首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chromosomal dihydrofolate reductase from Escherichia coli catalyzes the reduction of dihydrofolate to tetrahydrofolate using NADPH as a cofactor. The thermodynamics of ligand binding were examined using an isothermal titration calorimetry approach. Using buffers with different heats of ionization, zero to a small, fractional proton release was observed for dihydrofolate binding, while a proton was released upon NADP(+) binding. The role of water in binding was additionally monitored using a number of different osmolytes. Binding of NADP(+) is accompanied by the net release of ~5-24 water molecules, with a dependence on the identity of the osmolyte. In contrast, binding of dihydrofolate is weakened in the presence of osmolytes, consistent with "water uptake". Different effects are observed depending on the identity of the osmolyte. The net uptake of water upon dihydrofolate binding was previously observed in the nonhomologous R67-encoded dihydrofolate reductase (dfrB or type II enzyme) [Chopra, S., et al. (2008) J. Biol. Chem. 283, 4690-4698]. As R67 dihydrofolate reductase possesses a nonhomologous sequence and forms a tetrameric structure with a single active site pore, the observation of weaker DHF binding in the presence of osmolytes in both enzymes implicates cosolvent effects on free dihydrofolate. Consistent with this analysis, stopped flow experiments find betaine mostly affects DHF binding via changes in k(on), while betaine mostly affects NADPH binding via changes in k(off). Finally, nonadditive enthalpy terms when binary and ternary cofactor binding events are compared suggest the presence of long-lived conformational transitions that are not included in a simple thermodynamic cycle.  相似文献   

2.
Sequence-specific 1H assignments have been made for over 25% of the amino acid side chains of Escherichia coli dihydrofolate reductase complexed with folate by using a variety of two-dimensional techniques. Proton resonances were assigned by using a combination of site-directed mutagenesis and a knowledge of the X-ray crystal structure. Unique sets of NOE connectivities present in hydrophobic pockets were matched with the X-ray structure and used to assign many of the residues. Other residues, particularly those near or in the active site, were assigned by site-directed mutagenesis. The ability to assign unambiguously the proton resonances of these catalytically important residues allowed for extensive networks of NOE connectivities to follow from these assignments. As a consequence of these assignments, the orientation of the pterin ring of folate could be determined, and its conformation is similar to that of the productive dihydrofolate complex. Under these experimental conditions, only one bound form of the pterin ring could be detected.  相似文献   

3.
Osmolytes are small, chemically diverse, organic solutes that function as an essential component of cellular stress response. Protecting osmolytes enhance protein stability via preferential exclusion, and nonprotecting osmolytes, such as urea, destabilize protein structures. Although much is known about osmolyte effects on proteins, less is understood about osmolyte effects on nucleic acids and their counterion atmospheres. Nonprotecting osmolytes destabilize nucleic acid structures, but effects of protecting osmolytes depend on numerous factors including the type of nucleic acid and the complexity of the functional fold. To begin quantifying protecting osmolyte effects on nucleic acid interactions, we used small-angle X-ray scattering (SAXS) techniques to monitor DNA duplexes in the presence of sucrose. This protecting osmolyte is a commonly used contrast matching agent in SAXS studies of protein-nucleic acid complexes; thus, it is important to characterize interaction changes induced by sucrose. Measurements of interactions between duplexes showed no dependence on the presence of up to 30% sucrose, except under high Mg(2+) conditions where stacking interactions were disfavored. The number of excess ions associated with DNA duplexes, reported by anomalous small-angle X-ray scattering (ASAXS) experiments, was sucrose independent. Although protecting osmolytes can destabilize secondary structures, our results suggest that ion atmospheres of individual duplexes remain unperturbed by sucrose.  相似文献   

4.
Seasonal changes in the leaf concentration of compatible osmolytes were investigated in three halophytic species (Lepidium crassifolium, Camphorosma annua and Limonium gmelini subsp. hungaricum) native to a salty-sodic grassland. The investigated species were shown to accumulate both carbohydrate- and amino acid-derived osmolytes. The leaf tissues of C. annua (Chenopodiaceae) preferentially stored glycine betaine and pinitol, while in L. gmelini (Plumbaginaceae) beta-alanine betaine, choline-O-sulphate, and pinitol were accumulated. In the leaves of L. crassifolium (Brassicaceae) a very high amount of proline, associated with a high level of soluble carbohydrates was found. Not only the biochemical nature of the osmolyte, but also the seasonal pattern of osmolyte accumulation showed significant species-specific fluctuations. In addition, the cellular levels of the observed osmolytes changed with the growth period and according to the environmental parameters. The highest concentrations of osmolytes were found in March, when low temperatures, hypoxic conditions and high salt concentrations were the main constraints to plant growth. The high structural diversity of osmolytes combined with their multifunctionality and the seasonal flexibility of the metabolism in plants facing multiple stresses is discussed.  相似文献   

5.
Most theories predict that macromolecular crowding stabilizes globular proteins, but recent studies show that weak attractive interactions can result in crowding-induced destabilization. Osmolytes are ubiquitous in biology and help protect cells against stress. Given that dehydration stress adds to the crowded nature of the cytoplasm, we speculated that cells might use osmolytes to overcome the destabilization caused by the increased weak interactions that accompany desiccation. We used NMR-detected amide proton exchange experiments to measure the stability of the test protein chymotrypsin inhibitor 2 under physiologically relevant crowded conditions in the presence and absence of the osmolyte glycine betaine. The osmolyte overcame the destabilizing effect of the cytosol. This result provides a physiologically relevant explanation for the accumulation of osmolytes by dehydration-stressed cells.  相似文献   

6.
7.
The fate of exogenously supplied glycine betaine and the dynamics of endogenous osmolytes were investigated throughout the growth cycle of salt-stressed cultures of strains of Sinorhizobium meliloti which differ in their ability to use glycine betaine as a growth substrate, but not as an osmoprotectant. We present (sup13)C nuclear magnetic resonance spectral and radiotracer evidence which demonstrates that glycine betaine is only transiently accumulated as a cytoplasmic osmolyte in young cultures of wild-type strains 102F34 and RCR2011. Specifically, these strains accumulate glycine betaine as a preferred osmolyte which virtually prevents the accumulation of endogenous osmolytes during the lag and early exponential phases of growth. Then, betaine levels in stressed cells decrease abruptly during the second half of the exponential phase. At this stage, the levels of glutamate and the dipeptide N-acetylglutaminylglutamine amide increase sharply so that the two endogenous solutes supplant glycine betaine in the ageing culture, in which it becomes a minor osmolyte because it is progressively catabolized. Ultimately, glycine betaine disappears when stressed cells reach the stationary phase. At this stage, wild-type strains of S. meliloti also accumulate the disaccharide trehalose as a third major endogenous osmolyte. By contrast, glycine betaine is always the dominant osmolyte and strongly suppresses the buildup of endogenous osmolytes at all stages of the growth cycle of a mutant strain, S. meliloti GMI766, which does not catabolize this exogenous osmoprotectant under any growth conditions.  相似文献   

8.
R67 dihydrofolate reductase (DHFR) catalyzes the reduction of dihydrofolate (DHF) to tetrahydrofolate using NADPH as a cofactor. This enzyme is a homotetramer possessing 222 symmetry, and a single active site pore traverses the length of the protein. A promiscuous binding surface can accommodate either DHF or NADPH, thus two nonproductive complexes can form (2NADPH or 2DHF) as well as a productive complex (NADPH.DHF). The role of water in binding was monitored using a number of different osmolytes. From isothermal titration calorimetry (ITC) studies, binding of NADPH is accompanied by the net release of 38 water molecules. In contrast, from both steady state kinetics and ITC studies, binding of DHF is accompanied by the net uptake of water. Although different osmolytes have similar effects on NADPH binding, variable results are observed when DHF binding is probed. Sensitivity to water activity can also be probed by an in vivo selection using the antibacterial drug, trimethoprim, where the water content of the media is decreased by increasing concentrations of sorbitol. The ability of wild type and mutant clones of R67 DHFR to allow host Escherichia coli to grow in the presence of trimethoprim plus added sorbitol parallels the catalytic efficiency of the DHFR clones, indicating water content strongly correlates with the in vivo function of R67 DHFR.  相似文献   

9.
We have investigated the importance of polarization by the enzyme dihydrofolate reductase (DHFR) on its substrates, folate and dihydrofolate, using a series of quantum mechanical (QM) techniques (Hartree-Fock (HF), M?ller-Plesset second-order perturbation theory (MP2), local density approximation (LDA) and generalized gradient approximation (GGA) density functional theory (DFT) calculations) in which the bulk enzyme is included in the calculations as point charges. Polarization, in terms of both charges on components (residues) of the folate and dihydrofolate molecules and changes in the electron density, particularly of the pterin ring of the substrates, and the implications for the catalytic reduction are discussed. Significant differences in polarization behavior are observed for the different theoretical methods employed. The consequences of this, particularly for choosing an appropriate model for quantum mechanical/molecular mechanical (QM/MM) calculations, are pointed out. The HF and MP2 QM methods show small polarizations (approximately 0.04 electrons) of the pterin ring but quite large polarizations with both LDA and GGA DFT methods (0.3-0.5 electrons). This large difference in polarization for both folate and dihydrofolate arises as a result of substantial differences between the charge distributions for the gasphase DFT and HF calculations, specifically the charges on the dianionic glutamate side chain. Some recent literature reports of incorrect representation of anionic systems by DFT methods are noted. The DFT results are similar to the previously reported LDA DFT results of Bajorath et al. predicting a large polarization of the pterin ring of folate (Proteins 9:217-224, 1991) and dihydrofolate (PNAS 88:6423-6426, 1991) of approximately 0.5-0.6 electrons.  相似文献   

10.
Intracellular organic osmolytes are present in certain organisms adapted to harsh environments and these osmolytes protect intracellular macromolecules against the denaturing environmental stress. In natural selection of organic osmolytes as protein stabilizers, it appears that the osmolyte property selected for is the unfavorable interaction between the osmolyte and the peptide backbone, a solvophobic thermodynamic force that we call the osmophobic effect. Because the peptide backbone is highly exposed to osmolyte in the denatured state, the osmophobic effect preferentially raises the free energy of the denatured state, shifting the equilibrium in favor of the native state. By focusing the solvophobic force on the denatured state, the native state is left free to function relatively unfettered by the presence of osmolyte. The osmophobic effect is a newly uncovered thermodynamic force in nature that complements the well-recognized hydrophobic interactions, hydrogen bonding, electrostatic and dispersion forces that drive protein folding. In organisms whose survival depends on the intracellular presence of osmolytes that can counteract denaturing stresses, the osmophobic effect is as fundamental to protein folding as these well-recognized forces.  相似文献   

11.
The uptake and accumulation of the potent osmolytes glycine betaine and carnitine enable the food-borne pathogen Listeria monocytogenes to proliferate in environments of elevated osmotic stress, often rendering salt-based food preservation inadequate. To date, three osmolyte transport systems are known to operate in L. monocytogenes: glycine betaine porter I (BetL), glycine betaine porter II (Gbu), and a carnitine transporter OpuC. We investigated the specificity of each transporter towards each osmolyte by creating mutant derivatives of L. monocytogenes 10403S that possess each of the transporters in isolation. Kinetic and steady-state osmolyte accumulation data together with growth rate experiments demonstrated that osmotically activated glycine betaine transport is readily and effectively mediated by Gbu and BetL and to a lesser extent by OpuC. Osmotically stimulated carnitine transport was demonstrated for OpuC and Gbu regardless of the nature of stressing salt. BetL can mediate weak carnitine uptake in response to NaCl stress but not KCl stress. No other transporter in L. monocytogenes 10403S appears to be involved in osmotically stimulated transport of either osmolyte, since a triple mutant strain yielded neither transport nor accumulation of glycine betaine or carnitine and could not be rescued by either osmolyte when grown under elevated osmotic stress.  相似文献   

12.
Human dihydrofolate reductase-like 1 (DHFRL1) has been identified as a second human dihydrofolate reductase (DHFR) enzyme. Although DHFRL1 have high sequence homology with human DHFR, dihydrofolate (DHF) exhibits a lowered binding affinity to DHFRL1 and the corresponding molecular mechanism is still unknown. To address this question, we studied the binding of DHF to DHFRL1 and DHFR by using molecular dynamics simulation. Moreover, to investigate the role the 24th residue of DHFR/DHFRL1 plays in DHF binding, R24W DHFRL1 mutant was also studied. The van der Waals interaction are more crucial for the total DHF binding energies, while the difference between the DHF binding energies of human DHFR and DHFRL1 can be attributed to the electrostatic interaction and the polar desolvation free energy. More specifically, lower DHF affinity to DHFRL1 can be mainly attributed to the reduction of net electrostatic interactions of residues Arg32 and Gln35 of DHFRL1 with DHF as being affected by Arg24. The side chain of Arg24 in DHFRL1 can extend deeply into the binding sites of DHF and NADPH, and disturb the DHF binding by steric effect, which rarely happens in human DHFR and R24W DHFRL1 mutant. Additionally, the conformation of loop I in DHFRL1 was also studied in this work. Interestingly, the loop conformation resemble to normal closed state of Escherichia coli DHFR other than the closed state of human DHFR. We hope this work will be useful to understand the general characteristics of DHFRL1.  相似文献   

13.
The stabilization of proteins by osmolytes.   总被引:38,自引:2,他引:36  
The preferential interactions of lysozyme with solvent components and the effects of solvent additives on its stability were examined for several neutral osmolytes: L-proline, L-serine, gamma-aminobutyric acid, sarcosine, taurine, alpha-alanine, beta-alanine, glycine, betaine, and trimethylamine N-oxide. It was shown that all these substances stabilize the protein structure against thermal denaturation and (except for trimethylamine N-oxide for which interaction measurements could not be made) are strongly excluded from the protein domain, rendering unlikely their direct binding to proteins. On the other hand, valine, not known as an osmolyte, had no stabilizing effect, although it induced a large protein-preferential hydration. A possible explanation is given for the use of these substances as osmotic-pressure-regulating agents in organisms living under high osmotic pressure.  相似文献   

14.
This study examined the post-thaw recovery of Jurkat cells cryopreserved in three combinations of five osmolytes including trehalose, sucrose, glycerol, mannitol, and creatine. Cellular response was characterized using low-temperature Raman spectroscopy, and variation of post-thaw recovery was analyzed using statistical modeling. Combinations of osmolytes displayed distinct trends of post-thaw recovery, and a nonlinear relationship between compositions and post-thaw recovery was observed, suggesting interactions not only between different solutes but also between solutes and cells. The post-thaw recovery for optimized cryoprotectants in different combinations of osmolytes at a cooling rate of 1°C/min was comparable to that measured with 10% dimethyl sulfoxide. Statistical modeling was used to understand the importance of individual osmolytes as well as interactions between osmolytes on post-thaw recovery. Both higher concentrations of glycerol and certain interactions between sugars and glycerol were found to typically increase the post-thaw recovery. Raman images showed the influence of osmolytes and combinations of osmolytes on ice crystal shape, which reflected the interactions between osmolytes and water. Differences in the composition also influenced the presence or absence of intracellular ice formation, which could also be detected by Raman. These studies help us understand the modes of action for cryoprotective agents in these osmolyte solutions.  相似文献   

15.
Mixtures of organic osmolytes occur in cells of many organisms, raising the question of whether their actions on protein stability are independent or synergistic. To investigate this question it is desirable to develop a system that permits evaluation of the effect of one osmolyte on the efficacy of another to either force-fold or denature a protein. A means of evaluating the efficacy of an osmolyte is provided by its m-value, an experimental quantity that measures the ability of the osmolyte to force a protein to unfold or fold. An experimental system is presented that enables evaluations of the m-values of osmolytes in the presence and absence of a second osmolyte. The experimental system involves use of a marginally stable protein in 10 mM buffer (pH 7, 200 mM salt, and 34 degrees C) that is at the midpoint of its native to denatured transition. These conditions enable determination of m-values for protecting and denaturing osmolytes in the presence and absence of a second osmolyte, permitting assessment of the extent to which the two osmolytes affect each other's efficacy. The two osmolytes investigated in this work are the denaturing osmolyte, urea, and the protecting osmolyte, sarcosine. Results show unequivocally that neither osmolyte alters the efficacy of the other in forcing the protein to fold or unfold-the osmolytes act independently on the protein despite their combined concentrations being in the multi-molar range. These osmolytes avoid altering one another's efficacy at these high concentrations because the number of osmolyte interaction sites on the protein is large and the binding constants are quite small. Consequently, the site occupancies are low enough in number that the two osmolytes neither compete nor cooperate in interacting with the protein.  相似文献   

16.
The urea induced equilibrium denaturation behavior of glutaminyl-tRNA synthetase from Escherichia coli (GlnRS) in 0.25 m potassium l-glutamate, a naturally occurring osmolyte in E. coli, has been studied. Both the native to molten globule and molten globule to unfolded state transitions are shifted significantly toward higher urea concentrations in the presence of l-glutamate, suggesting that l-glutamate has the ability to counteract the denaturing effect of urea. d-Glutamate has a similar effect on the equilibrium denaturation of glutaminyl-tRNA synthetase, indicating that the effect of l-glutamate may not be due to substrate-like binding to the native state. The activation energy of unfolding is not significantly affected in the presence of 0.25 m potassium l-glutamate, indicating that the native state is not preferentially stabilized by the osmolyte. Dramatic increase of coefficient of urea concentration dependence (m) values of both the transitions in the presence of glutamate suggests destabilization and increased solvent exposure of the denatured states. Four other osmolytes, sorbitol, trimethylamine oxide, inositol, and triethylene glycol, show either a modest effect or no effect on native to molten globule transition of glutaminyl-tRNA synthetase. However, glycine betaine significantly shifts the transition to higher urea concentrations. The effect of these osmolytes on other proteins is mixed. For example, glycine betaine counteracts urea denaturation of tubulin but promotes denaturation of S228N lambda-repressor and carbonic anhydrase. Osmolyte counteraction of urea denaturation depends on osmolyte-protein pair.  相似文献   

17.
Yersinia enterocolitica is a gram-negative, food-borne pathogen that can grow in 5% NaCl and at refrigerator temperatures. In this report, the compatible solutes (osmolytes) which accumulate intracellularly and confer the observed osmotic tolerance to this pathogen were identified. In minimal medium, glutamate was the only detectable osmolyte that accumulated in osmotically stressed cells. However, when the growth medium was supplemented with glycine betaine, dimethylglycine, or carnitine, the respective osmolyte accumulated intracellularly to high levels and the growth rates of the osmotically stressed cultures improved from 2.4- to 3.5-fold. Chill stress also stimulated the intracellular accumulation of glycine betaine, but the growth rate was only slightly improved by this osmolyte. Both osmotic upshock and temperature downshock stimulated the rate of uptake of [(sup14)C]glycine betaine by more than 30-fold, consistent with other data indicating that the osmolytes are accumulated from the growth medium via transport.  相似文献   

18.
The effect of three osmolytes, trimethylamine N-oxide (TMAO), betaine and proline, on the interaction of muscle glycogen phosphorylase b with allosteric inhibitor FAD has been examined. In the absence of osmolyte, the interaction is described by a single intrinsic dissociation constant (17.8 microM) for two equivalent and independent binding sites on the dimeric enzyme. However, the addition of osmolytes gives rise to sigmoidal dependencies of fractional enzyme-site saturation upon free inhibitor concentration. The source of this cooperativity has been shown by difference sedimentation velocity to be an osmolyte-mediated isomerization of phosphorylase b to a smaller dimeric state with decreased affinity for FAD. These results thus have substantiated a previous inference that the tendency for osmolyte-enhanced self-association of dimeric glycogen phosphorylase b in the presence of AMP was being countered by the corresponding effect of molecular crowding on an isomerization of dimer to a smaller, nonassociating state.  相似文献   

19.
The uptake and accumulation of the potent osmolytes glycine betaine and carnitine enable the food-borne pathogen Listeria monocytogenes to proliferate in environments of elevated osmotic stress, often rendering salt-based food preservation inadequate. To date, three osmolyte transport systems are known to operate in L. monocytogenes: glycine betaine porter I (BetL), glycine betaine porter II (Gbu), and a carnitine transporter OpuC. We investigated the specificity of each transporter towards each osmolyte by creating mutant derivatives of L. monocytogenes 10403S that possess each of the transporters in isolation. Kinetic and steady-state osmolyte accumulation data together with growth rate experiments demonstrated that osmotically activated glycine betaine transport is readily and effectively mediated by Gbu and BetL and to a lesser extent by OpuC. Osmotically stimulated carnitine transport was demonstrated for OpuC and Gbu regardless of the nature of stressing salt. BetL can mediate weak carnitine uptake in response to NaCl stress but not KCl stress. No other transporter in L. monocytogenes 10403S appears to be involved in osmotically stimulated transport of either osmolyte, since a triple mutant strain yielded neither transport nor accumulation of glycine betaine or carnitine and could not be rescued by either osmolyte when grown under elevated osmotic stress.  相似文献   

20.
Osmolytes stabilize proteins to thermal and chemical denaturation. We have studied the effects of the osmolytes sarcosine, betaine, trimethylamine-N-oxide, and taurine on the structure and stability of the protein.peptide complex RNase S using x-ray crystallography and titration calorimetry, respectively. The largest degree of stabilization is achieved with 6 m sarcosine, which increases the denaturation temperatures of RNase S and S pro by 24.6 and 17.4 degrees C, respectively, at pH 5 and protects both proteins against tryptic cleavage. Four crystal structures of RNase S in the presence of different osmolytes do not offer any evidence for osmolyte binding to the folded state of the protein or any perturbation in the water structure surrounding the protein. The degree of stabilization in 6 m sarcosine increases with temperature, ranging from -0.52 kcal mol(-1) at 20 degrees C to -5.4 kcal mol(-1) at 60 degrees C. The data support the thesis that osmolytes that stabilize proteins, do so by perturbing unfolded states, which change conformation to a compact, folding competent state in the presence of osmolyte. The increased stabilization thus results from a decrease in conformational entropy of the unfolded state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号