首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Activation of MAPK pathways by angiotensin II (Ang II) is important for cardiac fibroblast (CFB) proliferation and migration. Activity of MAP-kinases is closely controlled by a group of dual-specific MAP kinase phosphatases (MKPs). Lipopolysaccharides (LPS) and cytokines are elevated in patients with heart failure and may contribute to disease progression. In this study, we investigate the effect of LPS on Ang II-induced CFB function. Pretreatment of CFBs with LPS (1 microg/mL; 30 min) almost completely inhibited Ang II-induced DNA-synthesis and inhibited Ang II directed chemotaxis by more than 80%. Compared to controls, LPS pretreatment significantly reduced phosphorylation levels of ERK1/2- and p38 MAPK and induced MKP-1 levels. Silencing MKP-1 with antisense oligodesoxynucleotides reversed the antimitogenic effect of LPS on Ang II-induced CFB DNA-synthesis and migration. Induction of MKP-1 by LPS was inhibited by the protein kinase C (PKC)-inhibitor calphostin C, but not by the ERK1/2-pathway inhibitor PD98059, suggesting that PKC but not ERK1/2 is required for LPS-mediated MKP-1 induction in CFBs. Our data demonstrate that LPS have direct cellular effects in CFBs through an inhibition of Ang II-induced MAPK activity via PKC-mediated induction of MKP-1. This might be relevant with regard to the decreased MAPK activity and increased levels in MKPs reported during chronic heart failure in humans.  相似文献   

3.
As ENT inhibitors including dilazep have shown efficacy improving oHSV1 targeted oncolytic cancer therapy, a series of dilazep analogues was synthesized and biologically evaluated to examine both ENT1 and ENT2 inhibition. The central diamine core, alkyl chains, ester linkage and substituents on the phenyl ring were all varied. Compounds were screened against ENT1 and ENT2 using a radio-ligand cell-based assay. Dilazep and analogues with minor structural changes are potent and selective ENT1 inhibitors. No selective ENT2 inhibitors were found, although some analogues were more potent against ENT2 than the parent dilazep.  相似文献   

4.
5.
Genipin, an aglycon of geniposide, has been reported to exhibit diverse pharmacological functions such as antitumor and anti-inflammatory effects. This study aimed to elucidate the anti-inflammatory mechanism of genipin, focusing particularly on the role of heme oxygenase-1 (HO-1), a potent anti-inflammatory enzyme. In RAW264.7 cells, genipin increased HO-1 expression and its enzyme activity via a NF-E2-related factor 2 (Nrf2)–antioxidant response element (ARE) pathway. These effects were significantly inhibited by exposure to the phosphatidylinositol 3-kinase (PI 3-kinase) inhibitor, LY294002, or by expression of a dominant negative mutant of PI 3-kinase. Additional experiments showed that the activation of c-Jun NH2-terminal kinase 1/2 (JNK1/2) is required for genipin-induced phosphorylation and nuclear translocation of Nrf2 and antioxidant response element (ARE)-driven induction of HO-1, and acts as a downstream effector of PI 3-kinase. Furthermore, functional significance of HO-1 induction was revealed by genipin-mediated inhibition of lipopolysaccharide-stimulated inducible nitric oxide synthase expression or cyclooxygenase-2 promoter activity, the response was reversed by the blocking of HO-1 protein synthesis or HO-1 enzyme activity. Therefore, identification of PI 3-kinase-JNK1/2-Nrf2-linked signaling cascade in genipin-mediated HO-1 expression defines the signaling event that could participate in genipin-mediated anti-inflammatory response.  相似文献   

6.
7.
Increased serine/threonine phosphorylation of insulin receptor substrate-1 (IRS-1) is associated with cellular insulin resistance. We have recently identified serine 318 (Ser318) as a novel protein kinase C-zeta (PKC-zeta)-dependent phosphorylation site within IRS-1. As other kinases may phosphorylate at this serine residue as well, we aimed to identify such kinases in the present study. In C2C12 myotubes, exposure to insulin or phorbol ester markedly increased Ser318 phosphorylation. In contrast, high glucose, tumor necrosis factor-alpha, and free fatty acids did not provoke Ser318 phosphorylation. JNK and the PI 3-kinase/mTOR pathway were found to be implicated in insulin-induced Ser318 phosphorylation, but not in TPA-stimulated phosphorylation that was, at least partly, mediated by classical or novel PKC. In conclusion, with JNK and the PI 3-kinase/mTOR pathway as mediators of insulin-induced Ser318 phosphorylation, we have identified kinases that have previously been reported to play key roles in phosphorylation of other serine residues in IRS-1.  相似文献   

8.
A lack of the REDD1 promotes dysregulated growth signaling, though little has been established with respect to the metabolic role of REDD1. Therefore, the goal of this study was to determine the role of REDD1 on glucose and insulin tolerance, as well as insulin stimulated growth signaling pathway activation in skeletal muscle. First, intraperitoneal (IP) injection of glucose or insulin were administered to REDD1 wildtype (WT) versus knockout (KO) mice to examine changes in blood glucose over time. Next, alterations in skeletal muscle insulin (IRS-1, Akt, ERK 1/2) and growth (4E-BP1, S6K1, REDD1) signaling intermediates were determined before and after IP insulin treatment (10 min). REDD1 KO mice were both glucose and insulin intolerant when compared to WT mice, evident by higher circulating blood glucose concentrations and a greater area under the curve following IP injections of glucose or insulin. While the REDD1 KO exhibited significant though blunted insulin-stimulated increases (p < 0.05) in Akt S473 and T308 phosphorylation versus the WT mice, acute insulin treatment has no effect (p < 0.05) on REDD1 KO skeletal muscle 4E-BP1 T37/46, S6K1 T389, IRS-1 Y1222, and ERK 1/2 T202/Y204 phosphorylation versus the WT mice. Collectively, these novel data suggest that REDD1 has a more distinct role in whole body and skeletal muscle metabolism and insulin action than previously thought.  相似文献   

9.
The reactive metabolites of benzo[a]pyrene (B[a]P) and cyclopenta[c,d]pyrene (CPP) induced an accumulation/phosphorylation of p53 in Hepa1c1c7 cells, whereas inhibition of p53 reduced the apoptosis. Judged by the inhibiting effect of wortmannin, phosphatidyl-inositol-3 (PI-3) kinases such as DNA-dependent protein kinase (DNA-PK), ATM (ataxia-telangiectasia mutated), and/or ATR (ATM related kinase), appeared to be involved in the DNA damage recognition and the B[a]P-/CPP-induced accumulation of p53. B[a]P and CPP also induced phosphorylation of jun-N-terminal kinase (JNK) and p38 mitogen activated protein kinase (MAPK). While inhibition of JNK had no effects on the B[a]P-/CPP-induced apoptosis, inhibition of p38 MAPK activity reduced this effect. Interestingly, survival signals such as phosphorylation of Akt and Bad seemed to be induced by the B[a]P-/CPP-compounds. Furthermore, also extracellular signal-regulated kinase (ERK)1/2 was activated and seemed to function as a survival signal in B[a]P-/CPP-induced apoptosis.  相似文献   

10.
11.

Objective

To determine the signaling pathways and components involved in insulin-mediated regulation of Acyl-CoA: cholesterol acyltransferase1 (ACAT1).

Methods

THP-1 cells were cultured in RPMI 1640 medium and were induced into macrophages in the presence of 160 nM phorbol 12-myristate 13-acetate (PMA). Before insulin was added in, macrophages were preincubated with the inhibitors of the insulin signaling pathway, including wortmannin, phosphatidylinositol 3-kinase (PI3 K) inhibitor; PD98059, extracellular signal-regulated kinase (ERK) inhibitor; SB203580, p38 mitogen-activated protein kinase (p38MAPK) inhibitor; SP600125, c-Jun N-terminal kinase (JNK) inhibitor and U73122, phospholipase C-γ (PLC-γ) inhibitor. ACAT1 mRNA and protein expression level in macrophages were determined by real-time quantitative polymerase chain reaction and western blotting, respectively.

Results

Real-time quantitative polymerase chain reaction and western blotting demonstrated that PD98059, SB203580 or SP600125 down-regulated the expression of ACAT1 in a dose-dependent manner. However, no obvious alteration was found in wortmannin and U73122 groups.

Conclusion

These results suggest that the ERK, p38MAPK and JNK signaling pathways may be involved in insulin-mediated regulation of ACAT1, but no PI3K and PLC-γ signaling pathways were involved in the present study.  相似文献   

12.
Mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3K) signaling pathways are pivotal and intensively studied signaling pathways in hypoxic conditions. However, the roles of MAPK and PI3K in the regulation of hypoxia-induced atrial natriuretic peptide (ANP) secretion are not well understood. The purpose of the present study was to investigate the mechanism by which the MAPK/ERK (extracellular signal-regulated kinase) and PI3K signaling pathways regulate the acute hypoxia-induced ANP secretion in isolated beating rabbit atria. An acute hypoxic perfused beating rabbit atrial model was used. The ANP levels in the atrial perfusates were measured by radioimmunoassay, and the hypoxia-inducible factor-1α (HIF-1α) mRNA and protein levels in the atrial tissue were determined by RT-PCR and Western blot. Acute hypoxia significantly increased ANP secretion and HIF-1α mRNA and protein levels. Hypoxia-induced ANP secretion was markedly attenuated by the HIF-1α inhibitors, rotenone (0.5 μmol/L) and CAY10585 (10 μmol/L), concomitantly with downregulation of the hypoxia-induced HIF-1α mRNA and protein levels. PD098059 (30 μmol/L) and LY294002 (30 μmol/L), inhibitors of MAPK and PI3K, markedly abolished the hypoxia-induced ANP secretion and atrial HIF-1α mRNA and protein levels. The hypoxia-suppressed atrial dynamics were significantly attenuated by PD098059 and LY294002. Acute hypoxia in isolated perfused beating rabbit atria, markedly increased ANP secretion through HIF-1α upregulation, which was regulated by the MAPK/ERK and PI3K pathways. ANP appears to be part of the protective program regulated by HIF-1α in the response to acute hypoxic conditions.  相似文献   

13.
14.
Most nucleoside-derived anticancer drugs are taken up by the high-affinity Na-dependent nucleoside transporter CNT1. Since such drugs are to some extent cell-cycle-dependent in their cytotoxic action, we examined the relationship between CNT1 expression and cell-cycle progression in the rat hepatoma cell line FAO. Cell cultures were synchronized either at late G1 or early S stages by combining mimosin treatment with either previous synchronization or not by serum starvation. Cell-cycle progression was then assessed by measuring [methyl-3H]thymidine incorporation into DNA and monitoring cyclin E and A protein levels. In these conditions, CNT1 protein amounts increase at the G1-S transition. When cells were synchronized using hydroxyurea (HU), which directly interacts with nucleotide metabolism by inhibiting ribonucleotide reductase, CNT1 protein amounts increased in synchronized cells and remained high during cell-cycle progression. These data indicate that CNT1 adapts to cell-cycle progression and responds to nucleos(t)ide metabolism status, a feature that might contribute to the cytotoxic action of cell-cycle-dependent anticancer drugs.  相似文献   

15.
The adenosine transporter 1 (ENT1) transports nucleosides, such as adenosine, and cytotoxic nucleoside analog drugs. ENT1 is well established to play a role in adenosinergic signaling in the cardiovascular system by modulating adenosine levels. Moderate ethanol consumption is cardioprotective and underlying mechanisms of action are not clear although adenosinergic signaling has been implicated. Here, we show that ethanol (5–200 mM) significantly reduces ENT1-dependent [3H] 2-chloroadenosine uptake (by up to 27 %) in the cardiomyocyte cell line, HL-1. Inhibition or absence of ENT1 is known to be cardioprotective, suggesting that the interaction of ethanol with ENT1 may promote adenosinergic cardioprotective pathways in the cardiovasculature. Ethanol sensitivity of adenosine uptake is altered by pharmacological activation of PKA and PKC. Primary cardiomyocytes from PKCε-null mice have significantly greater sensitivity to inhibition (by approximately 37 %) of adenosine uptake by ethanol than controls. These data suggest that the presence of ethanol may compromise ENT1-dependent nucleoside analog drug cytotoxicity, and indeed, ethanol (5 mM) reduces the cytotoxic effects of gemcitabine (2 nM), an anti-cancer drug, in the human cancer cell line, HTB2. Thus, the pharmacological inhibition of ENT1 by ethanol may contribute to ethanol-dependent cardioprotection but compromise gemcitabine cytotoxicity.  相似文献   

16.
17.
18.
The small and large intestines differ in their expression profiles of Bcl-2 homologs. Intestinal segment-specific Bcl-2 homolog expression profiles are acquired as early as by mid-gestation (18-20 weeks) in man. In the present study, we examined the question whether such distinctions underlie segment-specific control mechanisms of intestinal cell survival. Using mid-gestation human jejunum and colon organotypic cultures, we analyzed the impact of growth factors (namely insulin; 10 microg/ml) and pharmacological compounds that inhibit signal transduction molecules/pathways (namely tyrosine kinases, Fak, P13-K/Akt, and MEK/Erk) on cell survival and Bcl-2 homolog expression (anti-apoptotic: Bcl-2, Bcl-X(L), Mcl-1; pro-apoptotic: Bax, Bak, Bad). The relative activation levels of p125Fak, p42Erk-2, and p57Akt were analyzed as well. Herein, we report that (1) the inhibition of signal transduction molecules/pathways revealed striking differences in their impact on cell survival in the jejunum and colon (e.g., the inhibition of p125Fak induced apoptosis with a significantly greater extent in the jejunum [approximately 43%] than in the colon [approximately 24%]); (2) sharp distinctions between the two segments were noted in the modulatory effects of the various treatments on Bcl-2 homolog steady-state levels (e.g., inhibition of tyrosine kinase activities in the jejunum down-regulated all anti-apoptotics analyzed while increasing Bax, whereas the same treatment in the colon down-regulated Bcl-X(L) only and increased all pro-apoptotics); and (3) in addition to their differential impact on cell survival and Bcl-2 homolog expression, the MEK/Erk and P13-K/Akt pathways were found to be distinctively regulated in the jejunum and colon mucosae (e.g., insulin in the jejunum increased p42Erk-2 activation without affecting that of p57Akt, whereas the same treatment in the colon decreased p42Erk-2 activation while increasing that of p57Akt). Altogether, these data show that intestinal cell survival is characterized by segment-specific susceptibilities to apoptosis, which are in turn linked with segmental distinctions in the involvement of signaling pathways and the regulation of Bcl-2 homolog steady-state levels. Therefore, these indicate that cell survival is subject to segment-specific control mechanisms along the proximal-distal axis of the intestine.  相似文献   

19.
The extracellular domain (ED) of the membrane-spanning sialoglycoprotein, mucin-1 (MUC1), is an in vivo substrate for the lysosomal sialidase, neuraminidase-1 (NEU1). Engagement of the MUC1-ED by its cognate ligand, Pseudomonas aeruginosa-expressed flagellin, increases NEU1-MUC1 association and NEU1-mediated MUC1-ED desialylation to unmask cryptic binding sites for its ligand. However, the mechanism(s) through which intracellular NEU1 might physically interact with its surface-expressed MUC1-ED substrate are unclear. Using reciprocal coimmunoprecipitation and in vitro binding assays in a human airway epithelial cell system, we show here that NEU1 associates with the MUC1-cytoplasmic domain (CD) but not with the MUC1-ED. Prior pharmacologic inhibition of the NEU1 catalytic activity using the NEU1-selective sialidase inhibitor, C9-butyl amide-2-deoxy-2,3-dehydro-N-acetylneuraminic acid, did not diminish NEU1-MUC1-CD association. In addition, glutathione-S-transferase (GST) pull-down assays using the deletion mutants of the MUC1-CD mapped the NEU1-binding site to the membrane-proximal 36 aa of the MUC1-CD. In a cell-free system, we found that the purified NEU1 interacted with the immobilized GST-MUC1-CD and the purified MUC1-CD associated with the immobilized 6XHis-NEU1, indicating that the NEU1-MUC1-CD interaction was direct and independent of its chaperone protein, protective protein/cathepsin A. However, the NEU1-MUC1-CD interaction was not required for the NEU1-mediated MUC1-ED desialylation. Finally, we demonstrated that overexpression of either WT NEU1 or a catalytically dead NEU1 G68V mutant diminished the association of the established MUC1-CD binding partner, PI3K, to MUC1-CD and reduced downstream Akt kinase phosphorylation. These results indicate that NEU1 associates with the juxtamembranous region of the MUC1-CD to inhibit PI3K-Akt signaling independent of NEU1 catalytic activity.  相似文献   

20.
目的:探讨普伐他汀对醛固酮诱导新生大鼠心脏成纤维细胞内皮素(ET)的影响。方法:采用胰酶消化法和差速贴壁分离法获取和培养新生大鼠心脏成纤维细胞,应用放免法、流式细胞术、RT-PCR的方法分别测定醛固酮、普伐他汀以及甲羟戊酸干预下心脏成纤维细胞培养液中ET水平和心脏成纤维细胞中的ET-1含量,以及内皮素-1前体(ppET-1)mRNA的表达。结果:与正常对照组相比,醛固酮(10-7mol/L)可促进心脏成纤维细胞培养液中ET水平和心脏成纤维细胞中的ET-1含量及ppET-1 mRNA的表达,提前给予普伐他汀(10-5,10-4,10-3mol/L)能剂量依赖性地抑制醛固酮的上述作用,同时这种抑制作用可被甲羟戊酸所逆转。结论:普伐他汀可抑制醛固酮诱导的心脏成纤维细胞ppET-1mRNA表达以及ET-1的合成和分泌,其机制可能与甲羟戊酸代谢途径有关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号