首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Porous hydrogels of poly(ethylene glycol) (PEG) have been shown to facilitate vascularized tissue formation. However, PEG hydrogels exhibit limited degradation under physiological conditions which hinders their ultimate applicability for tissue engineering therapies. Introduction of poly(L-lactic acid) (PLLA) chains into the PEG backbone results in copolymers that exhibit degradation via hydrolysis that can be controlled, in part, by the copolymer conditions. In this study, porous, PEG-PLLA hydrogels were generated by solvent casting/particulate leaching and photopolymerization. The influence of polymer conditions on hydrogel architecture, degradation and mechanical properties was investigated. Autofluorescence exhibited by the hydrogels allowed for three-dimensional, non-destructive monitoring of hydrogel structure under fully swelled conditions. The initial pore size depended on particulate size but not polymer concentration, while degradation time was dependent on polymer concentration. Compressive modulus was a function of polymer concentration and decreased as the hydrogels degraded. Interestingly, pore size did not vary during degradation contrary to what has been observed in other polymer systems. These results provide a technique for generating porous, degradable PEG-PLLA hydrogels and insight into how the degradation, structure, and mechanical properties depend on synthesis conditions.  相似文献   

2.
A simple, sequential approach for creation of hydrolytically degradable poly(ethylene glycol) (PEG) hydrogels has been developed and characterized. The chemistry involves an initial step growth polymerization reaction between PEG-diacrylate and dithiothreitol (DTT) to form acrylate-terminated (-PEG-DTT-)n PEG chains, followed by photocross-linking to form a hydrogel network. Varying the extent of step growth polymerization prior to photocross-linking allowed for control over the equilibrium swelling ratio, degradation, and erosion of PEG hydrogels. Hydrogel degradability had a significant effect on behavior of human mesenchymal stem cells (hMSCs) encapsulated within PEG hydrogels, both in the presence and absence of an RGDSP cell adhesion ligand. In particular, enhanced network degradability resulted in enhanced hMSC viability and spreading during in vitro culture. Comparison of degradable and nondegradable hydrogels with similar physical properties (e.g., equilibrium swelling ratio) demonstrated that hMSC viability and spreading were dependent on network degradability. This study demonstrates that hydrolytically degradable PEG hydrogels can be formed via a sequential step growth polymerization and photocross-linking process and the resulting materials may serve as promising matrices for 3-dimensional stem cell culture and tissue engineering applications.  相似文献   

3.
A new method of preparation of noncovalent complexes between poly(ethylene glycol) (PEG) and proteins (alpha-chymotrypsin (ChT), lysozyme, bovine serum albumine) under high pressure has been developed. The involvement of polymer in the complexes was proved using (3)H-labeled PEG. The composition of the complexes (the number of polymer chains per one ChT molecule) depends on the molecular mass of PEG and decreases with the increase in molecular mass from 300 to 4000, whereas the portion of the protein (wt %) in complexes does not depend on the molecular mass of incorporated PEG and corresponds to approximately 70 wt %. The kinetic constants for enzymatic hydrolysis of N-benzoyl-L-tyrosine ethyl ester and azocasein catalyzed by the PEG-ChT complexes are identical with the corresponding values for the native ChT. According to the data obtained by the method of circular dichroism, the enzyme in the complexes fully retains its secondary structure. The steric availability of PEG polymer chains in the complexes was evaluated by their complexation with alpha-cyclodextrin (CyD) or polymer derivatives of beta-CyD modified with PEG (PEG-beta-CyD). In contrast to free PEG, only part of PEG polymer chains ( approximately 10%) interact with alpha-CyD. Thus, the complexation of PEG with ChT proceeds by means of multipoint interaction with surface groups of the protein globule located far from the active site and results in the sufficient decrease in the availability of polymer chains. The complexes between PEG chains in PEG-protein adducts and PEG-beta-CyD may be considered as a novel type of dendritic structures.  相似文献   

4.
We present a novel fully hydrophilic, hydrolytically degradable poly(ethylene glycol) (PEG) hydrogel suitable for soft tissue engineering and delivery of protein drugs. The gels were designed to overcome drawbacks associated with current PEG hydrogels (i.e., reaction mechanisms or degradation products that compromise protein stability): the highly selective and mild cross‐linking reaction allowed for encapsulating proteins prior to gelation without altering their secondary structure as shown by circular dichroism experiments. Further, hydrogel degradation and structure, represented by mesh size, were correlated to protein release. It was determined that polymer density had the most profound effect on protein diffusivity, followed by the polymer molecular weight, and finally by the specific chemical structure of the cross‐linker. By examining the diffusion of several model proteins, we confirmed that the protein diffusivity was dependent on protein size as smaller proteins (e.g., lysozyme) diffused faster than larger proteins (e.g., Ig). Furthermore, we demonstrated that the protein physical state was preserved upon encapsulation and subsequent release from the PEG hydrogels and contained negligible aggregation or protein–polymer adducts. These initial studies indicate that the developed PEG hydrogels are suitable for release of stable proteins in drug delivery and tissue engineering applications. Biotechnol. Bioeng. 2011; 108:197–206. © 2010 Wiley Periodicals, Inc.  相似文献   

5.
The I28 immunoglobulin (Ig)-like module of human cardiac titin, an elastic muscle protein, was used to cross-link acrylamide (AAm) copolymers into hybrid hydrogels. Cross-linking was accomplished through metal coordination bonding between terminal histidine tags (His tags) of the I28 module and metal-chelating nitrilotriacetic acid (NTA)-containing side chains on the copolymer. In solution, the beta-sheet structure of the I28 module unfolded with a transition midpoint of about 58 degrees C as the temperature was elevated. Hydrogels cross-linked with the I28 module demonstrated positive temperature responsiveness; they swelled to 3 times their initial volume at temperatures above the melting temperature of the cross-links. Positive temperature responsiveness is unusual for synthetic hydrogels. The I28 hybrid hydrogels demonstrate that cross-linking synthetic polymers with natural, well-characterized protein modules is a practical strategy for creating new materials with unique environmental responsiveness predictably determined by the mechanical properties of the protein cross-links. These new materials may be useful for controlled chemical delivery.  相似文献   

6.
First generation, photocrosslinkable dendrimers consisting of natural metabolites (i.e., succinic acid, glycerol, and beta-alanine) and nonimmunogenic poly(ethylene glycol) (PEG) were synthesized divergently in high yields using ester and carbamate forming reactions. Aqueous solutions of these dendrimers were photocrosslinked with an eosin-based photoinitiator to afford hydrogels. The hydrogels displayed a range of mechanical properties based on their structure, generation size, and concentration in solution. All of the hydrogels showed minimal swelling characteristics. The dendrimer solutions were then photocrosslinked in situ in an ex vivo rabbit osteochondral defect (3 mm diameter and 10 mm depth), and the resulting hydrogels were subjected to physiologically relevant dynamic loads. Magnetic resonance imaging (MRI) showed the hydrogels to be fixated in the defect site after the repetitive loading regimen. The ([G1]-PGLBA-MA) 2-PEG hydrogel was chosen for the 6 month pilot in vivo rabbit study because this hydrogel scaffold could be prepared at low polymer weight (10 wt %) and possessed the largest compressive modulus of the 10% formulations, a low swelling ratio, and contained carbamate linkages, which are more hydrolytically stable than the ester linkages. The hydrogel-treated osteochondral defects showed good attachment in the defect site and histological analysis showed the presence of collagen II and glycosaminoglycans (GAGs) in the treated defects. By contrast, the contralateral unfilled defects showed poor healing and negligible GAG or collagen II production. Good mechanical properties, low swelling, good attachment to the defect site, and positive in vivo results illustrate the potential of these dendrimer-based hydrogels as scaffolds for osteochondral defect repair.  相似文献   

7.
Novel protein/synthetic polymer hybrid interpenetrating polymer networks (IPNs) of poly(N-isopropylacrylamide) (PNIPAAm) with Bombyx mori silk fibroin (SF) have been prepared by using methanol to postinduce SF crystallization. Those IPNs having the beta sheet crystalline structure of SF show improved storage and loss moduli. The IPN hydrogels show the same volume phase transition temperature and NaCl concentration as pure PNIPAAm hydrogels. The PNIPAAm/SF IPNs keep the swelling kinetics of PNIPAAm, while showing increased deswelling kinetics. The IPNs with SF beta sheet structure should decrease the formation of the skin layer observed in conventional PNIPAAm hydrogels. Therefore, the proposed IPN hydrogels composed of protein/polymer provide fast deswelling rates as well as improved mechanical properties over pure PNIPAAm hydrogels. The effect of SF beta sheet networks on the IPNs copolymerized with acrylic acid (AAc) (P(NIPAAm-co-AAc)/SF IPNs) is compared with that on the PNIPAAm/SF IPNs, and the parameters controlling the deswelling kinetics of the IPNs are investigated. Three parameters, (1) the skin layer formation, (2) the restriction of SF beta sheet networks, and (3) the aggregation force of NIPAAm chains, are cooperatively involved in the deswelling process of IPN hydrogels according to the SF content and the presence of the AAc moiety.  相似文献   

8.
Cohn D  Sosnik A  Garty S 《Biomacromolecules》2005,6(3):1168-1175
The objective of this study was to explore the use of reverse thermo-responsive (RTG) polymers for generating implants at their site of performance, following minimally invasive surgical procedures. Aiming at combining syringability and enhanced mechanical properties, a new family of injectable RTG-displaying polymers that exhibit improved mechanical properties was created, following two different strategies: (1) to synthesize high-molecular-weight polymers by covalenty joining poly(ethylene glycol) and poly(propylene glycol) chains using phosgene as the coupling molecule and (2) to cross-link poly(ethylene oxide) (PEO)-poly(propylene oxide) (PPO)-PEO triblocks after end-capping them with triethoxysilane or methacrylate reactive groups. While the methacrylates cross-linked rapidly, the triethoxysilane groups enabled the system to cross-link gradually over time. The chain-extended PEO/PPO copolymers had molecular weights in the 39 000-54 000 interval and exhibited improved mechanical properties. Reverse thermo-responsive systems displaying gradually increasing mechanical properties were generated by cross-linking triethoxysilane-capped (EO)(99)-(PO)(67)-(EO)(99) (F127) triblocks. Over time, the ethoxysilane groups hydrolyzed and created silanol moieties that subsequently condensated. With the aim of further improving their mechanical behavior, F127 triblocks were reacted with methacryloyl chloride and the resulting dimethacrylate was subsequently cross-linked in an aqueous solution at 37 degrees C. The effect of the concentration of the F127 dimethacrylate on the mechanical properties and the porous structure of the cross-linked matrixes produced was assessed. Rheometric studies revealed that the cross-linked hydrogels attained remarkable mechanical properties and allowed the engineering of robust macroscopic constructs, such as large tubular structures. The microporosity of the matrixes produced was studied by scanning electron microscopy. Monolayered conduits as well as structures comprising two and three layers were engineered in vitro, and their compliance and burst strength were determined.  相似文献   

9.
Eight-arm poly(ethylene glycol)-poly(L-lactide), PEG-(PLLA)(8), and poly(ethylene glycol)-poly(D-lactide), PEG-(PDLA)(8), star block copolymers were synthesized by ring-opening polymerization of either L-lactide or D-lactide at room temperature in the presence of a single-site ethylzinc complex and 8-arm PEG (M(n) = 21.8 x 10(3) or 43.5 x 10(3)) as a catalyst and initiator, respectively. High lactide conversions (>95%) and well-defined copolymers with PLLA or PDLA blocks of the desired molecular weights were obtained. Star block copolymers were water-soluble when the number of lactyl units per poly(lactide) (PLA) block did not exceed 14 and 17 for PEG21800-(PLA)(8) and PEG43500-(PLA)(8), respectively. PEG-(PLA)(8) stereocomplexed hydrogels were prepared by mixing aqueous solutions with equimolar amounts of PEG-(PLLA)(8) and PEG-(PDLA)(8) in a polymer concentration range of 5-25 w/v % for PEG21800-(PLA)(8) star block copolymers and of 6-8 w/v % for PEG43500-(PLA)(8) star block copolymers. The gelation is driven by stereocomplexation of the PLLA and PDLA blocks, as confirmed by wide-angle X-ray scattering experiments. The stereocomplexed hydrogels were stable in a range from 10 to 70 degrees C, depending on their aqueous concentration and the PLA block length. Stereocomplexed hydrogels at 10 w/v % polymer concentration showed larger hydrophilic and hydrophobic domains as compared to 10 w/v % single enantiomer solutions, as determined by cryo-TEM. Correspondingly, dynamic light scattering showed that 1 w/v % solutions containing both PEG-(PLLA)(8) and PEG-(PDLA)(8) have larger "micelles" as compared to 1 w/v % single enantiomer solutions. With increasing polymer concentration and PLLA and PDLA block length, the storage modulus of the stereocomplexed hydrogels increases and the gelation time decreases. Stereocomplexed hydrogels with high storage moduli (up to 14 kPa) could be obtained at 37 degrees C in PBS. These stereocomplexed hydrogels are promising for use in biomedical applications, including drug delivery and tissue engineering, because they are biodegradable and the in-situ formation allows for easy immobilization of drugs and cells.  相似文献   

10.
Novel biodegradable poly(ethylene glycol) (PEG) based hydrogels, namely, PEG sebacate diacrylate (PEGSDA) were synthesized, and their properties were evaluated. Chemical structures of these polymers were confirmed by Fourier transform infrared and proton nuclear magnetic resonance (1H NMR) spectroscopy. After photopolymerization, the dynamic shear modulus of the hydrogels was up to 0.2 MPa for 50% PEGSDA hydrogel, significantly higher than conventional hydrogels such as PEG diacrylate (PEGDA). The swelling ratios of these macromers were significantly lower than PEGDA. The in vitro degradation study demonstrated that these hydrogels were biodegradable with weight losses about 66% and 32% for 25% and 50% PEGSDA after 8 weeks of incubation in phosphate-buffered saline at 37 degrees C. In vitro biocompatibility was assessed using cultured rat bone marrow stromal cells (MSCs) in the presence of unreacted monomers or degradation products. Unlike conventional PEGDA hydrogels, PEGSDA hydrogel without RGD peptide modification induced MSC cell adhesion similar to tissue culture polystyrene. Finally, complex three-dimensional structures of PEGSDA hydrogels using solid free form technique were fabricated and their structure integrity was better maintained than PEGDA hydrogels. These hydrogels may find use as scaffolds for tissue engineering applications.  相似文献   

11.
Surface-active polymers derived from styrene monomers containing siloxane (S), fluoroalkyl (F) and/or ethoxylated (E) side chains were blended with an elastomer matrix, either poly(dimethyl siloxane) (PDMS) or poly(styrene-b-(ethylene-co-butylene)-b-styrene) (SEBS), and spray-coated on top of PDMS or SEBS preformed films. By contact angle and X-ray photoelectron spectroscopy measurements, it was found that the surface-active polymer preferentially populated the outermost layers of the coating, despite its low content in the blend. However, the self-segregation process and the response to the external environment strongly depended on both the chemistry of the polymer and the type of matrix used for the blend. Additionally, mechanical testing showed that the elastic modulus of SEBS-based coatings was one order of magnitude higher than that of the corresponding PDMS-based coatings. The coatings were subjected to laboratory bioassays with the marine alga Ulva linza. PDMS-based coatings had superior fouling-release properties compared to the SEBS-based coatings.  相似文献   

12.
Tuning the degradation profiles of polymer cell carriers to match cell and tissue growth is an important design parameter for (cartilage) tissue engineering. In this study, degradable hydrogels were fabricated from divinyl, tetrafunctional poly(ethylene glycol) (PEG) and multivinyl, multifunctional poly(vinyl alcohol) (PVA) macromers to form homopolymer and copolymer gels. These gels were characterized by their volumetric swelling ratio and mass loss profiles as a function of degradation time. By variation of the macromer chemistry and functionality, the degradation time changed from less than 1 day for homopolymer PVA gels to 34 days for pure PEG gels. Furthermore, the degrading medium influenced mass loss, and a marked decrease in degradation time, from 34 to 12 days, was observed with the PEG gels when a chondrocyte-specific medium containing fetal bovine serum was employed. Interestingly, when copolymer gels of PEG and PVA were formed, PVA was released throughout the degradation (as determined by gel permeation chromatography) suggesting that covalent cross-linking of the PVA in the network was facilitated by copolymerizing with the PEG macromer. To assess these novel gels for cartilage tissue engineering applications, chondrocytes were photoencapsulated in the copolymer networks and cultured in vitro for up to 6 weeks. DNA, glycosaminoglycan (GAG), and total collagen contents increased with culture time, and the resulting neocartilaginous tissue at 6 weeks was homogeneously distributed as seen histologically. Biochemical analysis revealed that the constructs were comprised of 0.66 +/- 0.04 microg of DNA/mg wet weight (ww), 1.0 +/- 0.05% GAG/ww, and 0.29 +/- 0.07% total collagen/ww at 6 weeks. Furthermore, the compressive modulus increased during culture from 7 to 97 kPa as the neocartilaginous tissue evolved and the gel degraded. In summary, fabricating hydrogels through the copolymerization of PEG and PVA macromers is an effective tool for encapsulating chondrocytes, controlling gel degradation profiles, and generating cartilaginous tissue.  相似文献   

13.
Molecular dynamics (MD) simulations were employed to study the influence of solvents on the structure and mechanical properties of physically crosslinked poly(vinyl alcohol) (PVA) gels. Firstly, three kinds of PVA precursor gels were made by adding water, dimethyl sulfoxide (DMSO) and a mixture of DMSO and water (4:1 by weight), respectively. The solvents in the precursor gels were then exchanged with water to obtain three kinds of PVA hydrogels. Solvent in the precursor gel with a mixture of DMSO and water was also exchanged with ethanol and DMSO, respectively. It was found that the tensile strength and failure strain of the PVA hydrogel prepared from precursor gel with a mixture of DMSO and water was the highest, and the polymer network was more homogeneous than the other two PVA hydrogels. The polymer network of PVA gel with ethanol or with DMSO was more heterogenous than with water, and the tensile strength and failure strain were much lower. The torsional activity of polymer chains of PVA gel with ethanol was much stronger than PVA gel with water and DMSO.  相似文献   

14.
Protein physical and chemical properties can be altered by polymer interaction. The presence of several high affinity binding sites on human serum albumin (HSA) makes it a possible target for many organic and polymer molecules. This study was designed to examine the interaction of HSA with poly(ethylene glycol) (PEG) in aqueous solution at physiological conditions. Fourier transform infrared, ultraviolet-visible, and CD spectroscopic methods were used to determine the polymer binding mode, the binding constant, and the effects of polymer complexation on protein secondary structure.The spectroscopic results showed that PEG is located along the polypeptide chains through H-bonding interactions with an overall affinity constant of K = 4.12 x 10(5) M(-1). The protein secondary structure showed no alterations at low PEG concentration (0.1 mM), whereas at high polymer content (1 mM), a reduction of alpha-helix from 59 (free HSA) to 53% and an increase of beta-turn from 11 (free HSA) to 22% occurred in the PEG-HSA complexes (infrared data). The CDSSTR program (CD data) also showed no major alterations of the protein secondary structure at low PEG concentrations (0.1 and 0.5 mM), while at high polymer content (1 mM), a major reduction of alpha-helix from 69 (free HSA) to 58% and an increase of beta-turn from 7 (free HSA) to 18% was observed.  相似文献   

15.
Unique combinations of hard and soft components found in biological tissues have inspired researchers to design and develop synthetic nanocomposite gels and hydrogels with elastomeric properties. These elastic materials can potentially be used as synthetic mimics for diverse tissue engineering applications. Here we present a set of elastomeric nanocomposite hydrogels made from poly(ethylene glycol) (PEG) and hydroxyapatite nanoparticles (nHAp). The aqueous nanocomposite PEG-nHAp precursor solutions can be injected and then covalently cross-linked via photopolymerization. The resulting PEG-nHAp hydrogels have interconnected pore sizes ranging from 100 to 300 nm. They have higher extensibilities, fracture stresses, compressive strengths, and toughness when compared with conventional PEO hydrogels. The enhanced mechanical properties are a result of polymer nanoparticle interactions that interfere with the permanent cross-linking of PEG during photopolymerization. The effect of nHAp concentration and temperature on hydrogel swelling kinetics was evaluated under physiological conditions. An increase in nHAp concentration decreased the hydrogel saturated swelling degree. The combination of PEG and nHAp nanoparticles significantly improved the physical and chemical hydrogel properties as well as some biological characteristics such as osteoblast cell adhesion. Further development of these elastomeric materials can potentially lead to use as a matrix for drug delivery and tissue repair especially for orthopedic applications.  相似文献   

16.
In pursuit of a wound-specific corneal adhesive, hydrogels formed by the reaction of propionaldehyde, butyraldehyde, or 2-oxoethyl succinate-functionalized poly(ethylene glycol) (PEG) with a peptide-based dendritic cross-linker (Lys(3)Cys(4)) were characterized. These macromers react within minutes of mixing to form transparent and elastic hydrogels with in vitro degradation times that range from hours to months based on the type of bonds formed during the cross-linking reaction, either thiazolidine or pseudoproline. The mechanical properties of these materials, determined via parallel plate rheology, were dependent on the polymer concentration, as was the hydrogel adhesive strength, which was determined by lap shear adhesive testing. In addition, these hydrogels were efficacious in closing ex vivo 4.1 mm central corneal lacerations: wounds closed with these hydrogel adhesives were able to withstand intraocular pressure values equivalent to, or in excess of, those obtained by closing the wounds with suturing.  相似文献   

17.
Photopolymerized poly(ethylene glycol) (PEG) hydrogels were used as a base platform for the encapsulation and culture of human mesenchymal stem cells (hMSCs). The base PEG formulation presents an environment completely devoid of cell-matrix interactions. As such, viability of hMSCs in unmodified PEG hydrogels is very low. This formulation was modified to contain pendant phosphate groups to facilitate the sequestering of osteopontin within the gel, as well as pendant cell-adhesive RGD peptide sequences, which are found in osteopontin and other cell adhesion proteins. The survivability of hMSCs was examined with culture time and as a function of the gel chemistry to examine the role of cell-matrix interactions in promoting long-term viability. In the absence of any adhesive ligands, hMSC viability drops to 15% after 1 week in culture. However, by incorporating the RGD sequence or pendant phosphate groups this low viability was rescued to 75% and 97%, respectively. It is believed that the phosphate groups promote mineralization of the hydrogel network, and this mineral phase sequesters cell-secreted osteopontin, resulting in enhanced cell-matrix interactions and improved cell viability.  相似文献   

18.
Qiu Y  Park K 《AAPS PharmSciTech》2003,4(4):406-412
The objective of this study was to improve the mechanical properties of superporous hydrogels (SPHs), which were used to develop gastric retention devices for long-term oral drug delivery. The main approach used in this study was to form an interpenetrating polymer network by incorporating a second polymer network inside an SPH structure. Polyacrylonitrile was used as the second network inside an SPH. Mechanical properties including compression strength and elasticity were significantly improved, up to 50 times as compared with the control SPHs. The enhanced mechanical properties were a result of the scaffold-like fiber network structures formed inside the cell walls of SPHs. The fast swelling property of SPHs was not affected by the incorporation of the second polymer network because the interconnected pore structures were maintained. Gastric retention devices based on superporous IPN hydrogels (SPIHs) with the improved mechanical properties are expected to withstand compression pressure and mechanical frictions in the stomach better than the control SPHs.  相似文献   

19.
Because most "low fouling" polymers resisting bacterial attachment are hydrophilic, they are usually also significantly swollen. Swelling leads to purely physical dilution of interaction and weakens attachment; however, these nonspecific contributions are usually not separated from the specific effect of polymer chemistry. Taking advantage of the fact that chemistry and swelling of hydrogels may be independently varied through the fraction of a cross-linker, the roles of chemistry and physical dilution (swelling) in bacterial attachment are analyzed for selected hydrogels. Using as a quantitative indicator the rate of bacterial deposition in a parallel plate setup under defined flow conditions, the observed correlation of deposition rate with swelling provides a straightforward comparison of gels with different chemistries that can factor out the effect of swelling. In particular, it is found that chemistry appears to contribute similarly to bacterial deposition on hydrogels prepared from acrylamide and a zwitterioninic monomer 2-(methacryloyloxy)ethyl) dimethyl-(3-sulfopropyl) ammonium hydroxide so that the observed differences may be related to swelling only. In contrast, these gels were inferior to PEG-based hydrogels, even when swelling of the latter was lower, indicating a greater contribution of PEG chemistry to reduced bacterial deposition. This demonstrates that swelling must be accounted for when comparing different biofouling-resistant materials. Chemical and physical principles may be combined in hydrogel coatings to develop efficient antibiofouling surfaces.  相似文献   

20.
Poly(ethylene glycol)-grafted poly(3-hydroxyundecenoate) (PEG-g-PHU) networks were prepared by irradiating homogeneous solutions of poly(3-hydroxyundecenoate) (PHU) and the monoacrylate of poly(ethylene glycol) (PEG) with UV light. The resulting polymer networks were characterized by measuring the water contact angle, water uptake, and mechanical properties and by performing attenuated total reflectance infrared spectroscopy and scanning electron microscopy. These measurements showed that the PEG chains were present in polymer networks. Adsorption of blood proteins and platelets on cross-linked PHU (CLPHU) and PEG-g-PHU were examined using poly(L-lactide) (PLLA) surfaces as control. Blood proteins and platelets had significantly lower tendency of adhesion to surfaces composed of CLPHU and PEG-g-PHU networks than to PLLA. Blood compatibility of polymer networks increased as the fraction of grafted PEG increased. The results of this study suggest that PEG-g-PHU networks might be useful for blood-compatible biomedical applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号