首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Analyses of survival data of a mixture of Salmonella spp. at fixed temperatures between 55 degrees C (131 degrees F) and 71.1 degrees C (160 degrees F) in ground beef matrices containing concentrations of salt between 0 and 4.5%, concentrations of sodium pyrophosphate (SPP) between 0 and 0.5%, and concentrations of sodium lactate (NaL) between 0 and 4.5% indicated that heat resistance of Salmonella increases with increasing levels of SPP and salt, except that, for salt, for larger lethalities close to 6.5, the effect of salt was evident only at low temperatures (<64 degrees C). NaL did not seem to affect the heat resistance of Salmonella as much as the effects induced by the other variables studied. An omnibus model for predicting the lethality for given times and temperatures for ground beef matrices within the range studied was developed that reflects the convex survival curves that were observed. However, the standard errors of the predicted lethalities from this models are large, so consequently, a model, specific for predicting the times needed to obtained a lethality of 6.5 log(10), was developed, using estimated results of times derived from the individual survival curves. For the latter model, the coefficient of variation (CV) of predicted times range from about 6 to 25%. For example, at 60 degrees C, when increasing the concentration of salt from 0 to 4.5%, and assuming that the concentration of SPP is 0%, the time to reach a 6.5-log(10) relative reduction is predicted to increase from 20 min (CV = 11%) to 48 min (CV = 15%), a 2.4 factor (CV = 19%). At 71.1 degrees C (160 degrees F) the model predicts that more than 0.5 min is needed to achieve a 6.5-log(10) relative reduction.  相似文献   

2.
The heat resistance of susceptible and multiantimicrobial-resistant Salmonella strains grown to stationary phase in glucose-free tryptic soy broth supplemented with 0.6% yeast extract (TSBYE−G; nonadapted), in regular (0.25% glucose) TSBYE, or in TSBYE−G with 1.00% added glucose (TSBYE+G; acid adapted) was determined at 55, 57, 59, and 61°C. Cultures were heated in sterile 0.1% buffered peptone water (50 μl) in heat-sealed capillary tubes immersed in a thermostatically controlled circulating-water bath. Decimal reduction times (D values) were calculated from survival curves having r2 values of >0.90 as a means of comparing thermal tolerance among variables. D59°C values increased (P < 0.05) from 0.50 to 0.58 to 0.66 min for TSBYE−G, TSBYE, and TSBYE+G cultures, respectively. D61°C values of antimicrobial-susceptible Salmonella strains increased (P < 0.05) from 0.14 to 0.19 as the glucose concentration increased from 0.00 to 1.00%, respectively, while D61°C values of multiantimicrobial-resistant Salmonella strains did not differ (P > 0.05) between TSBYE−G and TSBYE+G cultures. When averaged across glucose levels and temperatures, there were no differences (P > 0.05) between the D values of susceptible and multiantimicrobial-resistant inocula. Collectively, D values ranged from 4.23 to 5.39, 1.47 to 1.81, 0.50 to 0.66, and 0.16 to 0.20 min for Salmonella strains inactivated at 55, 57, 59, and 61°C, respectively. zD values were 1.20, 1.48, and 1.49°C for Salmonella strains grown in TSBYE+G, TSBYE, and TSBYE−G, respectively, while the corresponding activation energies of inactivation were 497, 493, and 494 kJ/mol. Study results suggested a cross-protective effect of acid adaptation on thermal inactivation but no association between antimicrobial susceptibility and the ability of salmonellae to survive heat stress.  相似文献   

3.
The U.S. Food and Drug Administration (FDA) recently mandated a warning statement on packaged fruit juices not treated to reduce target pathogen populations by 5 log10 units. This study describes combinations of intervention treatments that reduced concentrations of mixtures of Escherichia coli O157:H7 (strains ATCC 43895, C7927, and USDA-FSIS-380-94) or Salmonella typhimurium DT104 (DT104b, U302, and DT104) by 5 log10 units in apple cider with a pH of 3.3, 3.7, and 4.1. Treatments used were short-term storage at 4, 25, or 35°C and/or freeze-thawing (48 h at −20°C; 4 h at 4°C) of cider with or without added organic acids (0.1% lactic acid, sorbic acid [SA], or propionic acid). Treatments more severe than those for S. typhimurium DT104 were always required to destroy E. coli O157:H7. In pH 3.3 apple cider, a 5-log10-unit reduction in E. coli O157:H7 cell numbers was achieved by freeze-thawing or 6-h 35°C treatments. In pH 3.7 cider the 5-log10-unit reduction followed freeze-thawing combined with either 6 h at 4°C, 2 h at 25°C, or 1 h at 35°C or 6 h at 35°C alone. A 5-log10-unit reduction occurred in pH 4.1 cider after the following treatments: 6 h at 35°C plus freeze-thawing, SA plus 12 h at 25°C plus freeze-thawing, SA plus 6 h at 35°C, and SA plus 4 h at 35°C plus freeze-thawing. Yeast and mold counts did not increase significantly (P < 0.05) during the 6-h storage at 35°C. Cider with no added organic acids treated with either 6 h at 35°C, freeze-thawing or their combination was always preferred by consumers over pasteurized cider (P < 0.05). The simple, inexpensive intervention treatments described in the present work could produce safe apple cider without pasteurization and would not require the FDA-mandated warning statement.  相似文献   

4.
Bacterial biofilms have recently gained considerable interest in the food production and medical industries due to their ability to resist destruction by disinfectants and other antimicrobials. Biofilms are extracellular polymer matrices that may enhance the survival of pathogens even when exposed to environmental stress. The effect of incubation temperatures (25°C, 37°C, and 40°C) and Salmonella serotype on biofilm-forming potentials was evaluated. Previously typed Salmonella serotypes (55) isolated from the gut of chickens were accessed for biofilms formation using a standard assay. Salmonella Typhimurium ATCC 14028TM and Salmonella Enteritidis ATCC 13076TM (positive controls), Escherichia coli (internal control) and un-inoculated Luria Bertani (LB) broth (negative control) were used. The isolates formed no biofilm (11.86–13.56%), weak (11.86–45.76%), moderate (18.64–20.34%), strong biofilms (23.73–54.24%) across the various temperatures investigated. Serotypes, Salmonella Heidelberg and Salmonella Weltevreden were the strongest biofilm formers at temperatures (25°C, 37°C, and 40°C, respectively). The potential of a large proportion (80%) of Salmonella serotypes to form biofilms increased with increasing incubation temperatures but decreased at 40°C. Findings indicate that average temperature favours biofilm formation by Salmonella serotypes. However, the influence of incubation temperature on biofilm formation was greater when compared to serotype. A positive correlation exists between Salmonella biofilm formed at 25°C, 37°C and 40°C (p ≥ 0.01). The ability of Salmonella species to form biofilms at 25°C and 37°C suggests that these serotypes may present severe challenges to food-processing and hospital facilities.Key words: Salmonella, biofilm, biofilm production potential, crystal violet microtitre  相似文献   

5.
The effectiveness of pasteurization and the concentration of Mycobacterium avium subsp. paratuberculosis in raw milk have been identified in quantitative risk analysis as the most critical factors influencing the potential presence of viable Mycobacterium paratuberculosis in dairy products. A quantitative assessment of the lethality of pasteurization was undertaken using an industrial pasteurizer designed for research purposes with a validated Reynolds number of 62,112 and flow rates of 3,000 liters/h. M. paratuberculosis was artificially added to raw whole milk, which was then homogenized, pasteurized, and cultured, using a sensitive technique capable of detecting one organism per 10 ml of milk. Twenty batches of milk containing 103 to 104 organisms/ml were processed with combinations of three temperatures of 72, 75, and 78°C and three time intervals of 15, 20, and 25 s. Thirty 50-ml milk samples from each processed batch were cultured, and the logarithmic reduction in M. paratuberculosis organisms was determined. In 17 of the 20 runs, no viable M. paratuberculosis organisms were detected, which represented >6-log10 reductions during pasteurization. These experiments were conducted with very heavily artificially contaminated milk to facilitate the measurement of the logarithmic reduction. In three of the 20 runs of milk, pasteurized at 72°C for 15 s, 75°C for 25 s, and 78°C for 15 s, a few viable organisms (0.002 to 0.004 CFU/ml) were detected. Pasteurization at all temperatures and holding times was found to be very effective in killing M. paratuberculosis, resulting in a reduction of >6 log10 in 85% of runs and >4 log10 in 14% of runs.  相似文献   

6.
Human norovirus (NoV) is responsible for over 90% of outbreaks of acute nonbacterial gastroenteritis worldwide and accounts for 60% of cases of foodborne illness in the United States. Currently, the infectivity of human NoVs is poorly understood due to the lack of a cell culture system. In this study, we determined the survival of a human NoV genogroup II, genotype 4 (GII.4) strain in seeded oyster homogenates after high-pressure processing (HPP) using a novel receptor binding assay and a gnotobiotic pig model. Pressure conditions of 350 MPa at 0°C for 2 min led to a 3.7-log10 reduction in the number of viral RNA copies in oysters, as measured by the porcine gastric mucin-conjugated magnetic bead (PGM-MB) binding assay and real-time RT-PCR, whereas pressure conditions of 350 MPa at 35°C for 2 min achieved only a 1-log10 reduction in the number of RNA copies. Newborn gnotobiotic piglets orally fed oyster homogenate treated at 350 MPa and 0°C for 2 min did not have viral RNA shedding in feces, histologic lesions, or viral replication in the small intestine. In contrast, gnotobiotic piglets fed oysters treated at 350 MPa and 35°C for 2 min had high levels of viral shedding in feces and exhibited significant histologic lesions and viral replication in the small intestine. Collectively, these data demonstrate that (i) human NoV survival estimated by an in vitro PGM-MB virus binding assay is consistent with the infectivity determined by an in vivo gnotobiotic piglet model and (ii) HPP is capable of inactivating a human NoV GII.4 strain at commercially acceptable pressure levels.  相似文献   

7.
Thermal inactivation of desiccation-adapted Salmonella spp. in aged chicken litter was investigated in comparison with that in a nonadapted control to examine potential cross-tolerance of desiccation-adapted cells to heat treatment. A mixture of four Salmonella serovars was inoculated into the finished compost with 20, 30, 40, and 50% moisture contents for a 24-h desiccation adaptation. Afterwards, the compost with desiccation-adapted cells was inoculated into the aged chicken litter with the same moisture content for heat treatments at 70, 75, 80, 85, and 150°C. Recovery media were used to allow heat-injured cells to resuscitate. A 5-log reduction in the number of the desiccation-adapted cells in aged chicken litter with a 20% moisture content required >6, >6, ∼4 to 5, and ∼3 to 4 h of exposure at 70, 75, 80, and 85°C, respectively. As a comparison, a 5-log reduction in the number of nonadapted control cells in the same chicken litter was achieved within ∼1.5 to 2, ∼1 to 1.5, ∼0.5 to 1, and <0.5 h at 70, 75, 80, and 85°C, respectively. The exposure time required to obtain a 5-log reduction in the number of desiccation-adapted cells gradually became shorter as temperature and moisture content were increased. At 150°C, desiccation-adapted Salmonella cells survived for 50 min in chicken litter with a 20% moisture content, whereas control cells were detectable by enrichment for only 10 min. Our results demonstrated that the thermal resistance of Salmonella in aged chicken litter was increased significantly when the cells were adapted to desiccation. This study also validated the effectiveness of thermal processing being used for producing chicken litter free of Salmonella contamination.  相似文献   

8.
Disturbances typically associated with the study of soil microbial communities, i.e., sieving, storage, and subsequent incubation at elevated temperatures, were investigated with phospholipid fatty acid (PLFA) analyses. Treatment effects were quantified by statistical analyses of the mole percentage distribution of the individual fatty acids. Changes in the concentrations of individual fatty acids over a 7-week storage period at 4.5°C were generally not statistically significant. Sieving effects (mesh size, 4 or 2 mm) on CO2 evolution and the PLFA profile were monitored over 3 weeks; the physical disturbance had only minor effects, although some damage to fungal hyphae by the first sieving (<4 mm) was suggested by a decrease in the signature fatty acid 18:2 ω6c. Temperature effects were investigated by incubating soil for up to 3 weeks at 4.5, 10, or 25°C. Principal component analyses demonstrated a significant shift in the PLFA composition at 25°C over the first 2 weeks, while changes at the other two temperatures were minor. Several of the changes observed at 25°C could be explained with reference to mechanisms of temperature adaptation or as a response to conditions of stress, including a decrease in the degree of unsaturation, an increased production of cyclopropyl fatty acids, and increased ratios of the branched-chain fatty acids iso-15:0 and iso-17:0 over anteiso-15:0 and anteiso-17:0, respectively. A decrease in the total amount of PLFA was also indicated.  相似文献   

9.

Purpose

This study compares the effects of neutral temperature, cold and ice-slush beverages, with and without 0.5% menthol on cycling performance, core temperature (Tco) and stress responses in a tropical climate (hot and humid conditions).

Methods

Twelve trained male cyclists/triathletes completed six 20-km exercise trials against the clock in 30.7°C±0.8°C and 78%±0.03% relative humidity. Before and after warm-up, and before exercise and every 5 km during exercise, athletes drank 190 mL of either aromatized (i.e., with 0.5 mL of menthol (5 gr/L)) or a non-aromatized beverage (neutral temperature: 23°C±0.1°C, cold: 3°C±0.1°C, or ice-slush: −1°C±0.7°C). During the trials, heart rate (HR) was continuously monitored, whereas core temperature (Tco), thermal comfort (TC), thermal sensation (TS) and rate of perceived exertion (RPE) were measured before and after warm-up, every 5 km of exercise, and at the end of exercise and after recovery.

Results

Both the beverage aroma (P<0.02) and beverage temperature (P<0.02) had significant and positive effects on performance, which was considerably better with ice-slush than with a neutral temperature beverage, whatever the aroma (P<0.002), and with menthol vs non-menthol (P<0.02). The best performances were obtained with ice-slush/menthol and cold/menthol, as opposed to neutral/menthol. No differences were noted in HR and Tco between trials.

Conclusion

Cold water or ice-slush with menthol aroma seems to be the most effective beverage for endurance exercise in a tropical climate. Further studies are needed to explore its effects in field competition.  相似文献   

10.
A pilot-scale pasteurizer operating under validated turbulent flow (Reynolds number, 11,050) was used to study the heat sensitivity of Mycobacterium avium subsp. paratuberculosis added to raw milk. The ATCC 19698 type strain, ATCC 43015 (Linda, human isolate), and three bovine isolates were heated in raw whole milk for 15 s at 63, 66, 69, and 72°C in duplicate trials. No strains survived at 72°C for 15 s; and only one strain survived at 69°C. Means of pooled D values (decimal reduction times) at 63 and 66°C were 15.0 ± 2.8 s (95% confidence interval) and 5.9 ± 0.7 s (95% confidence interval), respectively. The mean extrapolated D72°C was <2.03 s. This was equivalent to a >7 log10 kill at 72°C for 15 s (95% confidence interval). The mean Z value (degrees required for the decimal reduction time to traverse one log cycle) was 8.6°C. These five strains showed similar survival whether recovery was on Herrold's egg yolk medium containing mycobactin or by a radiometric culture method (BACTEC). Milk was inoculated with fresh fecal material from a high-level fecal shedder with clinical Johne's disease. After heating at 72°C for 15 s, the minimum M. avium subsp. paratuberculosis kill was >4 log10. Properly maintained and operated equipment should ensure the absence of viable M. avium subsp. paratuberculosis in retail milk and other pasteurized dairy products. An additional safeguard is the widespread commercial practice of pasteurizing 1.5 to 2° above 72°C.  相似文献   

11.
Human noroviruses (NoVs) are a significant cause of nonbacterial gastroenteritis worldwide, with contaminated drinking water a potential transmission route. The absence of a cell culture infectivity model for NoV necessitates the use of molecular methods and/or viral surrogate models amenable to cell culture to predict NoV inactivation. The NoV surrogates murine NoV (MNV), feline calicivirus (FCV), poliovirus (PV), and male-specific coliphage MS2, in conjunction with Norwalk virus (NV), were spiked into surface water samples (n = 9) and groundwater samples (n = 6). Viral persistence was monitored at 25°C and 4°C by periodically analyzing virus infectivity (for all surrogate viruses) and nucleic acid (NA) for all tested viruses. FCV infectivity reduction rates were significantly higher than those of the other surrogate viruses. Infectivity reduction rates were significantly higher than NA reduction rates at 25°C (0.18 and 0.09 log10/day for FCV, 0.13 and 0.10 log10/day for PV, 0.12 and 0.06 log10/day for MS2, and 0.09 and 0.05 log10/day for MNV) but not significant at 4°C. According to a multiple linear regression model, the NV NA reduction rates (0.04 ± 0.01 log10/day) were not significantly different from the NA reduction rates of MS2 (0.05 ± 0.03 log10/day) and MNV (0.04 ± 0.03 log10/day) and were significantly different from those of FCV (0.08 ± 0.03 log10/day) and PV (0.09 ± 0.03 log10/day) at 25°C. In conclusion, MNV shows great promise as a human NoV surrogate due to its genetic similarity and environmental stability. FCV was much less stable and thus questionable as an adequate surrogate for human NoVs in surface water and groundwater.  相似文献   

12.
Intramyocellular lipid (IMCL) utilization is impaired in older individuals, and IMCL accumulation is associated with insulin resistance. We hypothesized that increasing muscle total carnitine content in older men would increase fat oxidation and IMCL utilization during exercise, and improve insulin sensitivity. Fourteen healthy older men (69 ± 1 year, BMI 26.5 ± 0.8 kg/m2) performed 1 h of cycling at 50% VO2max and, on a separate occasion, underwent a 60 mU/m2/min euglycaemic hyperinsulinaemic clamp before and after 25 weeks of daily ingestion of a 220 ml insulinogenic beverage (44.4 g carbohydrate, 13.8 g protein) containing 4.5 g placebo (n = 7) or L‐carnitine L‐tartrate (n = 7). During supplementation, participants performed twice‐weekly cycling for 1 h at 50% VO2max. Placebo ingestion had no effect on muscle carnitine content or total fat oxidation during exercise at 50% VO2max. L‐carnitine supplementation resulted in a 20% increase in muscle total carnitine content (20.1 ± 1.2 to 23.9 ± 1.7 mmol/kg/dm; p < 0.01) and a 20% increase in total fat oxidation (181.1 ± 15.0 to 220.4 ± 19.6 J/kg lbm/min; p < 0.01), predominantly due to increased IMCL utilization. These changes were associated with increased expression of genes involved in fat metabolism (ACAT1, DGKD & PLIN2; p < 0.05). There was no change in resting insulin‐stimulated whole‐body or skeletal muscle glucose disposal after supplementation. This is the first study to demonstrate that a carnitine‐mediated increase in fat oxidation is achievable in older individuals. This warrants further investigation given reduced lipid turnover is associated with poor metabolic health in older adults.  相似文献   

13.
Magnolia sinica is one of the most endangered Magnoliaceae species in China. Seed biology information concerning its long-term ex situ conservation and utilization is insufficient. This study investigated dormancy status, germination requirements and storage behavior of M. sinica. Freshly matured seeds germinated to ca. 86.5% at 25/15°C but poorly at 30°C; GA3 and moist chilling promoted germination significantly at 20°C. Embryos grew at temperatures(alternating or constant) between 20°C and 25°...  相似文献   

14.
Activators of hERG1 such as NS1643 are being developed for congenital/acquired long QT syndrome. Previous studies identify the neighborhood of L529 around the voltage-sensor as a putative interacting site for NS1643. With NS1643, the V1/2 of activation of L529I (−34 ± 4 mV) is similar to wild-type (WT) (−37 ± 3 mV; P > 0.05). WT and L529I showed no difference in the slope factor in the absence of NS1643 (8 ± 0 vs. 9 ± 0) but showed a difference in the presence of NS1643 (9 ± 0.3 vs. 22 ± 1; P < 0.01). Voltage-clamp-fluorimetry studies also indicated that in L529I, NS1643 reduces the voltage-sensitivity of S4 movement. To further assess mechanism of NS1643 action, mutations were made in this neighborhood. NS1643 shifts the V1/2 of activation of both K525C and K525C/L529I to hyperpolarized potentials (−131 ± 4 mV for K525C and −120 ± 21 mV for K525C/L529I). Both K525C and K525C/K529I had similar slope factors in the absence of NS1643 (18 ± 2 vs. 34 ± 5, respectively) but with NS1643, the slope factor of K525C/L529I increased from 34 ± 5 to 71 ± 10 (P < 0.01) whereas for K525C the slope factor did not change (18 ± 2 at baseline and 16 ± 2 for NS1643). At baseline, K525R had a slope factor similar to WT (9 vs. 8) but in the presence of NS1643, the slope factor of K525R was increased to 24 ± 4 vs. 9 ± 0 mV for WT (P < 0.01). Molecular modeling indicates that L529I induces a kink in the S4 voltage-sensor helix, altering a salt-bridge involving K525. Moreover, docking studies indicate that NS1643 binds to the kinked structure induced by the mutation with a higher affinity. Combining biophysical, computational, and electrophysiological evidence, a mechanistic principle governing the action of some activators of hERG1 channels is proposed.  相似文献   

15.
Chlorine dioxide (ClO2) inactivation experiments were conducted with adenovirus type 40 (AD40) and feline calicivirus (FCV). Experiments were carried out in buffered, disinfectant demand-free water under high- and low-pH and -temperature conditions. Ct values (the concentration of ClO2 multiplied by contact time with the virus) were calculated directly from bench-scale experiments and from application of the efficiency factor Hom (EFH) model. AD40 Ct ranges for 4-log inactivation (Ct99.99%) at 5°C were >0.77 to <1.53 mg/liter × min and >0.80 to <1.59 mg/liter × min for pH 6 and 8, respectively. For 15°C AD40 experiments, >0.49 to <0.74 mg/liter × min and <0.12 mg/liter × min Ct99.99% ranges were observed for pH 6 and 8, respectively. FCV Ct99.99% ranges for 5°C experiments were >20.20 to <30.30 mg/liter × min and >0.68 mg/liter × min for pH 6 and 8, respectively. For 15°C FCV experiments, Ct99.99% ranges were >4.20 to <6.72 and <0.18 mg/liter × min for pH 6 and 8, respectively. Viral inactivation was higher at pH 8 than at pH 6 and at 15°C than at 5°C. Comparison of Ct values and inactivation curves demonstrated that the EFH model described bench-scale experiment data very well. Observed bench-scale Ct99.99% ranges and EFH model Ct99.99% values demonstrated that FCV is more resistant to ClO2 than AD40 for the conditions studied. U.S. Environmental Protection Agency guidance manual Ct99.99% values are higher than Ct99.99% values calculated from bench-scale experiments and from EFH model application.  相似文献   

16.
Salmonella spp. are reported to have an increased heat tolerance at low water activity (aw; measured by relative vapor pressure [rvp]), achieved either by drying or by incorporating solutes. Much of the published data, however, cover only a narrow treatment range and have been analyzed by assuming first-order death kinetics. In this study, the death of Salmonella enterica serovar Typhimurium DT104 when exposed to 54 combinations of temperature (55 to 80°C) and aw (rvp 0.65 to 0.90, reduced using glucose-fructose) was investigated. The Weibull model (LogS = −btn) was used to describe microbial inactivation, and surface response models were developed to predict death rates for serovar Typhimurium at all points within the design surface. The models were evaluated with data generated by using six different Salmonella strains in place of serovar Typhimurium DT104 strain 30, two different solutes in place of glucose-fructose to reduce aw, or six low-aw foods artificially contaminated with Salmonella in place of the sugar broths. The data demonstrate that, at temperatures of ≥70°C, Salmonella cells at low aw were more heat tolerant than those at a higher aw but below 65°C the reverse was true. The same patterns were generated when sucrose (rvp 0.80 compared with 0.90) or NaCl (0.75 compared with 0.90) was used to reduce aw, but the extent of the protection afforded varied with solute type. The predictions of thermal death rates in the low-aw foods were usually fail-safe, but the few exceptions highlight the importance of validating models with specific foods that may have additional factors affecting survival.  相似文献   

17.
To facilitate the detection of Salmonella and to be able to rapidly and conveniently determine the species/subspecies present, we developed and tested a generic and differential FRET-PCR targeting their tetrathionate reductase response regulator gene. The differential pan-Salmonella FRET-PCR we developed successfully detected seven plasmids that contained partial sequences of S. bongori and the six S. enterica subspecies. The detection limit varied from ∼5 copies of target gene/per PCR reaction for S. enterica enterica to ∼200 for S. bongori. Melting curve analysis demonstrated a T m of ∼68°C for S. enterica enterica, ∼62.5°C for S. enterica houtenae and S. enterica diarizonae, ∼57°C for S. enterica indica, and ∼54°C for S. bongori, S. enterica salamae and S. enterica arizonae. The differential pan-Salmonella FRET-PCR also detected and determined the subspecies of 4 reference strains and 47 Salmonella isolated from clinically ill birds or pigs. Finally, we found it could directly detect and differentiate Salmonella in feline (5/50 positive; 10%; one S. enterica salamae and 4 S. enterica enterica) and canine feces (15/114 positive; 13.2%; all S. enterica enterica). The differential pan-Salmonella FRET-PCR failed to react with 96 non-Salmonella bacterial strains. Our experiments show the differential pan-Salmonella FRET-PCR we developed is a rapid, sensitive and specific method to detect and differentiate Salmonella.  相似文献   

18.
This study was designed to investigate the individual and combined effects of mustard flour and acetic acid in the inactivation of food-borne pathogenic bacteria stored at 5 and 22°C. Samples were prepared to achieve various concentrations by the addition of acetic acid (0, 0.5, or 1%) along with mustard flour (0, 10, or 20%) and 2% sodium chloride (fixed amount). Acid-adapted three-strain mixtures of Escherichia coli O157:H7, Listeria monocytogenes, and Salmonella enterica serovar Typhimurium strains (106 to 107 CFU/ml) were inoculated separately into prepared mustard samples stored at 5 and 22°C, and samples were assayed periodically. The order of bacterial resistance, assessed by the time required for the nominated populations to be reduced to undetectable levels against prepared mustards at 5°C, was S. enterica serovar Typhimurium (1 day) < E. coli O157:H7 (3 days) < L. monocytogenes (9 days). The food-borne pathogens tested were reduced much more rapidly at 22°C than at 5°C. There was no synergistic effect with regard to the killing of the pathogens tested with the addition of 0.5% acetic acid to the mustard flour (10 or 20%). Mustard in combination with 0.5% acetic acid had less bactericidal activity against the pathogens tested than did mustard alone. The reduction of E. coli O157:H7 and L. monocytogenes among the combined treatments on the same storage day was generally differentiated as follows: control < mustard in combination with 0.5% acetic acid < mustard alone < mustard in combination with 1% acetic acid < acetic acid alone. Our study indicates that acidic products may limit microbial growth or survival and that the addition of small amounts of acetic acid (0.5%) to mustard can retard the reduction of E. coli O157:H7 and L. monocytogenes. These antagonistic effects may be changed if mustard is used alone or in combination with >1% acetic acid.  相似文献   

19.
Probabilistic models were used as a systematic approach to describe the response of Escherichia coli O157:H7 populations to combinations of commonly used preservation methods in unpasteurized apple cider. Using a complete factorial experimental design, the effect of pH (3.1 to 4.3), storage temperature and time (5 to 35°C for 0 to 6 h or 12 h), preservatives (0, 0.05, or 0.1% potassium sorbate or sodium benzoate), and freeze-thaw (F-T; −20°C, 48 h and 4°C, 4 h) treatment combinations (a total of 1,600 treatments) on the probability of achieving a 5-log10-unit reduction in a three-strain E. coli O157:H7 mixture in cider was determined. Using logistic regression techniques, pH, temperature, time, and concentration were modeled in separate segments of the data set, resulting in prediction equations for: (i) no preservatives, before F-T; (ii) no preservatives, after F-T; (iii) sorbate, before F-T; (iv) sorbate, after F-T; (v) benzoate, before F-T; and (vi) benzoate, after F-T. Statistical analysis revealed a highly significant (P < 0.0001) effect of all four variables, with cider pH being the most important, followed by temperature and time, and finally by preservative concentration. All models predicted 92 to 99% of the responses correctly. To ensure safety, use of the models is most appropriate at a 0.9 probability level, where the percentage of false positives, i.e., falsely predicting a 5-log10-unit reduction, is the lowest (0 to 4.4%). The present study demonstrates the applicability of logistic regression approaches to describing the effectiveness of multiple treatment combinations in pathogen control in cider making. The resulting models can serve as valuable tools in designing safe apple cider processes.  相似文献   

20.
A psychrotrophic bacterium isolated from river sediment was identified as Pseudomonas fluorescens 114. It grew at 0°C and optimally at 20°C. The bacterium produced a protease with a molecular weight of 47,000, which was stable in the pH range of 5 to 9 and worked optimally between pH 6.5 and 10. Activity was optimal at 35°C and was lost immediately at 50°C and after 5 min at 45°C. At 0, 10, and 20°C, 24, 38, and 57% of optimal activity were observed, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号