首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
WRKY转录因子基因家族是植物特有的一类基因,在植物次生代谢、生物和非生物胁迫中起着重要的调节作用。本研究通过生物信息学方法,在香樟(Cinnamomum camphora(L.) Presl.)全基因组中鉴定了60个WRKY基因(CcWRKY),并将其分为GroupⅠ~Ⅲ,其中,GroupⅠ和Ⅲ的成员发生了收缩现象;片段复制是CcWRKY基因扩张的主要驱动力;GroupⅠ有完整的WRKY结构域和锌指基序,但GroupⅡ、Ⅲ存在结构域和锌指基序的丢失和变异现象;CcWRKY基因的启动子区域具有激素类和胁迫类响应顺式作用元件;基因表达分析结果显示,在贫瘠环境(未施肥)中大多数CcWRKY基因在香樟各个组织中高表达,而环境适宜(施肥)条件下,基因表达量降低。  相似文献   

3.
4.
5.
To understand how plant host genes are regulated during the activation of plant defence responses, we are studying a group of pathogen- and salicylic acid (SA)-induced DNA-binding proteins containing the novel WRKY domain. To identify downstream target genes of these WRKY proteins, we have searched the Arabidopsis genome and identified four closely linked genes on chromosome IV that contain an unusually large number of the W-box sequences [(T)TGAC(C/T)] recognized by WRKY proteins within a few hundred base pairs upstream of their coding regions. All four genes encode proteins characteristic of receptor-like protein kinases (RLK), each consisting of an N-terminal signal sequence, an extracellular receptor domain, a single transmembrane domain and a C-terminal cytoplasmic serine/threonine protein kinase domain. All four RLK genes were induced by treatment with SA or infection by a bacterial pathogen. Studies with one of the RLK genes (RLK4) indicated that a cluster of W-box elements in its promoter region were recognized by both purified WRKY proteins and SA-induced W-box binding activities from SA-treated Arabidopsis plants. Further analysis using the RLK4 gene promoter fused to a reporter gene in transgenic Arabidopsis indicated that the consensus WRKY protein-binding sites in the RLK4 gene promoter were important for the inducible expression of the reporter gene. These results indicate that pathogen- and SA-induced W-box binding proteins regulate not only genes encoding defence proteins with direct or indirect anti-microbial activities, but also genes encoding proteins with regulatory functions.  相似文献   

6.
7.
The past research has demonstrated that the VQ genes in Arabidopsis thaliana, Oryza sativa, and Vitis vinifera L play vital roles in their growth, development, and stress responses. So far, no information available describes the functions of the VQ genes in Populus trichocarpa. In our study, comprehensive analysis of poplar VQ genes were performed including genome-wide identification, characterization, and expression analysis under polyethylene glycerol (PEG), NaCl, and salicylic acid (SA) treatment. Fifty-one VQ genes were identified and classified into seven subfamilies (I–VII), distributed randomly on 17 of the 19 chromosomes in poplar. Moreover, these VQ genes expanded primarily due to segmental duplication. In addition, gene structure and protein motif analysis indicated that these genes were relatively conserved within each subfamily; especially 39 of the 51 VQ genes had no introns. The results of quantitative real-time RT-PCR (qRT-PCR) analysis indicated that the VQ genes were variously expressed under different stresses. Our study provides a comprehensive overview of poplar VQ genes, which will be beneficial to the molecular breeding of poplar to promote its resistance to environment stresses, as well as overall thorough research about VQ gene functions.  相似文献   

8.
9.
10.
高等植物基因组中,大部分序列为非表达序列,基因序列所占的比例很小,了解基因在基因组中的分布是研究基因组结构的一个重要方面。在美国能源部资助下,一个毛果杨无性系的基因组测序已经完成并对公众发布。杨树全基因组序列的完成,为我们了解林木基因组中基因的分布提供了一个特例。在本文中,我们利用泊松分析对杨树基因组中基因在各个染色体上的密度进行了检测,结果表明杨树基因组中各条染色体的基因含量存在显著差异。杨树全基因组测序项目揭示现代杨树基因组起源于一次古全基因组复制事件(称为杨柳科基因组复制),所以杨树基因组不同染色体间存在很大的同源复制片段。但是我们的研究显示,杨树基因组中大多数高度同源的染色体上基因的密度与染色体间的同源性没有明显关系,这说明杨柳科全基因组复制事件后,各个高度同源染色体上的基因发生了流失,且基因流失的速率是不一样的。同时本文还对近九万条毛果杨EST序列进行了比对分析,结果显示这些EST序列覆盖的基因仅占杨树基因组中基因总数的16.8%左右。EST测序虽然是发现基因的一个重要手段,但小规模EST测序对基因的覆盖度很低,所以小规模EST测序的应用价值是有限的。  相似文献   

11.
12.
13.
14.
Phosphorylation by protein kinase is a ubiquitous key mechanism in translating external stimuli such as drought stress. NPK1 is a mitogen-activated protein kinase kinase kinase identified in Nicotiana tabacum and plays important roles in cytokinesis and auxin signaling transduction and responses to multiple stresses. Here we report the evolution, structure, and comprehensive expression profile of 21 NPK1-like genes in rice (Oryza sativa L.). Phylogenetic analysis of NPK1-like sequences in rice (OsNPKL), Arabidopsis, and other plants reveals that NPK1-like genes could be classified into three subgroups. Three OsNPKL gene clusters, located on chromosome 1 (OsNPKL1, 2, 3, and 4), 5 (OsNPKL14 and 15), and 10 (OsNPKL19 and 20), respectively, were identified in the rice genome. These clustered genes, which most likely evolved by tandem gene duplication, belong to the same phylogenetic subgroup, with similar genomic structures and conserved motifs in the kinase domain, which is unique to this subgroup. Expression analysis of OsNPKL genes under abiotic stresses suggests that the stress-responsive genes are mainly from the same subgroup. Especially interesting is that all the clustered genes are induced by drought, salt, or cold stress, and a few members are very strongly induced by drought. Some of the clustered genes are also induced by abscisic acid. The gene cluster on chromosome 1 is co-located with a quantitative trait locus (QTL) related to drought resistance. Although the drought-induced expression levels of the four genes in the cluster show no difference between the two parents used for QTL mapping, sequence variation in coding regions of the genes between the parents has provided some clues for further functional characterization of this gene cluster in abiotic stress tolerance in rice.  相似文献   

15.
WRKY基因是近年来研究较为广泛的植物转录因子,目前许多物种中都克隆出WRKY基因。近年来,小麦中也有WRKY基因被克隆,但是由于对WRKY基因生物信息学分析不足,导致研究带有一定的盲目性。本试验以小麦品种扬麦158叶片为材料,分离了2个WRKY基因,分别编码344个和371个氨基酸,与GenBank数据库中的TaWRKY74基因高度同源,命名为TaWRKY74-c和TaWRKY74-d。蛋白质保守结构域分析表明,2个基因都含有1个WRKY保守结构域,属于Ⅲ类WRKY转录因子家族。定量PCR分析表明TaWRKY74-c和TaWRKY74-d在小麦的叶片、花和茎中均表达,且在茎中的表达量最多,在花中的表达量最少。采用Genevestigator转录组分析工具,对基因在331种环境条件(如逆境、病害、激素等刺激)、10个发育时期(如苗期、孕穗期等)和21种组织器官(如根、花、叶等)中的表达进行了分析,结果表明,该基因在小麦不同发育时期和组织器官中都有表达,且在植物遭受低温、病原体侵染等环境因子处理下,表达量发生显著改变,预示可能参与到这些生物学过程中。采用RT-PCR的方法对上述分析结果进行验证,结果表明生物学实验与生物信息学预测的结果一致。本研究将大量小麦转录组的数据应用到WRKY基因功能分析上,深化了对小麦WRKY基因家族成员功能的认识,为今后对该基因的表达分析和功能研究提供了重要线索和方向。  相似文献   

16.
Genome-wide analysis of plant glutaredoxin systems   总被引:1,自引:0,他引:1  
The recent release of the first tree genome (Populus trichocarpa) has allowed a comparison to be made of the multigenic glutaredoxin (Grx) and glutathione reductase (GR) families of this tree with those of other sequenced organisms and especially of the two other fully sequenced plant species, Arabidopsis thaliana and Oryza sativa. Grxs are small proteins involved in disulphide bridge or protein-glutathione adduct reduction, and they are maintained in a reduced form using glutathione and an NADPH-dependent GR. While the P. trichocarpa and O. sativa genomes are nearly five times larger than that of A. thaliana, they contain approximately 45 000 and 37 500 genes compared with the 25 500 genes of A. thaliana. On the one hand, the GR gene composition varies little between species and the gene structures are relatively conserved. On the other hand, the Grx gene family can be divided into three subgroups and the gene content is larger in P. trichocarpa (36 genes) compared with A. thaliana and O. sativa (31 and 27 genes, respectively). This could be partly explained by the occurrence of more duplication events, and this is especially true for one of the three identified Grx subgroups (subgroup III). The expression of most of these genes was confirmed by analysing expressed sequence tags present in various databases. In addition, the expression of Grx of subgroups I and II was examined by RT-PCR in various poplar organs. A complete classification based essentially on gene structure and sequence identity is proposed.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号