysine and inhibited by heparin. Using different domains of the CI-MPR as potential substrates, we show that the phosphorylation is restricted to its cytoplasmic domain. Inhibition studies using synthetic peptides and two-dimensional mapping of the tryptic phosphopeptides indicate that this posttranslational modification occurs on serines 2421 and 2492 of the full-length bovine CI-MPR precursor, residues which are located in typical casein-kinase II recognition sequences. Labeling of Madin-Darby bovine kidney cells followed by immunoprecipitation of the CI-MPR and analysis of the corresponding tryptic phosphopeptides shows that the same serines are phosphorylated in vivo.  相似文献   

16.
Zhou G  Roizman B 《Journal of virology》2002,76(12):6197-6204
Herpes simplex virus 1 mutants lacking the gene encoding glycoprotein D (gD) and the gD normally present in the envelope of the virus (gD(-/-) stocks) or mutants lacking the gD gene but containing trans-induced gD in their envelopes (gD(-/+)) cause apoptosis in human SK-N-SH cells. The gD(-/-) virions are taken up by endocytosis and are degraded, whereas gD(-/+) viruses replicate but produce gD(-/-) virus. Apoptosis is blocked by delivery of the gD gene in trans. Studies designed to test several hypotheses concerning the role of gD in apoptosis revealed the following. (i) gD(-/-) and gD(-/+) stocks induce fragmentation of cellular DNA in SK-N-SH, HEp-2, HeLa, and Vero cell lines. (ii) Chloroquine blocks apoptosis induced by gD(-/-) stocks but not by gD(-/+) stocks. The drug also rescues gD(-/-) from degradation. (iii) Cells transduced with cation-independent mannose 6-phosphate receptor (CI-MPR) block apoptosis induced by either gD(-/-) or gD(-/+) virus. (iv) Expression of sequences antisense to the cloned CI-MPR gene induced apoptosis by themselves. Wild-type virus but not gD(-/-) or gD(-/+) stocks of mutant virus blocked apoptosis induced by the expression of CI-MPR antisense sequences. These results exclude the possibility that to block apoptosis, gD must interact with its HveA receptor, a member of the tumor necrosis factor alpha receptor family. Instead, the data suggest that gD blocks the influx of lysosomal enzymes into the endosomal compartment by binding to CI-MPR. This conclusion is consistent with published reports that phosphorylated gD interacts with CI-MPR.  相似文献   

17.
A unique glycan-binding protein expressed in macrophages and some types of other immune cells is the mannose receptor (MR, CD206). It is an endocytic, transmembrane protein with multiple glycan-binding domains and different specificities in binding glycans. The mannose receptor is important as it has major roles in diverse biological processes, including regulation of circulating levels of reproductive hormones, homeostasis, innate immunity, and infections. These different functions involve the recognition of a wide range of glycans, and their nature is currently under intense study. But the mannose receptor is just one of many glycan-binding proteins expressed in macrophages, leading to an interest in the potential relationship between the macrophage glycome and how it may regulate cognate glycan-binding protein activities. This review focuses primarily on the mannose receptor and its carbohydrate ligands, as well as macrophages and their glycomes.  相似文献   

18.
The ubiquitin proteasome system is central to the regulation of a number of intracellular sorting pathways in mammalian cells including quality control at the endoplasmic reticulum and the internalization and endosomal sorting of cell surface receptors. Here we describe that RNF126, an E3 ubiquitin ligase, is involved in the sorting of the cation-independent mannose 6-phosphate receptor (CI-MPR). In cells transiently depleted of RNF126, the CI-MPR is dispersed into Rab4 positive endosomes and the efficiency of retrograde sorting is delayed. Furthermore, the stable knockdown of RNF126 leads to the lysosomal degradation of CI-MPR and missorting of cathepsin D. RNF126 specifically regulates the sorting of the CI-MPR as other cargo that follow the retrograde sorting route including the cholera toxin, furin and TGN38 are unaffected in the absence of RNF126. Lastly we show that the RING finger domain of RNF126 is required to rescue the decrease in CI-MPR levels, suggesting that the ubiquitin ligase activity of RNF126 is required for CI-MPR sorting. Together, our data indicate that the ubiquitin ligase RNF126 has a role in the retrograde sorting of the CI-MPR  相似文献   

19.
The 300-kDa cation-independent mannose 6-phosphate receptor (CI-MPR) plays a critical role in the trafficking of newly synthesized mannose 6-phosphate-containing acid hydrolases to the lysosome. The receptor contains two high affinity carbohydrate recognition sites within its 15-domain extracytoplasmic region, with essential residues for carbohydrate recognition located in domain 3 and domain 9. Previous studies have shown that these two sites are distinct with respect to carbohydrate specificity. In addition, expression of truncated forms of the CI-MPR demonstrated that domain 9 can be expressed as an isolated domain, retaining high affinity (Kd approximately 1 nm) carbohydrate binding, whereas expression of domain 3 alone resulted in a protein capable of only low affinity binding (Kd approximately 1 microm) toward a lysosomal enzyme. In the current report the crystal structure of the N-terminal 432 residues of the CI-MPR, encompassing domains 1-3, was solved in the presence of bound mannose 6-phosphate. The structure reveals the unique architecture of this carbohydrate binding pocket and provides insight into the ability of this site to recognize a variety of mannose-containing sugars.  相似文献   

20.
Mutations in the gene encoding CLN5 are the cause of Finnish variant late infantile Neuronal Ceroid Lipofuscinosis (NCL), and the gene encoding CLN5 is 1 of 10 genes (encoding CLN1 to CLN9 and cathepsin D) whose germ line mutations result in a group of recessive disorders of childhood. Although CLN5 localizes to the lysosomal compartment, its function remains unknown. We have uncovered an interaction between CLN5 and sortilin, the lysosomal sorting receptor. However, CLN5, unlike prosaposin, does not require sortilin to localize to the lysosomal compartment. We demonstrate that in CLN5-depleted HeLa cells, the lysosomal sorting receptors sortilin and cation-independent mannose 6-phosphate receptor (CI-MPR) are degraded in lysosomes due to a defect in recruitment of the retromer (an endosome-to-Golgi compartment trafficking component). In addition, we show that the retromer recruitment machinery is also affected by CLN5 depletion, as we found less loaded Rab7, which is required to recruit retromer. Taken together, our results support a role for CLN5 in controlling the itinerary of the lysosomal sorting receptors by regulating retromer recruitment at the endosome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号