首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The plaice (Pleuronectes platessa L.) papain-binding protein previously demonstrated to be homologous with human alpha(2)-macroglobulin, and designated plaice alpha(2)-macroglobulin homologue or alphaMh, was shown to be a glycoprotein of s(20,w) 11.86S. In polyacrylamide-gel pore-limit electrophoresis under non-denaturing conditions plaice alphaMh migrated to the same position as half-molecules of human alpha(2)-macroglobulin, and treatment with methylamine or a proteinase caused no change in its electrophoretic properties. Either denaturation in urea (4m) or mild reduction by dithiothreitol (1mm) partially dissociated plaice alphaMh into half-molecules. Denaturation with reduction further dissociated the protein into quarter-subunits. In sodium dodecyl sulphate/polyacrylamide-gel electrophoresis under reducing conditions plaice alphaMh dissociated into subunits of M(r) 105000 (I) and 90000 (II). Approximately equal amounts of each subunit were formed, and peptide ;mapping' showed subunits I and II to be distinct polypeptide chains. Under alkaline denaturing conditions, a proportion of the I chains of alphaMh were cleaved into fragments of M(r) about 60000 and 40000. This cleavage was favoured by reducing conditions and prevented by prior inactivation of the alphaMh with methylamine. [(14)C]Methylamine allowed to react with alphaMh became covalently linked to subunit I. These properties suggested the existence of an autolytic site on subunit I analogous to the autolytic site of human alpha(2)-macroglobulin. Reaction of alphaMh with a proteinase resulted in cleavage of a fragment of M(r) 10000-15000 from subunit I. A proportion of the proteinase molecules trapped by alphaMh became covalently linked to the inhibitor. A scheme is proposed for the evolution of human alpha(2)-macroglobulin and plaice alphaMh from a common ancestral protein, which may also have been an ancestor of complement components C3 and C4.  相似文献   

2.
P A Roche  G S Salvesen  S V Pizzo 《Biochemistry》1988,27(20):7876-7881
Human alpha 2-macroglobulin (alpha 2M) of Mr approximately 720,000 is a proteinase inhibitor whose four identical subunits are arranged to form two adjacent inhibitory units. At present, the spatial arrangement of the two subunits which form one inhibitory unit (the functional "half-molecule") is not known. Treatment of alpha 2M with either 0.5 mM dithiothreitol (DTT) or 4 M urea results in dissociation of the native tetramer into two half-molecules of Mr approximately 360,000. These half-molecules retain trypsin inhibitory activity, but in each case, the reaction results in reassociation of the half-molecules to produce tetramers of Mr approximately 720,000. However, when reacted with plasmin, the preparations of half-molecules have different properties. DTT-induced half-molecules protect the activity of plasmin from inhibition by soybean trypsin inhibitor (STI) without reassociation, while urea-induced half-molecules show no ability to protect plasmin from reaction with STI. High-performance size-exclusion chromatography and sedimentation velocity ultracentrifugation studies were then used to estimate the Stokes radius (Re) of alpha 2M and both DTT- and urea-induced half-molecules of alpha 2M. The Re of tetrameric alpha 2M was 88-94 A, while that of DTT-induced half-molecules was 57-60 A and urea-induced half-molecules 75-77 A. These results demonstrate that DTT- and urea-induced half-molecules have fundamentally different molecular dimensions as well as inhibitory properties. The hydrodynamic data suggest that the urea-induced half-molecule is a "rod"-like structure, although it is not possible to predict the three-dimensional structure of this molecule with the available data.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Human alpha 2-macroglobulin can be reversibly dissociated by Cd2+ at low ionic strength in half-molecules which retain their ability to bind tightly plasmin and chymotrypsin. The steady state kinetic parameters of these proteinases towards chromogenic substrates when bound to half-molecules are not greatly different from those determined for these enzymes linked to whole alpha 2M molecules. Cd2+ can also induce the dissociation of plasmin- and chymotrypsin - alpha 2M complexes into proteinase-alpha 2M half-molecule conjugates. These results, taken with the fact that monomeric units of alpha 2M cannot bind these proteinases, strongly suggest that each active site of alpha 2M consists in a specific arrangement of two monomeric units linked by disulfide bridges.  相似文献   

4.
The structures of the two proteinase-binding sites in human alpha 2-macroglobulin (alpha 2M) were probed by treatment of alpha 2M with the serine proteinases thrombin and plasmin. Each proteinase forms an equimolar complex with alpha 2M (a binary alpha 2M-proteinase complex) which results in the activation and cleavage of two internal thiolester bonds in alpha 2M. Binary alpha 2M-proteinase complexes demonstrated an incomplete conformational change as determined by nondenaturing polyacrylamide gel electrophoresis and incomplete receptor recognition site exposure as determined by in vivo plasma elimination studies. Treatment of binary alpha 2M-proteinase complexes with CH3NH2, trypsin, or elastase resulted in cleavage of an additional one or two thiolester bonds in alpha 2M and complete receptor recognition site exposure, demonstrating that a limited conformational change had occurred. Treatment of the alpha 2M-thrombin complex with elastase resulted in the incorporation of approximately 0.5 mol proteinase/mol alpha 2M and completion of the conformational change in the complex. Similar treatment of the alpha 2M-plasmin complex resulted in the incorporation of less than 0.1 mol proteinase/mol alpha 2M. Unlike the alpha 2M-thrombin complex, the alpha 2M-plasmin complex did not undergo a complete conformational change following treatment with CH3NH2 or trypsin. Incubation of this complex with elastase resulted in proteolysis of the kringle 1-4 region of the alpha 2M-bound plasmin heavy chain, and following this treatment the alpha 2M-plasmin complex underwent a complete conformational change. The results of this investigation demonstrate that binary alpha 2M-proteinase complexes retain a relatively intact proteinase-binding site. In the case of the alpha 2M-plasmin complex, however, the heavy chain of alpha 2M-bound plasmin protrudes from the proteinase-binding site and prevents a complete conformational change in the complex despite additional thiolester bond cleavage.  相似文献   

5.
D Liu  R D Feinman  D Wang 《Biochemistry》1987,26(17):5221-5226
Urea caused dissociation of alpha 2-macroglobulin (alpha 2M) into half-molecules (two disulfide-bonded subunits) as revealed by gel electrophoresis. The fraction of whole molecules remaining decreased with increasing urea concentration. Half-dissociation occurred at about 2.2 M. The ability of alpha 2M to inhibit trypsin also decreased with increasing urea concentration, but the activity-urea curve was shifted to the right as compared to the dissociation-urea curve. Thus, at 3 M urea, gel electrophoresis showed only 6.6% whole molecules, whereas the trypsin inhibitory activity was 95% of that in buffer with no urea, suggesting that half-molecules retain activity. In addition, complexes formed in urea with 125I-labeled trypsin were observed to migrate as half-molecules even though only 50% of such complexes were covalent. These results are surprising in light of the report by Gonias and Pizzo [Gonias, S., & Pizzo, S. (1983) Biochemistry 22, 536-546] that half-molecules formed by mild reduction are active; reduction is assumed to divide the molecule along an axis orthogonal to the break caused by urea. This suggests that active half-molecules can be formed by splitting either the covalent or noncovalent bonds that hold the subunits together. A model is proposed that can account for this possibility. It has the same dimensions and symmetry as a previous model of Feldman et al. [Feldman, S.R., Gonias, S.L., & Pizzo, S.V. (1985) Proc. Natl. Acad. Sci. U.S.A. 82, 5700-5704] and accounts in a similar way for previous functional studies of the protein.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Disulfide bonds in alpha 2-macroglobulin (alpha 2M) were reduced with the thioredoxin system from Escherichia coli. Under the conditions selected, 3.5-4.1 disulfide bonds were cleaved in each alpha 2M molecule, as determined by the consumption of NADPH during the reaction and by the incorporation of iodo[3H]acetate into the reaction product. This extent of disulfide bond reduction, approximately corresponding to that expected from specific cleavage of all four interchain disulfide bonds of the protein, coincided with the nearly complete dissociation of the intact alpha 2M molecule to a species migrating as an alpha 2M subunit in gel electrophoresis, under both denaturing and nondenaturing conditions. The dissociation was accompanied by only small changes of the spectroscopic properties of the subunits, which thus retain a near-native conformation. Reaction of isolated subunits with methylamine or trypsin led to the appearance of approximately 0.55 mol of thiol group/mol of subunits, indicating that the thio ester bonds are largely intact. Moreover, the rate of cleavage of these bonds by methylamine was similar to that in the whole alpha 2M molecule. Although the bait region was specifically cleaved by nonstoichiometric amounts of trypsin, the isolated subunits had minimal proteinase binding ability. Reaction of subunits with methylamine or trypsin produced changes of farultraviolet circular dichroism and near-ultraviolet absorption similar to those induced in the whole alpha 2M molecule, although in contrast with whole alpha 2M no fluorescence change was observed. The methylamine- or trypsin-treated subunits reassociated to a tetrameric species, migrating as the "fast" form of whole alpha 2M in gradient gel electrophoresis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
P A Roche  M D Moncino  S V Pizzo 《Biochemistry》1989,28(19):7629-7636
Treatment of the human plasma proteinase inhibitor alpha 2-macroglobulin (alpha 2M) with proteinase results in conformational changes in the inhibitor and subsequent activation and cleavage of the internal thiolester bonds of alpha 2M. Previous studies from this laboratory have shown that cross-linking the alpha 2M subunits with cis-dichlorodiammineplatinum(II) (cis-DDP) prevents the proteinase-induced conformational changes which lead to the activation and cleavage of the internal thiolester bonds of alpha 2M. In addition, cis-DDP treatment prevents the proteinase- or CH3NH2-induced conformational changes in alpha 2M which lead to a "slow" to "fast" change in nondenaturing polyacrylamide gel electrophoresis. In this paper, we demonstrate that treatment of alpha 2M with dithiobis(succinimidyl propionate) (DSP) also results in cross-linking of the subunits of alpha 2M with concomitant loss of proteinase inhibitory activity. Although proteinase is not inhibited by DSP-treated alpha 2M, bait region specific proteolysis of the alpha 2M subunits still occurs. Unlike cis-DDP-treated alpha 2M, however, incubation of DSP-treated alpha 2M with proteinase does not prevent the bait region cleavage dependent conformational changes which lead to activation and cleavage of the internal thiolester bonds in alpha 2M. On the other hand, cross-linking of alpha 2M with DSP does prevent the conformational changes which trigger receptor recognition site exposure following cleavage of the alpha 2M thiolester bonds by CH3NH2. These conformational changes, however, occur following incubation of the CH3NH2-treated protein with proteinase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
It is shown that non-proteolytic proteins can become covalently linked to alpha 2M (alpha 2-macroglobulin) during its reaction with proteinases, and that this probably occurs by the mechanism that leads to the covalent linking of proteinases described previously [Salvesen & Barrett (1980) Biochem. J. 187, 695-701]. The covalent linking of trypsin was at least partly dependent on the presence of unblocked lysine side chains on the protein. The covalent linking of proteinases was inhibited by nucleophiles of low Mr, and these compounds were themselves linked to alpha 2M in a molar ratio approaching one per quarter subunit. Peptide "mapping" indicated that the site of proteinase-mediated incorporation of the amines was the same as that at which methylamine is incorporated in the absence of a proteinase. The nucleophile-reactive site revealed in alpha 2M after reaction with a proteinase was shown to decay with a t1/2 of 112 s, at pH 7.5. After the reaction with a proteinase or with methylamine, a free thiol group was detectable on each subunit of alpha 2M. We propose that the site for incorporation of methylamine in each subunit is a thiol ester, which in S-alpha 2M (the electrophoretically "slow" form) is sterically shielded from reaction with large nucleophiles, but is revealed as a highly reactive group, free from steric hindrance, after the proteolytic cleavage. We have designated the activated species of the molecule "alpha 2M".  相似文献   

9.
对猪血浆α2巨球蛋白性质研究表明其大部分理化性质与人α2巨球蛋白十分相似。而且猪α2巨球蛋白也存在有活性的天然的Slow-Form和构象发生变化并不可逆失活的Fast-Form。猪α2巨球蛋白经测定其pI为4.55,5.1。紫外吸收光谱在276mm处有最大吸收,E=9.14。其糖含量为9.3%。氨其酸组成分析表明酸性氨基酸含量较高。圆二色谱分析说明分子中含有较多的β折叠。它还具有连接锌离子的性质。  相似文献   

10.
As a model for the molecular structure of proteins belonging to the alpha 2-macroglobulin family, ovomacroglobulin of reptilian origin was studied by electron microscopy in the original tetrameric form as well as in the dissociated forms into half- and quarter molecules. The following aspects of the molecular internal structure which had previously not been known for the homologous human alpha 2-macroglobulin or chicken ovomacroglobulin were revealed. First, the negatively stained tetrameric native protein gave an appearance of a collection of four semi-circular strings placed on the four corners of a molecule. They were connected to each other in the center of a molecule through a set of globular domains which formed a cross-figured subunit contact region. Second, two kinds of active half-molecules prepared either by the reduction of intersubunit disulfide bonds or by the disruption of noncovalent subunit interface had similarly elongated forms having semi-circular units on the two ends, indicating quasi-equivalent subunit arrangement in the two kinds of half-molecules. We thus concluded that the structure of native ovomacroglobulin can be represented by four circular strings each equipped with an extra domain to form the central intersubunit contact region. The results may also be adapted to the internal structure of human alpha 2-macroglobulin because it was sometimes possible to observe similar ring-like internal structure in the human protein.  相似文献   

11.
Native human pregnancy zone protein (PZP), a close homolog of alpha 2-macroglobulin (alpha 2M), can be obtained in approximately 20% yield from pooled late pregnancy plasma or serum by a combination of polyethylene glycol precipitation, euglobulin precipitation, DEAE-Sephacel chromatography, zinc-chelate affinity chromatography, and negative affinity chromatography on insolubilized antibodies against human serum proteins. Both proteins are similarly organized as disulfide-bridged dimers of 360 kDa containing 180-kDa subunits. These dimers constitute the proteinase-binding units of PZP, and in contrast to alpha 2M, they appear to be only loosely associated, indicating a subtle difference in the quaternary structure of these alpha-macroglobulins. The preparations contain functionally intact beta-cysteinyl-gamma-glutamyl thiol esters, located in the same nonapeptide sequence as found in alpha 2M, and form complexes with a variety of proteinases in which a large fraction of the proteinase is bound covalently. Proteinases bound to PZP are still active and poorly accessible to reaction with large inhibitors like alpha 1-proteinase inhibitor. The structural and functional features of PZP indicate that PZP and alpha 2M, although extremely similar, may have different yet overlapping sets of proteinases as targets. It is possible that PZP mainly controls the activity of cellular proteinases released under conditions of increased cellular turnover and that PZP could be the human equivalent to the acute phase alpha-macroglobulins known in other species.  相似文献   

12.
Human alpha 2-macroglobulin (alpha 2M) is a unique 720-kDa proteinase inhibitor with a broad specificity. Unlike most other proteinase inhibitors, it does not inhibit proteolytic activity by blocking the active site of the proteinase. During complex formation with a proteinase, alpha 2M entraps the proteinase molecule in a reaction that involves large conformational changes in alpha 2M. We describe the molecular cloning of alpha 2M cDNA from the human hepatoblastoma cell line HepG2. The cDNA was subcloned under control of the adenovirus major late promoter in a mammalian expression vector and introduced into the baby hamster kidney (BHK) cell line. Transformed clones were isolated and tested for production of human alpha 2M with a specific enzyme-linked immunosorbent assay. Human recombinant alpha 2M (r alpha 2M), secreted and purified from isolated transfected BHK cell lines, was structurally and functionally compared to alpha 2M purified from human serum. The results show that r alpha 2M was secreted from the BHK cells as an active proteinase-binding tetramer with functional thiol esters. Cleavage reactions of r alpha 2M with methylamine and trypsin showed that the recombinant product, which was correctly processed at the N-terminus, exhibited molecular characteristics similar to those of the human serum derived reference. Moreover, r alpha 2M-trypsin complex bound to purified human placental alpha 2M receptor with an affinity indistinguishable from that of a complex formed from serum-derived alpha 2M and trypsin.  相似文献   

13.
Although it is known that most of the plasma proteinase inhibitors form complexes with proteinases that are not dissociated by SDS (sodium dodecyl sulphate), there has been disagreement as to whether this is true for alpha 2M (alpha 2-macroglobulin). We have examined the stability to SDS with reduction of complexes between alpha 2M and several 125I-labelled proteinases (trypsin, plasmin, leucocyte elastase, pancreatic elastase and papain) by gel electrophoresis. For each enzyme, some molecules were separated from the denatured alpha 2M chains, but amounts ranging from 8.3% (papain) to 61.2% (trypsin) were bound with a stability indicative of a covalent link. Proteolytic activity was essential for the covalent binding to occur, and the proteinase molecules became attached to the larger of the two proteolytic derivatives (apparent mol.wt. 111 000) of the alpha 2M subunit. We take this to mean that cleavage of the proteinase-susceptible site sometimes leads to covalent-bond formation between alpha 2M and proteinase. Whatever the nature of this bond, it does not involve the active site of the proteinase, as bound serine-proteinase molecules retain the ability to react with the active-site-directed reagent [3H]Dip-F (di-isopropyl phosphorofluoridate). Our conclusion is that the ability to form covalent links is not essential for the inhibitory capacity of alpha 2M. It may, however, help to stabilize the complexes against dissociation or proteolysis.  相似文献   

14.
Zinc binding to human alpha 2-macroglobulin was studied to assess its involvement in the structure and function alpha 2-macroglobulin. Equilibrium dialysis experiments indicated multiple classes of zinc-binding sites, the one of highest affinity having a site number of 20 and a Kd value of 8 X 10(-7) M. Native alpha 2-macroglobulin and alpha 2-macroglobulin-trypsin complexes bound comparable amount of zinc. The proteinase inhibitory activity of alpha 2-macroglobulin was not affected by zinc binding at physiological concentrations nor by the removal of zinc by EDTA. Above 25 microM zinc, alpha 2-macroglobulin activity decreased, although binding of [125I]trypsin was not affected. When nondenaturing gel electrophoresis was performed, the preparation of alpha 2-macroglobulin migrated as half-molecules at increasing zinc concentration. Experiments with other divalent cations correlated decreases in alpha 2-macroglobulin activity with apparent dissociation of the alpha 2-macroglobulin tetramer in the presence of copper and mercury, but not barium, cadmium or nickel. While zinc binding to alpha 2-macroglobulin does not function in proteinase inhibition, it might be involved in zinc transport in vivo. At nonphysiological concentrations, zinc and other divalent cations are useful as probes of protein quaternary structure.  相似文献   

15.
S L Gonias  S V Pizzo 《Biochemistry》1983,22(21):4933-4940
Human alpha 2-macroglobulin (alpha 2M) half-molecules were prepared by limited reduction and alkylation of the native protein. Reaction with plasmin resulted in nearly quantitative cleavage of the half-molecule Mr approximately 180000 subunits into Mr approximately 90000 fragments. Subunit cleavage was significantly less complete when plasmin was reacted with alpha 2M whole molecules. The plasmin and trypsin binding capacities of the two forms of alpha 2M were compared by using radioiodinated proteases. alpha 2M half-molecules bound an equivalent number of moles of plasmin or trypsin. Native unreduced alpha 2M bound only half as much plasmin as trypsin. These data are consistent with the hypothesis that the two protease binding sites are adjacent in native alpha 2M. alpha 2M half-molecule-plasmin complexes reassociated less readily than half-molecule-trypsin complexes, supporting this interpretation. The frequency of covalent bond formation between plasmin and alpha 2M was considerably higher than that previously observed with other proteases. Approximately 80-90% of the plasmin that reacted with alpha 2M whole molecules or half-molecules became covalently bound. The reactivities of purified alpha 2M-plasmin complexes were compared with small and large substrates. Equivalent kcat/Km values were determined at 22 degrees C for the hydrolysis of H-D-Val-Leu-Lys-p-nitroanilide dihydrochloride by whole molecule-plasmin complex and half-molecule-plasmin complex (40 mM-1 s-1 and 39 mM-1 s-1, respectively, compared with 66 mM-1 s-1 determined for free plasmin).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Characterization of thrombin binding to alpha 2-macroglobulin   总被引:1,自引:0,他引:1  
The formation and structural characteristics of the human alpha 2-macroglobulin (alpha 2M)-thrombin complex were studied by intrinsic protein fluorescence, sulfhydryl group titration, electrophoresis in denaturing and nondenaturing polyacrylamide gel systems, and in macromolecular inhibitor assays. The interaction between alpha 2M and thrombin was also assessed by comparison of sodium dodecyl sulfate-gel electrophoretic patterns of peptides produced by Staphylococcus aureus V-8 proteinase digests of denatured alpha 2M-125I-thrombin and alpha 2M-125I-trypsin complexes. In experiments measuring fluorescence changes and sulfhydryl group exposure caused by methylamine, we found that thrombin produced its maximum effects at a mole ratio of approximately 1.3:1 (thrombin:alpha 2M). Measurements of the ability of alpha 2M to bind trypsin after prior reaction with thrombin indicated that thrombin binds rapidly at one site on alpha 2M, but occupies the second site with some difficulty. Intrinsic fluorescence studies of trypsin binding to alpha 2M at pH 5.0, 6.5, and 8.0 not only revealed striking differences in trypsin's behavior over this pH range, but also some similarities between the behavior of thrombin and trypsin not heretofore recognized. Structural studies, using sodium dodecyl sulfate-polyacrylamide gel electrophoresis to measure alpha 2M-125I-thrombin covalent complex formation, indicated that covalency reached a maximum at a mole ratio of approximately 1.5:1. At this ratio, only 1 mol of thrombin is bound covalently per mol of alpha 2M. These gel studies and those of proteolytic digests of denatured alpha 2M-125I-trypsin and alpha 2M-125I-thrombin complexes suggest that proteinases form covalent bonds with uncleaved alpha 2M subunits. The sum of our results is consistent with a mechanism of proteinase binding to alpha 2M in which the affinity of the proteinase for alpha 2M during an initial reversible interaction determines its binding ratio to the inhibitor.  相似文献   

17.
125I-Labeled human platelet-derived transforming growth factor beta (125I-TGF-beta) and human alpha 2-macroglobulin (alpha 2M) formed a complex as demonstrated by 5% native polyacrylamide gel electrophoresis. The 125I-TGF-beta.alpha 2M complex migrated at a position identical to that of the fast migrating form of alpha 2M. Most of the 125I-TGF-beta.alpha 2M complex could be dissociated by acid or urea treatment. When 125I-TGF-beta was incubated with serum, the high molecular weight form of 125I-TGF-beta could be immunoprecipitated by anti-human alpha 2M anti-sera as demonstrated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. alpha 2M purified from platelet-rich plasma also showed the latent transforming growth factor activity and immunoreactivity of TGF-beta. These results suggest that TGF-beta.alpha 2M complex is a latent form of TGF-beta.  相似文献   

18.
The enzyme methylamine dehydrogenase or primary-amine:(acceptor) oxidoreductase (deaminating) (EC 1.4.99.3) was purified from the bacterium Thiobacillus versutus to homogeneity, as judged by polyacrylamide gel electrophoresis. The native enzyme has a Mr of 123 500 and contains four subunits arranged in a alpha 2 beta 2 configuration, the light and heavy subunits having a Mr of 12900 and 47500 respectively. The isoelectric point is 3.9. The purified enzyme was crystallized from 37--42% saturated ammonium sulphate in 0.1 M sodium acetate buffer, pH 5.0. The space group is P3(1)21 or P3(2)21, with one alpha 2 beta 2 molecule in the asymmetric unit. The cell dimensions are: a = b = 13.01 nm; c = 10.40 nm. The X-ray diffraction pattern extends to at least 0.25-nm resolution.  相似文献   

19.
We have investigated the interaction of alpha 2-macroglobulin (alpha 2M) with the serine proteinase urokinase, an activator of plasminogen. Urokinase formed sodium dodecyl sulfate stable complexes with purified alpha 2M and with alpha 2M in plasma. These complexes could be visualized after polyacrylamide gel electrophoresis by protein blots using 125I-labeled anti-urokinase antibody or by fibrin autography, a measure of fibrinolytic activity. According to gel electrophoretic analyses under reducing conditions, urokinase cleaved alpha 2M subunits and formed apparently covalent complexes with alpha 2M. Urokinase cleaved only about 60% of the alpha 2M subunits maximally at a mole ratio of 2:1 (urokinase: alpha 2M). Binding of urokinase to alpha 2M protected the urokinase active site from inhibition by antithrombin III-heparin and inhibited, to a significant extent, plasminogen activation by urokinase. Reaction of urokinase with alpha 2M caused an increase in intrinsic protein fluorescence and, thus, induced the conformational change in alpha 2M that is characteristic of its interactions with active proteinases. Our results indicate that both in plasma and in a purified system the alpha 2M-urokinase reaction is functionally significant.  相似文献   

20.
The inhibitory capacity of the alpha-macroglobulins resides in their ability to entrap proteinase molecules and thereby hinder the access of high molecular weight substrates to the proteinase active site. This ability is thought to require at least two alpha-macroglobulin subunits, yet the monomeric alpha-macroglobulin rat alpha 1-inhibitor-3 (alpha 1I3) also inhibits proteinases. We have compared the inhibitory activity of alpha 1I3 with the tetrameric human homolog alpha 2-macroglobulin (alpha 2M), the best known alpha-macroglobulin, in order to determine whether these inhibitors share a common mechanism. alpha 1I3, like human alpha 2M, prevented a wide variety of proteinases from hydrolyzing a high molecular weight substrate but allowed hydrolysis of small substrates. In contrast to human alpha 2M, however, the binding and inhibition of proteinases was dependent on the ability of alpha 1I3 to form covalent cross-links to proteinase lysine residues. Low concentrations of proteinase caused a small amount of dimerization of alpha 1I3, but no difference in inhibition or receptor binding was detected between purified dimers or monomers. Kininogen domains of 22 and 64 kDa were allowed to react with alpha 1I3- or alpha 2M-bound papain to probe the accessibility of the active site of this proteinase. alpha 2M-bound papain was completely protected from reaction with these domains, whereas alpha 1I3-bound papain reacted with them but with affinities several times weaker than uncomplexed papain. Cathepsin G and papain antisera reacted very poorly with the enzymes when they were bound by alpha 1I3, but the protection provided by human alpha 2M was slightly better than the protection offered by the monomeric rat alpha 1I3. Our data indicate that the inhibitory unit of alpha 1I3 is a monomer and that this protein, like the multimeric alpha-macroglobulins, inhibits proteinases by steric hindrance. However, binding of proteinases by alpha 1I3 is dependent on covalent crosslinks, and bound proteinases are more accessible, and therefore less well inhibited, than when bound by the tetrameric homolog alpha 2M. Oligomerization of alpha-macroglobulin subunits during the evolution of this protein family has seemingly resulted in a more efficient inhibitor, and we speculate that alpha 1I3 is analogous to an evolutionary precursor of the tetrameric members of the family exemplified by human alpha 2M.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号