首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Preeclampsia, a hypertensive disorder in pregnancy develops in 2–8% of pregnancies worldwide. Winter season and vitamin D deficiency have been associated with its onset.

Objective

To investigate the influence of season on maternal vitamin D status and placental vitamin D metabolism.

Methods

25-OH vitamin D and 1,25-(OH)2 vitamin D were measured in maternal serum obtained during the winter or summer months from 63 pregnant women at delivery (43 healthy, 20 preeclampsia). In a subgroup, mRNA expression of CYP24A1 (24-hydroxylase), CYP27B1 (1α-hydroxylase) and VDR (vitamin D receptor) were quantified by real time PCR in placental samples of 14 women with normal pregnancies and 13 with preeclampsia.

Results

In patients with preeclampsia,25-OH vitamin D levels were lower, but differed significantly from controls only in summer (18.21±17.1 vs 49.2±29.2 ng/mL, P<0.001), whereas 1,25-(OH)2 vitamin D levels were significantly lower only in winter (291±217 vs 612.3±455 pmol/mL, P<0.05). A two-factorial analysis of variance produced a statistically significant model (P<0.0001) with an effect of season (P<0.01) and preeclampsia (P = 0.01) on maternal 25-OH vitamin D levels, as well as a significant interaction between the two variables (P = 0.02). Placental gene expression of CYP24A1, CYP27B1, and VDR did not differ between groups or seasons. A negative correlation between placental gene expression of CYP24A1 and CYP27B1 was observed only in healthy controls (r = −0.81, P<0.0001).

Summary

Patients with preeclampsia displayed lower vitamin D serum levels in response to seasonal changes.The regulation of placental CYP24A1, but not of the VDR or CYP27B1 might be altered in preeclampsia.  相似文献   

2.

Introduction

Inflammation and pulmonary edema are involved in the pathogenesis of seawater aspiration-induced acute lung injury (ALI). Although several studies have reported that 1α,25-Dihydroxyvitamin D3 (calcitriol) suppresses inflammation, it has not been confirmed to be effective in seawater aspiration-induced ALI. Thus, we investigated the effect of calcitriol on seawater aspiration-induced ALI and explored the probable mechanism.

Methods

Male SD rats receiving different doses of calcitriol or not, underwent seawater instillation. Then lung samples were collected at 4 h for analysis. In addition, A549 cells and rat pulmonary microvascular endothelial cells (RPMVECs) were cultured with calcitriol or not and then stimulated with 25% seawater for 40 min. After these treatments, cells samples were collected for analysis.

Results

Results from real-time PCR showed that seawater stimulation up-regulated the expression of vitamin D receptor in lung tissues, A549 cells and RPMVECs. Seawater stimulation also activates NF-κB and RhoA/Rho kinase pathways. However, we found that pretreatment with calcitriol significantly inhibited the activation of NF-κB and RhoA/Rho kinase pathways. Meanwhile, treatment of calcitriol also improved lung histopathologic changes, reduced inflammation, lung edema and vascular leakage.

Conclusions

These results demonstrated that NF-κB and RhoA/Rho kinase pathways are critical in the development of lung inflammation and pulmonary edema and that treatment with calcitriol could ameliorate seawater aspiration-induced ALI, which was probably through the inhibition of NF-κB and RhoA/Rho kinase pathways.  相似文献   

3.
Placenta is an important source and target of hormones that contribute to immunological tolerance and maintenance of pregnancy. In preeclampsia (PE), placental calcitriol synthesis is low; whereas pro-inflammatory cytokines levels are increased, threatening pregnancy outcome. Previously, we showed that calcitriol inhibits Th-1 cytokines under experimental inflammatory conditions in normal trophoblasts. However, a study of the regulation of inflammatory cytokines by calcitriol in trophoblasts from a natural inflammatory condition, such as PE, is still lacking. Therefore, the aim of the present study was to investigate calcitriol effects upon TNF-α, IFN-γ, IL-6 and IL-1β in cultured placental cells from preeclamptic women by using qPCR and ELISA. Placentas were collected after cesarean section from preeclamptic women and enriched trophoblastic preparations were cultured in the absence or presence of different calcitriol concentrations during 24 h. In these cell cultures, pro-inflammatory cytokines TNF-α and IL-6 secretion and mRNA expression were downregulated by calcitriol (P < 0.05). No significant effects of calcitriol upon IFN-γ and IL-1β were observed. In addition, basal expression of TNF-α, IL-6 and IL-1β decreased as the cells formed syncytia. Our study supports an important autocrine/paracrine role of placental calcitriol in controlling adverse immunological responses at the feto–maternal interface, particularly in gestational pathologies associated with exacerbated inflammatory responses such as preeclampsia.  相似文献   

4.

Background

Calcitriol antiproliferative effects include inhibition of the oncogenic ether-à-go-go-1 potassium channel (Eag1) expression, which is necessary for cell cycle progression and tumorigenesis. Astemizole, a new promising antineoplastic drug, targets Eag1 by blocking ion currents. Herein, we characterized the interaction between calcitriol and astemizole as well as their conjoint antiproliferative action in SUM-229PE, T-47D and primary tumor-derived breast cancer cells.

Methodology/Principal Findings

Molecular markers were studied by immunocytochemistry, Western blot and real time PCR. Inhibitory concentrations were determined by dose-response curves and metabolic activity assays. At clinically achievable drug concentrations, synergistic antiproliferative interaction was observed between calcitriol and astemizole, as calculated by combination index analysis (CI <1). Astemizole significantly enhanced calcitriol’s growth-inhibitory effects (3–11 folds, P<0.01). Mean IC20 values were 1.82±2.41 nM and 1.62±0.75 µM; for calcitriol (in estrogen receptor negative cells) and astemizole, respectively. Real time PCR showed that both drugs alone downregulated, while simultaneous treatment further reduced Ki-67 and Eag1 gene expression (P<0.05). Astemizole inhibited basal and calcitriol-induced CYP24A1 and CYP3A4 mRNA expression (cytochromes involved in calcitriol and astemizole degradation) in breast and hepatoma cancer cells, respectively, while upregulated vitamin D receptor (VDR) expression.

Conclusions/Significance

Astemizole synergized calcitriol antiproliferative effects by downregulating CYP24A1, upregulating VDR and targeting Eag1. This study provides insight into the molecular mechanisms involved in astemizole-calcitriol combined antineoplastic effect, offering scientific support to test both compounds in combination in further preclinical and clinical studies of neoplasms expressing VDR and Eag1. VDR-negative tumors might also be sensitized to calcitriol antineoplastic effects by the use of astemizole. Herein we suggest a novel combined adjuvant therapy for the management of VDR/Eag1-expressing breast cancer tumors. Since astemizole improves calcitriol bioavailability and activity, decreased calcitriol dosing is advised for conjoint administration.  相似文献   

5.

Background

To perform a comprehensive study on the relationship between vitamin D metabolism and the response to interferon-α-based therapy of chronic hepatitis C.

Methodology/Principal Findings

Associations between a functionally relevant polymorphism in the gene encoding the vitamin D 1α-hydroxylase (CYP27B1-1260 rs10877012) and the response to treatment with pegylated interferon-α (PEG-IFN-α) and ribavirin were determined in 701 patients with chronic hepatitis C. In addition, associations between serum concentrations of 25-hydroxyvitamin D3 (25[OH]D3) and treatment outcome were analysed. CYP27B1-1260 rs10877012 was found to be an independent predictor of sustained virologic response (SVR) in patients with poor-response IL28B genotypes (15% difference in SVR for rs10877012 genotype AA vs. CC, p = 0.02, OR = 1.52, 95% CI = 1.061–2.188), but not in patients with favourable IL28B genotype. Patients with chronic hepatitis C showed a high prevalence of vitamin D insufficiency (25[OH]D3<20 ng/mL) during all seasons, but 25(OH)D3 serum levels were not associated with treatment outcome.

Conclusions/Significance

Our study suggests a role of bioactive vitamin D (1,25[OH]2D3, calcitriol) in the response to treatment of chronic hepatitis C. However, serum concentration of the calcitriol precursor 25(OH)D3 is not a suitable predictor of treatment outcome.  相似文献   

6.

Background

Inflammatory cytokines, such as TNF-α, play a key role in the pathogenesis of occlusive vascular diseases. Activation of vitamin D receptors (VDR) elicits both growth-inhibitory and anti-inflammatory effects. Here, we investigated the expression of TNF-α and VDR in post-angioplasty coronary artery neointimal lesions of hypercholesterolemic swine and examined the effect of vitamin D deficiency on the development of coronary restenosis. We also examined the effect of calcitriol on cell proliferation and effect of TNF-α on VDR activity and expression in porcine coronary artery smooth muscle cells (PCASMCs) in-vitro.

Methodology/Principal Findings

Expression of VDR and TNF-α and the effect of vitamin D deficiency in post-angioplasty coronary arteries were analyzed by immunohistochemistry and histomorphometry. Cell proliferation was examined by thymidine and BrdU incorporation assays in cultured PCASMCs. Effect of TNF-α-stimulation on the activity and expression of VDR was analyzed by luciferase assay, immunoblotting and immunocytochemistry. In-vivo, morphometric analysis of the tissues revealed typical lesions with significant neointimal proliferation. Histological evaluation showed expression of smooth muscle α-actin and significantly increased expression of TNF-α in neointimal lesions. Interestingly, there was significantly decreased expression of VDR in PCASMCs of neointimal region compared to normal media. Indeed, post-balloon angioplasty restenosis was significantly higher in vitamin D-deficient hypercholesterolemic swine compared to vitamin D-sufficient group. In-vitro, calcitriol inhibited both serum- and PDGF-BB-induced proliferation in PCASMCs and TNF-α-stimulation significantly decreased the expression and activity of VDR in PCASMCs.

Conclusions/Significance

These data suggest that significant downregulation of VDR in proliferating smooth muscle cells in neointimal lesions could be due to atherogenic cytokines, including TNF-α. Vitamin D deficiency potentiates the development of coronary restenosis. Calcitriol has anti-proliferative properties in PCASMCs and these actions are mediated through VDR. This could be a potential mechanism for uncontrolled growth of neointimal cells in injured arteries leading to restenosis.  相似文献   

7.
Vitamin D analogs such as paricalcitol and calcitriol that activate the vitamin D receptor (VDR) provide survival benefit for Stage 5 chronic kidney disease (CKD) patients, possibly associated with a decrease in cardiovascular (CV)-related incidents. Phenotypic changes of smooth muscle cells play an important role in CV disease. The role of vitamin D analogs in modulating gene expression in smooth muscle cells is still not well understood. In this study, DNA microarray analysis of approximately 22,000 different human genes was used to characterize the VDR-mediated gene expression profile in human coronary artery smooth muscle cells (CASMC) at rest. Cells in serum free medium were treated with 0.1 microM calcitriol (1alpha,25-dihydroxyvitamin D(3)) or paricalcitol (19-nor-1alpha,25-(OH)(2)D(2)) for 30 h. A total of 181 target genes were identified, with 103 genes upregulated and 78 downregulated (>two fold changes in either drug treatment group with P < 0.01). No significant difference was observed between calcitriol and paricalcitol. Target genes fell into various categories with the top five in cellular process, cell communication, signal transduction, development, and morphogenesis. Twenty-two selected genes linked to the CV system were also impacted. Real-time RT-PCR and/or Western blotting analysis were employed to confirm the expression patterns of selected genes such as 25-hydroxyvitamin D-24-hydroxylase, Wilms' tumor gene 1, transforming growth factorbeta3, plasminogen activator inhibitor-1, thrombospondin-1 (THBS1), and thrombomodulin (TM). This study provides insight into understanding the role of VDR in regulating gene expression in resting smooth muscle cells.  相似文献   

8.
Effective chemotherapy for pancreatic cancer is urgently needed. The aim of this study was to compare the anti-proliferative activity on pancreatic cancer cell lines of the vitamin D(3) analog, 22-oxa-1,25-dihydroxyvitamin D(3), maxacalcitol, with that of 1,25-dihydroxyvitamin D(3), calcitriol, with analysis of vitamin D receptor status and the G(1)-phase cell cycle-regulating factors. Antiproliferative effects of both agents were compared using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide method and by measuring the tumor size of xenografts inoculated into athymic mice. Scatchard analysis of vitamin D receptor contents, and mutational analysis of receptor complementary DNA were performed. Levels of expression of cyclins, cyclin-dependent kinases and cyclin-dependent kinase inhibitors, p21 and p27, were analysed by western blotting. In vitro, maxacalcitol and calcitriol markedly inhibited the proliferation and caused a G(1) phase cell cycle arrest with the appearance of numerous domes. In vivo, maxacalcitol inhibited the growth of BxPC-3 xenografts more significantly than calcitriol, without inducing hypercalcemia. Responsive cells had abundant functional vitamin D receptors. However, Hs 766T, showing no response to either agent, had the second highest receptor contents with no abnormalities in its primary structure deduced by receptor complementary DNA. In the responsive cells, p21 and p27 were markedly up-regulated after 24h of treatment with both agents. In non-responsive cells, no such changes were observed. In conclusion, maxacalcitol and calcitriol up-regulate p21 and p27 as an early event, which in turn could block the G(1)/S transition and induce growth inhibition in responsive cells, and maxacalcitol may provide a more useful tool for the chemotherapy of pancreatic cancer than calcitriol because of its low toxicity.  相似文献   

9.

Background  

Analogues of vitamin D3 are extensively used in the treatment of various illnesses, such as osteoporosis, inflammatory skin diseases, and cancer. Functional testing of new vitamin D3 analogues and formulations for improved systemic and topical administration is supported by sensitive screening methods that allow a comparative evaluation of drug properties. As a new tool in functional screening of vitamin D3 analogues, we describe a genomically integratable sensor for sensitive drug detection. This system facilitates assessment of the pharmacokinetic and pharmadynamic properties of vitamin D3 analogues. The tri-cistronic genetic sensor encodes a drug-sensoring protein, a reporter protein expressed from an activated sensor-responsive promoter, and a resistance marker.  相似文献   

10.
11.
12.
Mitochondrial malate dehydrogenase (mMDH) from the intestine is the NAD-linked oxidoreductase of the tricarboxylic acid cycle with the highest activity and response to vitamin D treatment in vitamin D-deficient chicks (?D). The aim of this study was to elucidate potential molecular mechanisms by which cholecalciferol or calcitriol enhances the activity of this enzyme. One group of animals used was composed of ?D and ?D treated with cholecalciferol or with calcitriol. A second group consisted of ?D and ?D supplemented with high Ca2+ diet. A third group included chicks receiving either a normal or a low Ca2+ diet. In some experiments, animals were injected with cycloheximide. Data showed that either vitamin D (cholecalciferol or calcitriol) or a low Ca2+ diet increases mMDH activity. High Ca2+ diet did not modify the intestinal mMDH activity from ?D. The mMDH activity from ?D remained unaltered when duodenal cells were exposed to 10?8 mol/L calcitriol for 15 min. The enhancement of mMDH activity by calcitriol was completely abolished by simultaneous cycloheximide injection to ?D. mMDH mRNA levels, detected by RT-PCR, indicate that calcitriol did not affect gene expression. In contrast, Western blots show that calcitriol enhanced the protein expression. In conclusion, calcitriol stimulates intestinal mMDH activity by increasing protein synthesis. No response of mMDH activity by rapid effects of calcitriol or activation through increment of serum Ca2+ was demonstrated. Consequently, ATP production would be increased, facilitating the Ca2+ exit from the enterocytes via the Ca2+-ATPase and Na+/Ca2+ exchanger, which participate in the intestinal Ca2+ absorption.  相似文献   

13.

Introduction  

The aim of this study was to estimate the prevalence and determinants of vitamin D deficiency in patients with rheumatoid arthritis (RA) as compared to healthy controls and to analyze the association between 25-hydroxyvitamin D (25(OH)D) with disease activity and disability.  相似文献   

14.
BACKGROUND: Calcitriol [1,25-(OH)(2)D(3)] is a strong anti-proliferative agent both in vitro and in vivo. Earlier studies have established that calcitriol inhibits the growth factor-stimulated proliferation of endothelial cells (EC) and angiogenesis. However, the lethal calcemic side effects of calcitriol prohibit its use as a therapeutic agent. Several analogs of vitamin D have been developed to minimize these calcemic side effects. 1,25-dihydroxy-3-epi-vitamin D(3) (3-epiD(3)), a naturally formed vitamin D metabolite is one such analog. OBJECTIVE: To demonstrate that 3-epiD(3), a calcitriol analog, inhibits endothelial cell proliferation and induces apoptosis. RESULTS: Treatment of EC with 3-epiD(3) showed 60% inhibition (P < 0.006) of proliferation. Cell viability assays corroborated these results. Pro-apoptotic caspase-3 activity was increased fourfold (P < 0.01) in 3-epiD(3)-treated cells over controls. 3-epiD(3) induced apoptosis in EC as shown by genomic DNA fragmentation. Cell cycle analysis of 3-epiD(3)-treated EC revealed a G0/G1 arrest. CONCLUSIONS: 3-epiD(3), a low-calcemic, natural analog of calcitriol, inhibits EC proliferation by causing a G0/G1 arrest and induces apoptosis more effectively than 1,25-(OH)(2)D(3). These results suggest that 3-epiD(3) is a potent inhibitor of EC growth.  相似文献   

15.
Eldecalcitol [1α,25‐dihydroxy‐2β‐(3‐hydroxypropyloxy)vitamin D3], a vitamin D analog with enhanced efficacy for treatment of osteoporosis, has been found to be less potent than 1,25‐dihydroxyvitamin D3 (calcitriol) in suppressing PTH in vivo. To define the mechanism for the latter observation, we compared the effects of eldecalcitol and calcitriol on PTH secretion by bovine parathyroid cells. While the two compounds showed similar potency when the cells were cultured in medium containing 15% newborn calf serum, eldecalcitol was 100 times more potent than calcitriol in the absence of serum. Eldecalcitol has a higher affinity for the serum vitamin D‐binding protein (DBP), and therefore binding to DBP, and possibly other serum components, appears to limit the uptake and activity of eldecalcitol in parathyroid cells, providing an explanation for the lower PTH suppressing activity in vivo (100% serum). However, the 100‐fold higher activity of eldecalcitol in the absence of serum was unexpected since the VDR affinity for eldecalcitol is eightfold lower than for calcitriol. The enhanced activity was not due to preferential uptake, but to a resistance to metabolism. While 1 nM [3H]calcitriol was completely degraded within 24 h, [3H]eldecalcitol was not metabolized, despite the induction of the vitamin D catabolic enzyme, 24‐hydroxylase (CYP24A). The resistance to metabolism is the likely explanation for the higher potency of eldecalcitol in suppressing PTH in cell culture lacking serum. Thus, the unique properties of eldecalcitol in vivo can be attributed, at least in part, to its high‐DBP affinity which increases the half‐life, but limits the uptake of eldecalcitol, and to its reduced metabolism, which prolongs the activity of this analog in target tissues. J. Cell. Biochem. 112: 1348–1352, 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

16.

Background  

The active hormonal form of vitamin D (1,25-dihydroxyvitamin D) is the primary regulator of intestinal calcium absorption efficiency. In vitamin D deficiency, intestinal calcium absorption is low leading to an increased risk of developing negative calcium balance and bone loss. 1,25-dihydroxyvitamin D has been shown to stimulate calcium absorption in experimental animals and in human subjects. However, the molecular details of calcium transport across the enterocyte are not fully defined. Recently, two novel epithelial calcium channels (CaT1/ECaC2 and ECaC1/CaT2) have been cloned and suggested to be important in regulating intestinal calcium absorption. However, to date neither gene has been shown to be regulated by vitamin D status. We have previously shown that 1,25-dihydroxyvitamin stimulates transcellular calcium transport in Caco-2 cells, a human intestinal cell line.  相似文献   

17.
The present studies were performed to further characterize a mouse yolk sac protein which is similar or identical to the vitamin D-dependent intestinal calcium-binding protein (CaBP). Yolk sac protein and purified rat intestinal CaBP displayed full identity upon immunodiffusion (Ouchterlony) using antiserum to the rat intestinal CaBP. Immunoreactive CaBP in yolk sac homogenates eluted from gel permeation columns with the low molecular weight peak of 45Ca2+ binding (Chelex assay), and the electrophoretic mobility of the protein was markedly increased by EDTA. On days 11-13 of gestation, the concentrations of immunoreactive CaBP in yolk sac were 4-5-fold higher than in placenta; by days 16-17, the concentrations in yolk sac and placenta were similar. Incubation of yolk sac with [3H]leucine demonstrated synthesis of immunoprecipitable [3H]CaBP. A single band of 3H-labeled protein was seen on sodium dodecyl sulfate gel electrophoresis of the immunoprecipitate. This protein co-migrated with radioactive placental CaBP with an apparent Mr of 10,050. Addition of 1,25-dihydroxycholecalciferol (calcitriol) to organ culture media with or without serum increased the amount and concentration of CaBP in yolk sac (p less than 0.001) at 48 h. CaBP synthesis in yolk sac appeared to be independent of calcitriol concentrations in the maternal circulation since injection of the hormone into the maternal compartment produced no change in yolk sac CaBP despite increases of maternal intestinal and renal CaBP. These studies demonstrate that yolk sac immunoreactive CaBP is synthesized in yolk sac and has an apparent molecular size and calcium-binding properties characteristic of mammalian vitamin D-dependent calcium-binding proteins. The in vitro response of yolk sac CaBP to calcitriol is the first evidence of a vitamin D effect on the fetal membranes and suggests one function for calcitriol receptors in these tissues.  相似文献   

18.
The review discusses the data on vitamin D accumulation in animals, plants, and other organisms. 7-Dehydrocholesterol (7-DHC) and ergosterol are considered to be the only true precursors of vitamin D, although even vitamin D2 (ergocalciferol) is not fully comparable to vitamin D3 (cholecalciferol) in regard to their functions. These precursors are converted by UV radiation into the corresponding D vitamins. There are a few published reports that this reaction can also occur in the dark or under blue light, which is unexpected and requires explanation. Another unexpected result is conversion of pro-vitamins D (7-DHC and ergosterol) into vitamin D3 and D2 via pre-vitamin D at low temperatures (<16°C) in the lichen Cladonia rangiferina. An extensive survey of literature data leads to the conclusion that vitamin D is synthesized from (1) 7-DHC via lanosterol (D3) in land animals; (2) 7-DHC via cycloartenol (D3) in plants; (3) ergosterol via lanosterol (D2) in fungi; and (4) 7-DHC or ergosterol (D3 or D2) in algae. Vitamin D primarily accumulates in organisms, in which it acts as a pro-hormone, e.g., land animals. It can also be found as a degradation product in many other species, in which spontaneous conversion of some membrane sterols upon UV irradiation leads to the formation of vitamins D3 or D2, even if they are not necessarily needed by the organism. Such products accumulate due to the absence of metabolizing enzymes, e.g., in algae, fungi, or lichens. Other organisms (e.g., zooplankton and fish) receive vitamins D with food; in this case, vitamins D do not seem to carry out biological functions; they are not metabolized but stored in cells. A few exceptions were found: the rainbow trout and at least four plant species that accumulate active hormone calcitriol (but not vitamin D) in relatively high amounts. As a result, these plants are very toxic for grazing animals (cause enzootic calcinosis). In connection with the proposal of some scientists to produce large quantities of vitamin D with the help of plants, the accumulation of calcitriol in some plants is discussed.  相似文献   

19.

Background and objectives

Dysregulation of the autophagy pathway has been suggested as an important mechanism in the pathogenesis of Parkinson’s disease (PD). Therefore, modulation of autophagy may be a novel strategy for the treatment of PD. Recently, an active form of vitamin D3 has been reported to have neuroprotective properties. Therefore, we investigated the protective, autophagy-modulating effects of 1,25-dyhydroxyvitamin D3 (calcitriol) in an in vitro model of Parkinson’s disease.

Methods

An in vitro model of Parkinson’s disease, the rotenone-induced neurotoxicity model in SH-SY5Y cells was adapted. We measured cell viability using an MTT assay, Annexin V/propidium iodide assay, and intracellular reactive oxygen species levels and analyzed autophagy-associated intracellular signaling proteins by Western blotting.

Results

Rotenone treatment of SH-SY5Y cells reduced their viability. This treatment also increased reactive oxygen species levels and decreased levels of intracellular signaling proteins associated with cell survival; simultaneous exposure to calcitriol significantly reversed these effects. Additionally, calcitriol increased levels of autophagy markers, including LC3, beclin-1, and AMPK. Rotenone inhibited autophagy, as indicated by decreased beclin-1 levels and increased mTOR levels, and this effect was reversed by calcitriol treatment.

Discussion

Calcitriol protects against rotenone-induced neurotoxicity in SH-SY5Y cells by enhancing autophagy signaling pathways such as those involving LC3 and beclin-1. These neuroprotective effects of calcitriol against rotenone-induced dopaminergic neurotoxicity provide an experimental basis for its clinical use in the treatment of PD.  相似文献   

20.
Calcitriol is an important drug used for treating osteoporosis, which can be produced from vitamin D3. The current method of producing calcitriol from vitamin D3 during cultivation of microbial cells results in low yields of calcitriol and high purification costs. Therefore, in this study, the steps of cell cultivation and bioconversion of vitamin D3 to calcitriol were separated. Cells of Pseudonocardia sp. KCTC 1029BP were utilized as a whole cell catalyst to produce a high level and yield of calcitriol from vitamin D3. In addition, the effects of bioconversion buffers, cyclodextrins, and metal salts on the production of calcitriol were comparatively examined and selected for incorporation in the bioconversion medium, and their compositions were statistically optimized. The optimal bioconversion medium was determined as consisting of 15 mM Trizma base, 25 mM sodium succinate, 2 mM MgSO4, 0.08 % β-cyclodextrin, 0.1 % NaCl, 0.2 % K2HPO4, and 0.03 % MnCl2. Using this optimal bioconversion medium, 61.87 mg/L of calcitriol, corresponding to a 30.94 % mass yield from vitamin D3, was produced in a 75-L fermentor after 9 days. This calcitriol yield was 3.6 times higher than that obtained using a bioconversion medium lacking β-cyclodextrin, NaCl, K2HPO4, and MnCl2. In conclusion, utilizing whole cells of Pseudonocardia sp. KCTC 1029BP together with the optimal bioconversion medium markedly enhanced the production of calcitriol from vitamin D3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号