首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Literature shows that Flaviviruses cause a variety of diseases, including fevers, encephalitis, and hemorrhagic fevers. NS3 is a multifunctional protein with an Nterminal protease domain (NS3pro) that is responsible for proteolytic processing of the viral polyprotein, and a C-terminal region that contains an RNA triphosphatase, RNA helicase and RNA-stimulated NTPase domain that are essential for RNA replication. Therefore, NS3 protein is the preferential choice for inhibition to stop the proteolytic processing. Hence, the 3D structure of NS3 protein was modeled using homology modeling by MODELLER 9v7. Evaluation of the constructed NS3 protein models were done by PROCHECK, VERYFY3D and through ProSA calculations. Ligands for the catalytic triad were designed using LIGBUILDER. The NS3 protein's catalytic triad was explored to find out the critical interactions pattern for inhibitor binding using molecular docking methodology using AUTODOCK Vina. It should be noted that these predicted data should be validated using suitable assays for further consideration. ABBREVIATIONS: DOPE - Discrete optimized protein energy, WHO - World Health Organization, ADME/T - Absorption, Distribution, Metabolism, Excretion and Toxicity.  相似文献   

2.
The flavivirus West Nile virus (WNV) has spread rapidly throughout the world in recent years causing fever, meningitis, encephalitis, and fatalities. Because the viral protease NS2B/NS3 is essential for replication, it is attracting attention as a potential therapeutic target, although there are currently no antiviral inhibitors for any flavivirus. This paper focuses on elucidating interactions between a hexapeptide substrate (Ac-KPGLKR-p-nitroanilide) and residues at S1 and S2 in the active site of WNV protease by comparing the catalytic activities of selected mutant recombinant proteases in vitro. Homology modeling enabled the predictions of key mutations in WNV NS3 protease at S1 (V115A/F, D129A/E/N, S135A, Y150A/F, S160A, and S163A) and S2 (N152A) that might influence substrate recognition and catalytic efficiency. Key conclusions are that the substrate P1 Arg strongly interacts with S1 residues Asp-129, Tyr-150, and Ser-163 and, to a lesser extent, Ser-160, and P2 Lys makes an essential interaction with Asn-152 at S2. The inferred substrate-enzyme interactions provide a basis for rational protease inhibitor design and optimization. High sequence conservation within flavivirus proteases means that this study may also be relevant to design of protease inhibitors for other flavivirus proteases.  相似文献   

3.
Flaviviruses are serious human pathogens for which treatments are generally lacking. The proteolytic maturation of the 375-kDa viral polyprotein is one target for antiviral development. The flavivirus serine protease consists of the N-terminal domain of the multifunctional nonstructural protein 3 (NS3) and an essential 40-residue cofactor (NS2B(40)) within viral protein NS2B. The NS2B-NS3 protease is responsible for all cytoplasmic cleavage events in viral polyprotein maturation. This study describes the first biochemical characterization of flavivirus protease activity using full-length NS3. Recombinant proteases were created by fusion of West Nile virus (WNV) NS2B(40) to full-length WNV NS3. The protease catalyzed two autolytic cleavages. The NS2B/NS3 junction was cleaved before protein purification. A second site at Arg(459) decreasing Gly(460) within the C-terminal helicase region of NS3 was cleaved more slowly. Autolytic cleavage reactions also occurred in NS2B-NS3 recombinant proteins from yellow fever virus, dengue virus types 2 and 4, and Japanese encephalitis virus. Cis and trans cleavages were distinguished using a noncleavable WNV protease variant and two types of substrates as follows: an inactive variant of recombinant WNV NS2B-NS3, and cyan and yellow fluorescent proteins fused by a dodecamer peptide encompassing a natural cleavage site. With these materials, the autolytic cleavages were found to be intramolecular only. Autolytic cleavage of the helicase site was insensitive to protein dilution, confirming that autolysis is intramolecular. Formation of an active protease was found to require neither cleavage of NS2B from NS3 nor a free NS3 N terminus. Evidence was also obtained for product inhibition of the protease by the cleaved C terminus of NS2B.  相似文献   

4.
The sequences of the protease domain of the tick-borne encephalitis (TBE) virus NS3 protein have two amino acid substitutions, 16 R→K and 45 S→F, in the highly pathogenic and poorly pathogenic strains of the virus, respectively. Two models of the NS2B-NS3 protease complex for the highly pathogenic and poorly pathogenic strains of the virus were constructed by homology modeling using the crystal structure of West Nile virus NS2B-NS3 protease as a template; 20?ns molecular dynamic simulations were performed for both models, the trajectories of the dynamic simulations were compared, and the averaged distance between the two models was calculated for each residue. Conformational differences between two models were revealed in the identified pocket. The different conformations of the pocket resulted in different orientations of the NS2B segment located near the catalytic triad. In the model of the highly pathogenic TBE virus the identified pocket had a more open conformation compared to the poorly pathogenic model. We propose that conformational changes in the active protease center, caused by two amino acid substitutions, can influence enzyme functioning and the virulence of the virus.  相似文献   

5.
Together with the NS5 polymerase, the NS3 helicase has a pivotal function in flavivirus RNA replication and constitutes an important drug target. We captured the dengue virus NS3 helicase at several stages along the catalytic pathway including bound to single‐stranded (ss) RNA, to an ATP analogue, to a transition‐state analogue and to ATP hydrolysis products. RNA recognition appears largely sequence independent in a way remarkably similar to eukaryotic DEAD box proteins Vasa and eIF4AIII. On ssRNA binding, the NS3 enzyme switches to a catalytic‐competent state imparted by an inward movement of the P‐loop, interdomain closure and a change in the divalent metal coordination shell, providing a structural basis for RNA‐stimulated ATP hydrolysis. These structures demonstrate for the first time large quaternary changes in the flaviviridae helicase, identify the catalytic water molecule and point to a β‐hairpin that protrudes from subdomain 2, as a critical element for dsRNA unwinding. They also suggest how NS3 could exert an effect as an RNA‐anchoring device and thus participate both in flavivirus RNA replication and assembly.  相似文献   

6.
The sequences of the protease domain of the tick-borne encephalitis (TBE) virus NS3 protein have two amino acid substitutions, 16 R→K and 45 S→F, in the highly pathogenic and poorly pathogenic strains of the virus, respectively. Two models of the NS2B-NS3 protease complex for the highly pathogenic and poorly pathogenic strains of the virus were constructed by homology modeling using the crystal structure of West Nile virus NS2B-NS3 protease as a template; 20?ns molecular dynamic simulations were performed for both models, the trajectories of the dynamic simulations were compared, and the averaged distance between the two models was calculated for each residue. Conformational differences between two models were revealed in the identified pocket. The different conformations of the pocket resulted in different orientations of the NS2B segment located near the catalytic triad. In the model of the highly pathogenic TBE virus the identified pocket had a more open conformation compared to the poorly pathogenic model. We propose that conformational changes in the active protease center, caused by two amino acid substitutions, can influence enzyme functioning and the virulence of the virus.  相似文献   

7.
Crystal structure of the NS3 protease-helicase from dengue virus   总被引:2,自引:0,他引:2  
Several flaviviruses are important human pathogens, including dengue virus, a disease against which neither a vaccine nor specific antiviral therapies currently exist. During infection, the flavivirus RNA genome is translated into a polyprotein, which is cleaved into several components. Nonstructural protein 3 (NS3) carries out enzymatic reactions essential for viral replication, including proteolysis of the polyprotein through its serine protease N-terminal domain, with a segment of 40 residues from the NS2B protein acting as a cofactor. The ATPase/helicase domain is located at the C terminus of NS3. Atomic structures are available for these domains separately, but a molecular view of the full-length flavivirus NS3 polypeptide is still lacking. We report a crystallographic structure of a complete NS3 molecule fused to 18 residues of the NS2B cofactor at a resolution of 3.15 Å. The relative orientation between the protease and helicase domains is drastically different than the single-chain NS3-NS4A molecule from hepatitis C virus, which was caught in the act of cis cleavage at the NS3-NS4A junction. Here, the protease domain sits beneath the ATP binding site, giving the molecule an elongated shape. The domain arrangement found in the crystal structure fits nicely into an envelope determined ab initio using small-angle X-ray scattering experiments in solution, suggesting a stable molecular conformation. We propose that a basic patch located at the surface of the protease domain increases the affinity for nucleotides and could also participate in RNA binding, explaining the higher unwinding activity of the full-length enzyme compared to that of the isolated helicase domain.  相似文献   

8.
Murray Valley encephalitis virus (MVEV), a mosquito-borne flavivirus endemic to Australia, is closely related to Japanese encephalitis virus and West Nile virus. Nonstructural protein 3 (NS3) is a multifunctional enzyme with serine protease and DEXH/D-box helicase domains, whose activity is central to flavivirus replication and is therefore a possible target for anti-flaviviral compounds. Cloning, purification, and crystal structure determination to 1.9 Angstrom resolution of the NS3 helicase of MVEV and characterization of its enzymatic activity is reported. Comparison with the structures of helicases from related viruses supports a possible mechanism of ATP hydrolysis-driven strand separation.  相似文献   

9.
The protease domain of the Hepatitis C Virus (HCV) nonstructural protein 3 (NS3) has been targeted for inhibition by several direct-acting antiviral drugs. This approach has had marked success to treat infections caused by HCV genotype 1 predominant in the USA, Europe, and Japan. However, genotypes 3 and 4, dominant in developing countries, are resistant to a number of these drugs and little progress has been made towards understanding the structural basis of their drug resistivity. We have previously developed a 4D computational methodology, based on 3D structure modeling and molecular dynamics simulation, to analyze the active sites of the NS3 proteases of HCV-1b and 4a in relation to their catalytic activity and drug susceptibility. Here, we improved the methodology, extended the analysis to include genotype 3a (predominant in South Asia including Pakistan), and compared the results of the three genotypes (1b, 3a and 4a). The 4D analyses of the interactions between the catalytic triad residues (His57, Asp81, and Ser139) indicate conformational instability of the catalytic site in HCV-3a and 4a compared to that of HCV-1b NS3 protease. The divergence is gradual and genotype-dependent, with HCV-1b being the most stable, HCV-4a being the most unstable and HCV-3a representing an intermediate state. These results suggest that the structural dynamics behavior, more than the rigid structure, could be related to the altered catalytic activity and drug susceptibility seen in NS3 proteases of HCV-3a and 4a.  相似文献   

10.
Japanese encephalitis virus (JEV) is a flavivirus with a complex life cycle involving mosquito vectors that mainly target birds and pigs, and causes severe encephalitis in children in Asia. Neurotropic flaviviruses of the JEV serogroup have a particular characteristic of expressing a unique nonstructural NS1' protein, which is a prolongation of NS1 at the C terminus by 52 amino acids derived from a pseudoknot-driven-1 translation frameshift. Protein NS1' is associated with virus neuro-invasiveness. In this study, the need of the pseudoknot structure for NS1' synthesis was confirmed. By using a specific antibody against the prolonged peptide, NS1' was found to be absent from the JEV SA14-14-2 vaccine strain, resulting from a single nucleotide silent mutation in the pseudoknot. A partial cleavage of NS1' at a specific site of its C-terminal appendix recognized by caspases and inhibited by caspase inhibitors suggests a unique feature of intracellular NS1'.  相似文献   

11.
Mutagenesis of the NS3 Protease of Dengue Virus Type 2   总被引:4,自引:3,他引:1       下载免费PDF全文
The flavivirus protease is composed of two viral proteins, NS2B and NS3. The amino-terminal portion of NS3 contains sequence and structural motifs characteristic of bacterial and cellular trypsin-like proteases. We have undertaken a mutational analysis of the region of NS3 which contains the catalytic serine, five putative substrate binding residues, and several residues that are highly conserved among flavivirus proteases and among all serine proteases. In all, 46 single-amino-acid substitutions were created in a cloned NS2B-NS3 cDNA fragment of dengue virus type 2, and the effect of each mutation on the extent of self-cleavage of the NS2B-NS3 precursor at the NS2B-NS3 junction was assayed in vivo. Twelve mutations almost completely or completely inhibited protease activity, 9 significantly reduced it, 14 decreased cleavage, and 11 yielded wild-type levels of activity. Substitution of alanine at ultraconserved residues abolished NS3 protease activity. Cleavage was also inhibited by substituting some residues that are conserved among flavivirus NS3 proteins. Two (Y150 and G153) of the five putative substrate binding residues could not be replaced by alanine, and only Y150 and N152 could be replaced by a conservative change. The two other putative substrate binding residues, D129 and F130, were more freely substitutable. By analogy with the trypsin model, it was proposed that D129 is located at the bottom of the substrate binding pocket so as to directly interact with the basic amino acid at the substrate cleavage site. Interestingly, we found that significant cleavage activity was displayed by mutants in which D129 was replaced by E, S, or A and that low but detectable protease activity was exhibited by mutants in which D129 was replaced by K, R, or L. Contrary to the proposed model, these results indicate that D129 is not a major determinant of substrate binding and that its interaction with the substrate, if it occurs at all, is not essential. This mutagenesis study provided us with an array of mutations that alter the cleavage efficiency of the dengue virus protease. Mutations that decrease protease activity without abolishing it are candidates for introduction into the dengue virus infectious full-length cDNA clone with the aim of creating potentially attenuated virus stocks.  相似文献   

12.
Zhu H  Briggs JM 《Proteins》2011,79(8):2428-2443
Hepatitis C virus (HCV) NS3 protease is the key enzyme for its maturation. Three hypotheses have been advanced in the literature to demonstrate the mechanism of the activation of the HCV NS3 protease. A virus-encoded protein NS4A and substrate are proposed to be involved in the activation of the HCV NS3 protease. However, the three hypotheses are not completely consistent with one another. Multiple molecular dynamics simulations were performed on various NS3 protease systems: free NS3 protease, NS3/4A, NS3/inhibitor, and NS3/4A/inhibitor complexes, to further unravel the mechanism of the activation of the NS3 protease. Simulation results suggest that the binding of NS4A induces a classic serine protease conformation of the catalytic triad of the NS3 protease. NS4A rearranges the secondary structure of both the N-terminus and catalytic site of the NS3 protease, reduces the mobility of the global structure of the NS3 protease, especially the catalytic site, and provides a rigid and tight structure, except for the S1 pocket, for the binding and hydrolysis of substrates. The binding of substrate also contributes to the activation of the NS3 protease by an induced-fit of the classic serine protease catalytic triad. However, the global structure of the NS3 protease is still loose and highly flexible without stable secondary structural elements, such as helix α0 at the N-terminus and helix α1 and β-sheet E1-F1 at the catalytic site. The structure of the NS3 protease without NS4A is not suitable for the binding and hydrolysis of substrates.  相似文献   

13.
Egypt has the highest prevalence of hepatitis C virus (HCV) infection worldwide with a frequency of 15%. More than 90% of these infections are due to genotype 4, and the subtype 4a (HCV-4a) predominates. Moreover, due to the increased mobility of people, HCV-4a has recently spread to several European countries. The protease domain of the HCV nonstructural protein 3 (NS3) has been targeted for inhibition by several drugs. This approach has had marked success in inhibiting genotype 1 (HCV-1), the predominant genotype in the USA, Europe, and Japan. However, HCV-4a was found to resist inhibition by a number of these drugs, and little progress has been made to understand the structural basis of its drug resistivity. As a step forward, we sequenced the NS3 HCV-4a protease gene (strain ED43) and subsequently built a 3D structural model threaded through a template crystal structure of HCV-1b NS3 protease. The model protease, HCV-4a, shares 83% sequence identity with the template protease, HCV-1b, and has nearly identical rigid structural features. Molecular dynamics simulations predict similar overall dynamics of the two proteases. However, local dynamics and 4D analysis of the interactions between the catalytic triad residues (His57, Asp81, and Ser139) indicate conformational instability of the catalytic site in HCV-4a NS3 protease. These results suggest that the divergent dynamics behavior, more than the rigid structure, could be related to the altered catalytic activity and drug resistivity seen in HCV-4a.  相似文献   

14.
The flavivirus NS5 harbors a methyltransferase (MTase) in its N-terminal ≈265 residues and an RNA-dependent RNA polymerase (RdRP) within the C-terminal part. One of the major interests and challenges in NS5 is to understand the interplay between RdRP and MTase as a unique natural fusion protein in viral genome replication and cap formation. Here, we report the first crystal structure of the full-length flavivirus NS5 from Japanese encephalitis virus. The structure completes the vision for polymerase motifs F and G, and depicts defined intra-molecular interactions between RdRP and MTase. Key hydrophobic residues in the RdRP-MTase interface are highly conserved in flaviviruses, indicating the biological relevance of the observed conformation. Our work paves the way for further dissection of the inter-regulations of the essential enzymatic activities of NS5 and exploration of possible other conformations of NS5 under different circumstances.  相似文献   

15.
Zhou H  Singh NJ  Kim KS 《Proteins》2006,65(3):692-701
The West Nile virus (WNV) NS3 serine protease, which plays an important role in assembly of infective virion, is an attractive target for anti-WNV drug development. Cofactors NS2B and NS4A increase the catalytic activity of NS3 in dengue virus and Hepatitis C virus, respectively. Recent studies on the WNV-NS3 characterize the catalytically active form of NS3 by tethering the 40-residue cofactor NS2B. It is suggested that NS2B is essential for the NS3 activity in WNV, while there is no information of the WNV-NS3-related crystal structure. To understand the role of NS2B/substrate in the NS3 catalytic activity, we built a series of models: WNV-NS3 and WNV-NS3-NS2B and WNV-NS3-NS2B-substrate using homology modeling and molecular modeling techniques. Molecular dynamics (MD) simulations were performed for 2.75 ns on each model, to investigate the structural stabilization and catalytic triad motion of the WNV NS3 protease with and without NS2B/substrate. The simulations show that the NS3 rearrangement occurs upon the NS2B binding, resulting in the stable D75-OD1...H51-NH hydrogen bonding. After the substrate binds to the NS3-NS2B active site, the NS3 protease becomes more stable, and the catalytic triad is formed. These results provide a structural basis for the activation and stabilization of the enzyme by its cofactor and substrate.  相似文献   

16.
Dengue virus NS2/NS3 protease because of its ability to cleave viral proteins is considered as an attractive target to screen antiviral agents. Medicinal plants contain a variety of phytochemicals that can be used as drug against different diseases and infections. Therefore, this study was designed to uncover possible phytochemical of different classes (Aromatic, Carbohydrates, Lignin, Saponins, Steroids, Tannins, Terpenoids, Xanthones) that could be used as inhibitors against the NS2B/NS3 protease of DENV. With the help of molecular docking, Garcinia phytochemicals found to be bound deeply inside the active site of DENV NS2B/NS3 protease among all tested phytochemicals and had interactions with catalytic triad (His51, Asp75, Ser135). Thus, it can be concluded from the study that these Gracinia phytochemicals could serve as important inhibitors to inhibit the viral replication inside the host cell. Further in-vitro investigations require confirming their efficacy.  相似文献   

17.
Recently it has been reported that Japanese encephalitis virus (JEV)-specific RNAs can be synthesized in vitro in the subcellular fraction including outer-nuclear membrane (Takegami and Hotta, 1989). The results of Western blot analysis and indirect immunofluorescence test using two kinds of monospecific antisera against JEV nonstructural proteins NS3 and NS5 showed that NS3 and NS5 were membrane-associated proteins and formed the complex at the perinuclear site in the infected cells. Both antisera against NS3 and NS5 inhibited in vitro RNA synthesis. These results suggest that NS5 and NS3 play important role(s) in flavivirus RNA replication.  相似文献   

18.
Joma Joy 《FEBS letters》2010,584(14):3149-3152
Murray Valley encephalitis virus (MVEV) is a member of the flavivirus group, a large family of single stranded RNA viruses, which cause serious disease in all regions of the world. Its genome encodes a large polyprotein which is processed by both host proteinases and a virally encoded serine proteinase, non-structural protein 3 (NS3). NS3, an essential viral enzyme, requires another virally encoded protein cofactor, NS2B, for proteolytic activity. The cloning, expression and biochemical characterisation of a stable MVEV NS2B-NS3 fusion protein is described.  相似文献   

19.
The non-structural protein 3 helicase (NS3h) is a multifunctional protein that is critical in RNA replication and other stages in the flavivirus life cycle. NS3h uses energy from ATP hydrolysis to translocate along single stranded nucleic acid and to unwind double stranded RNA. Here we present a detailed mechanistic analysis of the product release stage in the catalytic cycle of the dengue virus (DENV) NS3h. This study is based on a combined experimental and computational approach of product-inhibition studies and free energy calculations. Our results support a model in which the catalytic cycle of ATP hydrolysis proceeds through an ordered sequential mechanism that includes a ternary complex intermediate (NS3h-Pi-ADP), which evolves releasing the first product, phosphate (Pi), and subsequently ADP. Our results indicate that in the product release stage of the DENV NS3h a novel open-loop conformation plays an important role that may be conserved in NS3 proteins of other flaviviruses as well.  相似文献   

20.
Many flaviviruses are significant human pathogens causing considerable disease burdens, including encephalitis and hemorrhagic fever, in the regions in which they are endemic. A paucity of treatments for flaviviral infections has driven interest in drug development targeting proteins essential to flavivirus replication, such as the viral protease. During viral replication, the flavivirus genome is translated as a single polyprotein precursor, which must be cleaved into individual proteins by a complex of the viral protease, NS3, and its cofactor, NS2B. Because this cleavage is an obligate step of the viral life-cycle, the flavivirus protease is an attractive target for antiviral drug development. In this review, we will survey recent drug development studies targeting the NS3 active site, as well as studies targeting an NS2B/NS3 interaction site determined from flavivirus protease crystal structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号