共查询到20条相似文献,搜索用时 93 毫秒
1.
2.
Vocal communication in crowded social environments is a difficult problem for both humans and nonhuman animals. Yet many important social behaviors require listeners to detect, recognize, and discriminate among signals in a complex acoustic milieu comprising the overlapping signals of multiple individuals, often of multiple species. Humans exploit a relatively small number of acoustic cues to segregate overlapping voices (as well as other mixtures of concurrent sounds, like polyphonic music). By comparison, we know little about how nonhuman animals are adapted to solve similar communication problems. One important cue enabling source segregation in human speech communication is that of frequency separation between concurrent voices: differences in frequency promote perceptual segregation of overlapping voices into separate “auditory streams” that can be followed through time. In this study, we show that frequency separation (ΔF) also enables frogs to segregate concurrent vocalizations, such as those routinely encountered in mixed-species breeding choruses. We presented female gray treefrogs (Hyla chrysoscelis) with a pulsed target signal (simulating an attractive conspecific call) in the presence of a continuous stream of distractor pulses (simulating an overlapping, unattractive heterospecific call). When the ΔF between target and distractor was small (e.g., ≤3 semitones), females exhibited low levels of responsiveness, indicating a failure to recognize the target as an attractive signal when the distractor had a similar frequency. Subjects became increasingly more responsive to the target, as indicated by shorter latencies for phonotaxis, as the ΔF between target and distractor increased (e.g., ΔF = 6–12 semitones). These results support the conclusion that gray treefrogs, like humans, can exploit frequency separation as a perceptual cue to segregate concurrent voices in noisy social environments. The ability of these frogs to segregate concurrent voices based on frequency separation may involve ancient hearing mechanisms for source segregation shared with humans and other vertebrates. 相似文献
3.
Predictive coding: a fresh view of inhibition in the retina 总被引:9,自引:0,他引:9
M V Srinivasan S B Laughlin A Dubs 《Proceedings of the Royal Society of London. Series B, Containing papers of a Biological character. Royal Society (Great Britain)》1982,216(1205):427-459
Interneurons exhibiting centre--surround antagonism within their receptive fields are commonly found in peripheral visual pathways. We propose that this organization enables the visual system to encode spatial detail in a manner that minimizes the deleterious effects of intrinsic noise, by exploiting the spatial correlation that exists within natural scenes. The antagonistic surround takes a weighted mean of the signals in neighbouring receptors to generate a statistical prediction of the signal at the centre. The predicted value is subtracted from the actual centre signal, thus minimizing the range of outputs transmitted by the centre. In this way the entire dynamic range of the interneuron can be devoted to encoding a small range of intensities, thus rendering fine detail detectable against intrinsic noise injected at later stages in processing. This predictive encoding scheme also reduces spatial redundancy, thereby enabling the array of interneurons to transmit a larger number of distinguishable images, taking into account the expected structure of the visual world. The profile of the required inhibitory field is derived from statistical estimation theory. This profile depends strongly upon the signal: noise ratio and weakly upon the extent of lateral spatial correlation. The receptive fields that are quantitatively predicted by the theory resemble those of X-type retinal ganglion cells and show that the inhibitory surround should become weaker and more diffuse at low intensities. The latter property is unequivocally demonstrated in the first-order interneurons of the fly's compound eye. The theory is extended to the time domain to account for the phasic responses of fly interneurons. These comparisons suggest that, in the early stages of processing, the visual system is concerned primarily with coding the visual image to protect against subsequent intrinsic noise, rather than with reconstructing the scene or extracting specific features from it. The treatment emphasizes that a neuron's dynamic range should be matched to both its receptive field and the statistical properties of the visual pattern expected within this field. Finally, the analysis is synthetic because it is an extension of the background suppression hypothesis (Barlow & Levick 1976), satisfies the redundancy reduction hypothesis (Barlow 1961 a, b) and is equivalent to deblurring under certain conditions (Ratliff 1965). 相似文献
4.
5.
In the CNS, activity of individual neurons has a small but quantifiable relationship to sensory representations and motor outputs. Coactivation of a few 10s to 100s of neurons can code sensory inputs and behavioral task performance within psychophysical limits. However, in a sea of sensory inputs and demand for complex motor outputs how is the activity of such small subpopulations of neurons organized? Two theories dominate in this respect: increases in spike rate (rate coding) and sharpening of the coincidence of spiking in active neurons (temporal coding). Both have computational advantages and are far from mutually exclusive. Here, we review evidence for a bias in neuronal circuits toward temporal coding and the coexistence of rate and temporal coding during population rhythm generation. The coincident expression of multiple types of gamma rhythm in sensory cortex suggests a mechanistic substrate for combining rate and temporal codes?on the basis of stimulus strength. 相似文献
6.
Canonical correlation analysis (CCA) describes the associations between two sets of variables by maximizing the correlation between linear combinations of the variables in each dataset. However, in high‐dimensional settings where the number of variables exceeds the sample size or when the variables are highly correlated, traditional CCA is no longer appropriate. This paper proposes a method for sparse CCA. Sparse estimation produces linear combinations of only a subset of variables from each dataset, thereby increasing the interpretability of the canonical variates. We consider the CCA problem from a predictive point of view and recast it into a regression framework. By combining an alternating regression approach together with a lasso penalty, we induce sparsity in the canonical vectors. We compare the performance with other sparse CCA techniques in different simulation settings and illustrate its usefulness on a genomic dataset. 相似文献
7.
Alex D. Reyes 《PLoS computational biology》2021,17(8)
In the auditory system, tonotopy is postulated to be the substrate for a place code, where sound frequency is encoded by the location of the neurons that fire during the stimulus. Though conceptually simple, the computations that allow for the representation of intensity and complex sounds are poorly understood. Here, a mathematical framework is developed in order to define clearly the conditions that support a place code. To accommodate both frequency and intensity information, the neural network is described as a space with elements that represent individual neurons and clusters of neurons. A mapping is then constructed from acoustic space to neural space so that frequency and intensity are encoded, respectively, by the location and size of the clusters. Algebraic operations -addition and multiplication- are derived to elucidate the rules for representing, assembling, and modulating multi-frequency sound in networks. The resulting outcomes of these operations are consistent with network simulations as well as with electrophysiological and psychophysical data. The analyses show how both frequency and intensity can be encoded with a purely place code, without the need for rate or temporal coding schemes. The algebraic operations are used to describe loudness summation and suggest a mechanism for the critical band. The mathematical approach complements experimental and computational approaches and provides a foundation for interpreting data and constructing models. 相似文献
8.
Distributed coding of sound locations in the auditory cortex 总被引:3,自引:0,他引:3
Although the auditory cortex plays an important role in sound localization, that role is not well understood. In this paper, we examine the nature of spatial representation within the auditory cortex, focusing on three questions. First, are sound-source locations encoded by individual sharply tuned neurons or by activity distributed across larger neuronal populations? Second, do temporal features of neural responses carry information about sound-source location? Third, are any fields of the auditory cortex specialized for spatial processing? We present a brief review of recent work relevant to these questions along with the results of our investigations of spatial sensitivity in cat auditory cortex. Together, they strongly suggest that space is represented in a distributed manner, that response timing (notably first-spike latency) is a critical information-bearing feature of cortical responses, and that neurons in various cortical fields differ in both their degree of spatial sensitivity and their manner of spatial coding. The posterior auditory field (PAF), in particular, is well suited for the distributed coding of space and encodes sound-source locations partly by modulations of response latency. Studies of neurons recorded simultaneously from PAF and/or A1 reveal that spatial information can be decoded from the relative spike times of pairs of neurons - particularly when responses are compared between the two fields - thus partially compensating for the absence of an absolute reference to stimulus onset. 相似文献
9.
Humans can recognize spoken words with unmatched speed and accuracy. Hearing the initial portion of a word such as "formu…" is sufficient for the brain to identify "formula" from the thousands of other words that partially match. Two alternative computational accounts propose that partially matching words (1) inhibit each other until a single word is selected ("formula" inhibits "formal" by lexical competition) or (2) are used to predict upcoming speech sounds more accurately (segment prediction error is minimal after sequences like "formu…"). To distinguish these theories we taught participants novel words (e.g., "formubo") that sound like existing words ("formula") on two successive days. Computational simulations show that knowing "formubo" increases lexical competition when hearing "formu…", but reduces segment prediction error. Conversely, when the sounds in "formula" and "formubo" diverge, the reverse is observed. The time course of magnetoencephalographic brain responses in the superior temporal gyrus (STG) is uniquely consistent with a segment prediction account. We propose a predictive coding model of spoken word recognition in which STG neurons represent the difference between predicted and heard speech sounds. This prediction error signal explains the efficiency of human word recognition and simulates neural responses in auditory regions. 相似文献
10.
《Current biology : CB》2022,32(11):2548-2555.e5
11.
12.
Precision of synaptic connections within neural circuits is essential for the accurate processing of sensory information. Specificity is exemplified at cellular and subcellular levels in the chick auditory brainstem, where nucleus magnocellularis (NM) neurons project bilaterally to nucleus laminaris (NL). Dorsal dendrites of NL neurons receive input from ipsilateral, but not contralateral, branches of NM axons whereas ventral dendrites are innervated by contralateral NM axons. This organization is analogous to that of the mammalian medial superior olive (MSO) and represents an important component of the circuitry underlying sound localization. However, the molecular mechanisms that establish segregated inputs to individual regions of NL neurons have not been identified. During synapse formation in NL, the EphA4 receptor is expressed in dorsal, but not ventral NL, neuropil, suggesting a potential role in targeting synapses to appropriate termination zones. Here, we directly tested this role by ectopically expressing EphA4 and disrupting EphA4 signaling using in ovo electroporation. We found that both misexpression of EphA4 and disruption of EphA4 signaling resulted in an increase in the number of NM axons that grow aberrantly across NL cell bodies into inappropriate regions of NL neuropil. EphA4 signaling is thus essential for targeting axons to distinct subsets of dendrites. Moreover, loss of EphA4 function resulted in morphological abnormalities of NL suggestive of errors in cell migration. These results suggest that EphA4 has multiple roles in the formation of auditory brainstem nuclei and their projections. 相似文献
13.
Elmo Pereira da Silva Gabriel C. Borba Célio Magalhães Jansen Zuanon William E. Magnusson 《Freshwater Biology》2020,65(4):674-687
- Resource partitioning is a stabilising mechanism known to maintain species diversity in a variety of environments. Assemblages of stream shrimp species are structured by habitat features and predation. Therefore, segregation along habitat dimensions could facilitate coexistence among species in shrimp assemblages even when segregation is a result of predation pressure by fish species. These ecological interactions take place on a background modulated by biogeographic features, such as connectivity among drainages. However, these generalisations are mainly based on studies undertaken in temperate regions.
- We investigated whether abundances of rainforest shrimp species are related to habitat dimensions, and whether habitat–abundance relationships might be mediated through fish-assemblage structure and the effect of drainages on connectivity.
- We detected effects of habitat variation on densities of shrimp species, but the magnitudes of the effects were larger for some species than others. Fish-assemblage composition also affected shrimp densities. Two of the three species of shrimp showed some degree of habitat specialisation, but only along current-velocity, depth, and pH gradients. Habitat segregation among species occurred along the current-velocity and pH gradients. Relationships between density and environmental gradients differed between catchments for only one species and only along the pH gradient.
- Our findings provide evidence that rainforest-stream shrimp species respond differently to environmental gradients and this could facilitate coexistence among species. However, interactions with fish seem to have a stronger effect on species densities, and consequently species segregation, than direct effects of the environmental gradients, resulting in apparent competition for these resources.
14.
Background
Extraction of linguistically relevant auditory features is critical for speech comprehension in complex auditory environments, in which the relationships between acoustic stimuli are often abstract and constant while the stimuli per se are varying. These relationships are referred to as the abstract auditory rule in speech and have been investigated for their underlying neural mechanisms at an attentive stage. However, the issue of whether or not there is a sensory intelligence that enables one to automatically encode abstract auditory rules in speech at a preattentive stage has not yet been thoroughly addressed.Methodology/Principal Findings
We chose Chinese lexical tones for the current study because they help to define word meaning and hence facilitate the fabrication of an abstract auditory rule in a speech sound stream. We continuously presented native Chinese speakers with Chinese vowels differing in formant, intensity, and level of pitch to construct a complex and varying auditory stream. In this stream, most of the sounds shared flat lexical tones to form an embedded abstract auditory rule. Occasionally the rule was randomly violated by those with a rising or falling lexical tone. The results showed that the violation of the abstract auditory rule of lexical tones evoked a robust preattentive auditory response, as revealed by whole-head electrical recordings of the mismatch negativity (MMN), though none of the subjects acquired explicit knowledge of the rule or became aware of the violation.Conclusions/Significance
Our results demonstrate that there is an auditory sensory intelligence in the perception of Chinese lexical tones. The existence of this intelligence suggests that the humans can automatically extract abstract auditory rules in speech at a preattentive stage to ensure speech communication in complex and noisy auditory environments without drawing on conscious resources. 相似文献15.
Annemarie Surlykke Ole N?sbye Larsen Axel Michelsen 《Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology》1988,162(3):367-374
Temporal coding in the moth ear was inferred from the response of the auditory receptor to acoustic stimuli with different temporal characteristics.
相似文献
1. | Determinations of the threshold with different stimulus pulse durations showed that the moth ear behaves as an energy detector with a maximum time constant (the integration time) of 25 ms. Pulse durations beyond this value did not result in decreased thresholds (Fig. 1). |
2. | The synchronization to amplitude modulations was determined by stimulating the moth ear with amplitude modulated (AM) tones (carrier frequency: 40 kHz) and AM white noise presented as 450 ms pulses separated by pauses of similar length. The modulation depth was constant (100%) whereas the modulation frequency,f m, was varied. The maximumf m which the auditory receptors could follow was 200 Hz (P<0.05) (figs.=" 2,=" 3,=" 4).=">0.05)> |
3. | The relatively broad tuning of the only receptor which was functional at the relevant stimulus intensities suggested that AM detection could only be based on temporal cues. This was confirmed by the results showing the same degree of synchronization independent of carrier. |
4. | A minimum time constant for the receptor was also determined by interrupting a 400 ms noise pulse by a gap (Figs. 5, 6). The threshold for gap detection of the moth ear was ca. 2 ms on a 2.5% significance level (one sided test). |
5. | The temporal acuity reported here seems to be fine enough to explain the temporal resolution suggested by behavioral results from other insect species. The results are discussed in relation to acoustic communication in insects as well as in relation to temporal resolution in vertebrates. |
16.
Although the auditory cortex plays a necessary role in sound localization, physiological investigations in the cortex reveal inhomogeneous sampling of auditory space that is difficult to reconcile with localization behavior under the assumption of local spatial coding. Most neurons respond maximally to sounds located far to the left or right side, with few neurons tuned to the frontal midline. Paradoxically, psychophysical studies show optimal spatial acuity across the frontal midline. In this paper, we revisit the problem of inhomogeneous spatial sampling in three fields of cat auditory cortex. In each field, we confirm that neural responses tend to be greatest for lateral positions, but show the greatest modulation for near-midline source locations. Moreover, identification of source locations based on cortical responses shows sharp discrimination of left from right but relatively inaccurate discrimination of locations within each half of space. Motivated by these findings, we explore an opponent-process theory in which sound-source locations are represented by differences in the activity of two broadly tuned channels formed by contra- and ipsilaterally preferring neurons. Finally, we demonstrate a simple model, based on spike-count differences across cortical populations, that provides bias-free, level-invariant localization—and thus also a solution to the “binding problem” of associating spatial information with other nonspatial attributes of sounds. 相似文献
17.
The auditory systems of humans and many other species use the difference in the time of arrival of acoustic signals at the two ears to compute the lateral position of sound sources. This computation is assumed to initially occur in an assembly of neurons organized along a frequency-by-delay surface. Mathematically, the computations are equivalent to a two-dimensional cross-correlation of the input signals at the two ears, with the position of the peak activity along this surface designating the position of the source in space. In this study, partially correlated signals to the two ears are used to probe the mechanisms for encoding spatial cues in stationary or dynamic (moving) signals. It is demonstrated that a cross-correlation model of the auditory periphery coupled with statistical decision theory can predict the patterns of performance by human subjects for both stationary and motion stimuli as a function of stimulus decorrelation. Implications of these findings for the existence of a unique cortical motion system are discussed. 相似文献
18.
MtDNA substitution rate and segregation of heteroplasmy in coding and noncoding regions 总被引:3,自引:0,他引:3
The mitochondrial DNA (mtDNA) substitution rate and segregation of heteroplasmy were studied for the non-coding control region (D-loop) and 500 bp of the coding region between nucleotide positions 5550 and 6050, by sequence analysis of blood samples from 194 individuals, representing 33 maternal lineages. No homoplasmic nucleotide substitutions were detected in a total of 292 transmissions. The estimated substitution rate per nucleotide per million years for the control region (micro>0.21, 95% CI 0-0.6) was not significantly different from that for the coding region (micro>0.54, 95% CI 0-1.0). Variation in the length of homopolymeric C streches was observed at three sites in the control region (positions 65, 309 and 16,189), all of which were in the heteroplasmic state. Segregation of heteroplasmic genotypes between generations was observed in several maternal pedigrees. At position 309, a longer poly C tract length was strongly associated with a higher probability for heteroplasmy and rapid segregation between generations. The length heteroplasmy at positions 65 and 16,189 was found at low frequency and was confined to a few families. 相似文献
19.
Biophysics - Abstract—We model the interaction of two populations based on evolutionary equations that consider diffusion, taxis, and logistic growth. Scenarios of biological invasion are... 相似文献
20.
Very simple biochemical systems regulated at the level of gene expression or protein function are capable of complex dynamic behaviour. Among the various patterns of regulation associated with non-linear kinetics, multistability, which corresponds to a true switch between alternate steady states, allows a graded signal to be turned into a discontinuous evolution of the system along several possible distinct pathways, which can be either reversible or irreversible. Multistability plays a significant role in some of the basic processes of life. It might account for maintenance of phenotypic differences in the absence of genetic or environmental differences, as has been demonstrated experimentally for the regulation of the lactose operon in Escherichia coli. Cell differentiation might also be explained as multistability. 相似文献