首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Progressive compromise of antioxidant defenses and free radical-mediated lipid peroxidation, which is one of the major mechanisms of secondary traumatic brain injury (TBI), has also been reported in pediatric head trauma. In the present study, we aimed to demonstrate the effect of melatonin, which is a potent free radical scavenger, on brain oxidative damage in 7-day-old rat pups subjected to contusion injury. Whereas TBI significantly increased thiobarbituric acid reactive substances (TBARS) levels, there was no compensatory increase in the antioxidant enzymes such as superoxide dismutase (SOD) and glutathione peroxidase (GPx) 24 hours after TBI in 7-day-old rats. Melatonin administered as a single dose of 5 mg/kg prevented the increase in TBARS levels in both non-traumatized and traumatized brain hemispheres. In conclusion, melatonin protects against oxidative damage induced by TBI in the immature brain.  相似文献   

2.
A multiple analysis of the cerebral oxidative stress was performed on a physiological model of dementia accomplished by three-vessel occlusion in aged rats. The forward rate constant of creatine kinase, kfor, was studied by saturation transfer 31P magnetic resonance spectroscopy in adult and aged rat brain during chronic hypoperfusion. In addition, free radicals in aging rat brain homogenates before and/or after occlusion were investigated by spin-trapping electron paramagnetic resonance spectroscopy (EPR). Finally, biochemical measurements of oxidative phosphorylation parameters in the above physiological model were performed. The significant reduction of kfor in rat brain compared to controls 2 and 10 weeks after occlusion indicates a disorder in brain energy metabolism. This result is consistent with the decrease of the coefficient of oxidative phosphorylation (ADP:O), and the oxidative phosphorylation rate measured in vitro on brain mitochondria. The EPR study showed a significant increase of the ascorbyl free radical concentration in this animal model. Application of -phenyl-N-tert-butylnitrone (PBN) and 5,5-dimethyl-1-pyrroline N-oxide (DMPO) spin traps revealed formation of highly reactive hydroxyl radical (OH) trapped in DMSO as the CH3 adduct. It was concluded that the ascorbate as a major antioxidant in brain seems to be useful in monitoring chronic cerebral hypoperfusion.  相似文献   

3.
The model of oxidative stress induced by Fe/ascorbate in rat brain in vitro was used to compare the antioxidant capacity of known antioxidants. Creatine kinase (CK) was selected as a marker of protein injury in such studies. Of the antioxidant enzymes (catalase, superoxide dismutase), oxygen radical scavengers (mannitol, glutathione), and the chelator (EDTA) tested in this work and this system, only catalase and glutathione prevented the injury induced by oxidative stress, indicating that H2O2 and the glutathione peroxidase reaction were involved in the preventive effect. Additionally, the preventive effect of glutathione may be caused also by the fact that glutathione easily reacts with 4-hydroxynonenal (HNE), generated in rat brain homogenate, thus protecting CK from inactivation by this aldehyde. To find out whether and if at which concentrations CK may be oxidatively modified by HNE, pure CK was incubated in the presence of 10 and 64 micromol/l HNE for 30 min at 37 degrees C. The activity of CK incubated with HNE decreased significantly. Simultaneously, the protein carbonyls, determined by electrophoresis and immunoblotting increased at 10 micromol/l HNE or disappeared probably due to crosslinking of CK at 64 micromol/l HNE. The concentration of HNE in rat brain homogenates after oxidative stress was determined by HPLC and was in the range of 10-16 nmol/mg prot., corresponding to a concentration of 10-16 micromol/l HNE. This indicates that CK of rat brain homogenates oxidized by Fe/ascorbate may be impaired not only directly by oxygen radicals but also secondarily by HNE.  相似文献   

4.
A Dasgupta  T Zdunek 《Life sciences》1992,50(12):875-882
The dual role of ascorbate as an antioxidant and a prooxidant has been clearly documented in the literature. Ascorbate acts as an antioxidant by protecting human serum from lipid peroxidation induced by azo dye-generated free radicals. On the other hand, ascorbate is readily oxidized in the presence of transition metal ions, (especially cupric ion) and accelerates lipid peroxidation in tissue homogenates by producing free radicals. Interestingly, we observed an antioxidant rather than an expected prooxidant role of ascorbate when human serum supplemented with 1.2mmol/L ascorbate underwent lipid peroxidations initiated by 2mmol/L copper sulfate. The antioxidant role of ascorbate was confirmed by studying the conventional thiobarbituric acid reactive substances (TBARS) as well as by observing the protective effect of ascorbate on the copper-induced peroxidation of unsaturated and polyunsaturated fatty acids. The antioxidation protection provided by ascorbate was comparable to that of equimolar alpha-tocopherol when incubated for 24h. However, lipid peroxidation products were lower in serum supplemented with alpha-tocopherol after 48h of incubation. This effect may be attributed to the binding of copper by plpha-tocopherol after serum proteins, thus preventing direct interaction between cupric ions and ascorbate. This proposed mechanism is based on the observation that the concentration of ascorbate decreased more slowly in serum than in phosphate buffer at physiological pH. Our results also indicate an outstanding anti-oxidant property of human serum due to the chelation of transition metal ions (even at high concentrations) by various serum proteins.  相似文献   

5.
Myeloperoxidase (MPO)-catalyzed one-electron oxidation of endogenous phenolic constituents (e.g., antioxidants, hydroxylated metabolites) and exogenous compounds (e.g., drugs, environmental chemicals) generates free radical intermediates: phenoxyl radicals. Reduction of these intermediates by endogenous reductants, i.e. recycling, may enhance their antioxidant potential and/or prevent their potential cytotoxic and genotoxic effects. The goal of this work was to determine whether generation and recycling of MPO-catalyzed phenoxyl radicals of a vitamin E homologue, 2,2,5,7,8-pentamethyl-6-hydroxychromane (PMC), by physiologically relevant intracellular reductants such as ascorbate/lipoate could be demonstrated in intact MPO-rich human leukemia HL-60 cells. A model system was developed to show that MPO/H(2)O(2)-catalyzed PMC phenoxyl radicals (PMC*) could be recycled by ascorbate or ascorbate/dihydrolipoic acid (DHLA) to regenerate the parent compound. Absorbance measurements demonstrated that ascorbate prevents net oxidation of PMC by recycling the phenoxyl radical back to the parent compound. The presence of DHLA in the reaction mixture containing ascorbate extended the recycling reaction through regeneration of ascorbate. DHLA alone was unable to prevent PMC oxidation. These conclusions were confirmed by direct detection of PMC* and ascorbate radicals formed during the time course of the reactions by EPR spectroscopy. Based on results in the model system, PMC* and ascorbate radicals were identified by EPR spectroscopy in ascorbate-loaded HL-60 cells after addition of H(2)O(2) and the inhibitor of catalase, 3-aminotriazole (3-AT). The time course of PMC* and ascorbate radicals was found to follow the same reaction sequence as during their recycling in the model system. Recycling of PMC by ascorbate was also confirmed by HPLC assays in HL-60 cells. Pre-loading of HL-60 cells with lipoic acid regenerated ascorbate and thus increased the efficiency of ascorbate in recycling PMC*. Lipoic acid had no effect on PMC oxidation in the absence of ascorbate. Thus PMC phenoxyl radical does not directly oxidize thiols but can be recycled by dihydrolipoate in the presence of ascorbate. The role of phenoxyl radical recycling in maintaining antioxidant defense and protecting against cytotoxic and genotoxic phenolics is discussed.  相似文献   

6.
In the redox antioxidant network, dihydrolipoate can synergistically enhance the ascorbate-dependent recycling of vitamin E. Since the major endogenous thiol antioxidant in biological systems is glutathione (GSH) it was of interest to compare the effects of dihydrolipoate with GSH on ascorbate-dependent recycling of the water-soluble homologue of vitamin E, Trolox, by electron spin resonance (ESR). Trolox phenoxyl radicals were generated by a horseradish peroxidase (HRP)-hydrogen peroxide (H2O2) oxidation system. In the presence of dihydrolipoate, Trolox radicals were suppressed until both dihydrolipoate and endogenous levels of ascorbate in skin homogenates were consumed. Similar experiments made in the presence of GSH revealed that Trolox radicals reappeared immediately after ascorbate was depleted and that GSH was not able to drive the ascorbate-dependent Trolox recycling reaction. However, at higher concentrations GSH was able to increase ascorbate-mediated Trolox regeneration from the Trolox radical. ESR and spectrophotometric measurements demonstrated the ability of dihydrolipoate or GSH to react with dehydroascorbate, the two-electron oxidation product of ascorbate in this system. Dihydrolipoate regenerated greater amounts of ascorbate at a much faster rate than equivalent concentrations of GSH. Thus the marked difference between the rate and efficiency of ascorbate generation by dihydrolipoate as compared with GSH appears to account for the different kinetics by which these thiol antioxidants influence ascorbate-dependent Trolox recycling.  相似文献   

7.
Portal hypertensive gastropathy is associated with a broad spectrum of gastric mucosal damage inspite of decreased gastric acid secretion, suggestive of compromised endogenous protective mechanisms. To determine the mechanisms of damage in portal hypertensive gastropathy we measured lipid peroxidation, glutathione, antioxidant and lysosomal enzymes in gastric mucosal homogenates from male Wistar rats with elevated intrasplenic pulp pressure, eighteen days after common bile duct ligation. Thiobarbituric acid-reactive substances and lysosomal enzymes (-glucuronidase and acid phosphatase) were increased in the common bile duct ligated group as compared to the sham-operated group. The levels of antioxidant defense enzymes, superoxide dismutase, glutathione peroxidase, catalase and glutathione were decreased as compared to the sham-operated controls. Pre-operative vitamin E administration decreased mucosal lipid peroxidation increased the levels of antioxidant defense enzymes and lowered the lysosomal enzymes. The plasma vitamin E levels in this group were lower when compared to animals receiving it post-operatively. In conclusion, free radical and lysosomal enzyme mediated damage may play a role in portal hypertensive gastropathy.  相似文献   

8.
Chain-breaking antioxidants such as butylated hydroxytoluene, alpha-tocopherol, and probucol have been shown to decrease markedly the oxidative modification of low density lipoprotein (LDL). Their mechanism of action appears to involve scavenging of LDL-lipid peroxyl radicals. The purpose of this study was to investigate the occurrence of radical reactions produced during oxidation of LDL and LDL-containing probucol initiated by lipoxygenase or copper. In addition, we have investigated the possibility of a synergistic interaction between ascorbate and probucol in inhibiting the oxidation of LDL. Incubation of LDL-containing probucol and lipoxygenase produced a composite electron spin resonance (ESR) spectrum due to the endogenous alpha-tocopheroxyl radical and probucol-derived phenoxyl radical. The spectral assignment was further verified by chemical oxidation of alpha-tocopherol and probucol. In the presence of ascorbic acid, these radicals in the LDL particle were reduced to their parent compounds with concomitant formation of the ascorbate radical. In both the peroxidation of linoleic acid and the copper-initiated peroxidation of LDL, the antioxidant activity of probucol was significantly increased by low (3-6 microM) concentrations of ascorbate. The probucol-dependent inhibition of LDL oxidation was enhanced in the presence of ascorbic acid. We conclude that the reaction between the phenoxyl radical of probucol and ascorbate results in a synergistic enhancement of the antioxidant capacity of these two compounds and speculate that such reactions could play a role in maintaining the antioxidant status of LDL during oxidative stress in vivo.  相似文献   

9.
Free radical formation and oxidative damage have been extensively investigated and validated as important contributors to the pathophysiology of acute central nervous system injury. The generation of reactive oxygen species (ROS) and reactive nitrogen species (RNS) is an early event following injury occurring within minutes of mechanical impact. A key component in this event is peroxynitrite-induced lipid peroxidation. As discussed in this review, peroxynitrite formation and lipid peroxidation irreversibly damages neuronal membrane lipids and protein function, which results in subsequent disruptions in ion homeostasis, glutamate-mediated excitotoxicity, mitochondrial respiratory failure and microvascular damage. Antioxidant approaches include the inhibition and/or scavenging of superoxide, peroxynitrite, or carbonyl compounds, the inhibition of lipid peroxidation and the targeting of the endogenous antioxidant defense system. This review covers the preclinical and clinical literature supporting the role of ROS and RNS and their derived oxygen free radicals in the secondary injury response following acute traumatic brain injury (TBI) and spinal cord injury (SCI) and reviews the past and current trends in the development of antioxidant therapeutic strategies. Combinatorial treatment with the suggested mechanistically complementary antioxidants will also be discussed as a promising neuroprotective approach in TBI and SCI therapeutic research. This article is part of a Special Issue entitled: Antioxidants and antioxidant treatment in disease.  相似文献   

10.
Abstract: To examine the role played by free radicals in brain injury, we performed experiments to detect radicals in the frontal cortex of rats, using electron spin resonance (ESR) and microdialysis. A dialysis probe was inserted into the frontal cortex, and spin adducts in perfusates were immediately detected by ESR. We obtained a relatively stable doublet signal, with parameters of g = 2.0057 and aH = 0.17 mT. This signal corresponded with that of the ascorbyl radical. Ascorbyl radical in the perfusate collected from the frontal cortex was augmented by microinjection of H2O2 and FeCl2 adjacent to the dialysis probe. When the rats were challenged with cold-induced brain injury, ascorbyl radical and lactate dehydrogenase (LDH) level in the perfusate increased significantly. Pretreatment with superoxide dismutase and catalase attenuated the increase in ascorbyl radical and LDH level induced by the cold injury. Infusion of FeCl2 dissolved in perfusate caused a pronounced increase in ascorbyl radical and LDH level after the cold injury. We conclude that the direct detection of free radical formation further supports the hypothesis that free radicals play an important role in traumatic brain injury. Our findings also indicate that combined microdialysis with ESR spectroscopy is a useful in vivo method for monitoring free radical production in the brain.  相似文献   

11.
Antioxidant Defense Systems in the Brains of Type II Diabetic Mice   总被引:2,自引:0,他引:2  
Abstract: The specific activities of superoxide dismutase, catalase, and glutathione S -transferase (μ subtype) were significantly lower in the brains of mice with type II diabetes than in the brains of control mice. On the other hand, the specific activity of glutathione peroxidase was unaltered. The concentration of vitamin E, but not that of total glutathione and ascorbate, was increased in the brains of the type II diabetic mice. The relative amount of polyunsaturated fatty acids (as determined with soybean lipoxygenase) was increased in whole brains and crude synaptosomal membranes of the type II diabetic mice. Endogenous levels of thiobarbituric acid-positive material were decreased in both whole brain homogenates and crude synaptosomal membranes of the db/db mice. Susceptibility of lipids within whole brain homogenates and crude synaptosomal membranes of mice with type II diabetes to peroxidation with iron/ascorbate was also markedly decreased compared with that of controls. Vitamin E is known to quench lipid peroxidation. Therefore, decreased lipid peroxidation in the type II mouse brain may be due to increased vitamin E content.  相似文献   

12.
《Free radical research》2013,47(3-6):315-324
Studies using free radical scavengers and measurements of lipid peroxidation have suggested that free radicals are generated during endotoxemia. Conclusions from these studies have implied that free radicals may participate in the sequence of pathologic events following endotoxin challenge in the experimental animal. Current inferences of free radical generation and involvement have been derived from indirect evidence and are therefore inconclusive. To quantitate the generation of free radicals in vivo during endotoxemia this study employed the use of electron paramagnetic resonance spectroscopy (EPR) combined with spin trapping techniques. Five minutes before intraperitoneal endotoxin administration, trimethoxy-a-phenyl-t-butyl-nitrone [(MeO), PBN] was administered intraperitoneally. Experimental animals were always matched with control animals receiving no endotoxin. At either five minutes or twenty-five minutes following endotoxin administration animals were decapitated and hearts and livers were rapidly taken for lipid extraction and EPR evaluation. Analysis of the EPR spectra revealed hyperfine splitting constants that indicated the presence of carbon-centered radical spin adducts in both organ tissues from animals exposed to endotoxin for twenty-five minutes. No signals were present in hearts and livers taken five minutes after endotoxin administration. EPR evaluation did not indicate spin adduct formation in control tissue. These data directly demonstrate that activation of processes in vivo involving free radical generation occur early during endotoxemia, but are not detectable immediately after the endotoxin challenge.  相似文献   

13.
The polyamines spermine and spermidine and the diamine putrescine inhibit lipid peroxidation in phospholipid liposome suspensions and rat liver homogenates. Using the chemiluminescence technique the antioxidant activity of polyamines was found to be due to reactions with the free radical intermediates of lipid peroxidation and/or superoxide radicals. Also, the antioxidant action of polyamines correlated with the amount of their amino groups: the antioxidant activity increases from putrescine to spermine.  相似文献   

14.
Traumatic brain injury is a common event associated with neurological dysfunction. Oxidative damage, may contribute to some of these pathologic changes. We used a specific and sensitive marker of lipid peroxidation, the isoprostane 8,12-iso-iPF(2alpha) -VI, to investigate whether local and also systemic lipid peroxidation were induced following lateral fluid percussion (FP) brain injury in the rat. Animals were anesthetized and subjected to lateral FP brain injury of moderate severity, or to sham injury as controls. Urine was collected before anesthesia (baseline), 6 and 24 h after injury. Blood was collected at baseline, 1, 6 and 24 h after injury. Animals were killed 24 h after surgery and their brains removed for biochemical analysis. No significant difference was observed at baseline (preinjury) for urine and plasma 8,12-iso-iPF(2alpha) -VI levels between injured and sham-operated animals. By contrast, plasma and urinary levels increased significantly already at 1 and further increased 24 h following brain injury, when compared to sham-operated animals. Finally, compared with sham, injured animals had a significant increase in brain 8,12-iso-iPF(2alpha) -VI levels. These results demonstrate that moderate brain injury induces widespread brain lipid peroxidation, which is accompanied by a similar increase in urine and plasma. Peripheral measurement of 8,12-iso-iPF(2alpha) -VI levels after brain injury may be a reliable marker of brain oxidative damage.  相似文献   

15.
Biochemical analyses of antioxidant content were compared with measurements of fluorescence and electron paramagnetic resonance (EPR) to examine the alteration of radicals in wheat seedlings exposed to 2 days of selenium stress. Two genotypes of Polish and one of Finnish wheat, differing in their tolerance to long-term stress treatment, were cultured under hydroponic conditions to achieve the phase of 3-leave seedlings. Afterwards, selenium (sodium selenate, 100 μM concentration) was added to the media. After Se-treatment, all varieties showed an increase in carbohydrates (soluble and starch), ascorbate and glutathione content in comparison to non-stressed plants. These changes were more visible in Finnish wheat. On the basis of lipid peroxidation measurements, Finnish wheat was recognized as the genotype more sensitive to short-term Se-stress than the Polish varieties. The antioxidant enzyme activities (superoxide dismutase, ascorbate peroxidase and glutathione reductase) increased in Polish genotypes, whereas they decreased in Finnish wheat plants cultured on Se media. The action of reactive oxygen species in short-term action of Se stress was confirmed by the reduction of PSII and PSI system activities (measured by fluorescence parameters and EPR, respectively). EPR studies showed changes in redox status (especially connected with Mn(II)/Mn(III), and semiquinone/quinone ratios) in wheat cell after Se treatment. The involvement of the carbohydrate molecules as electron traps in production of long-lived radicals is postulated.  相似文献   

16.
Divergent literature data are found concerning the effect of lactate on free radical production during exercise. To clarify this point, we tested the pro- or antioxidant effect of lactate ion in vitro at different concentrations using three methods: 1) electron paramagnetic resonance (EPR) was used to study the scavenging ability of lactate toward the superoxide aion (O(2)(-).) and hydroxyl radical (.OH); 2) linoleic acid micelles were employed to investigate the lipid radical scavenging capacity of lactate; and 3) primary rat hepatocyte culture was used to study the inhibition of membrane lipid peroxidation by lactate. EPR experiments exhibited scavenging activities of lactate toward both O(2)(-). and.OH; lactate was also able to inhibit lipid peroxidation of hepatocyte culture. Both effects of lactate were concentration dependent. However, no inhibition of lipid peroxidation by lactate was observed in the micelle model. These results suggested that lactate ion may prevent lipid peroxidation by scavenging free radicals such as O(2)(-). and.OH but not lipid radicals. Thus lactate ion might be considered as a potential antioxidant agent.  相似文献   

17.
Resveratrol inhibition of lipid peroxidation   总被引:14,自引:0,他引:14  
To define the molecular mechanism(s) of resveratrol inhibition of lipid peroxidation we have utilized model systems that allow us to study the different reactions involved in this complex process. Resveratrol proved (a) to inhibit more efficiently than either Trolox or ascorbate the Fe2+ catalyzed lipid hydroperoxide-dependent peroxidation of sonicated phosphatidylcholine liposomes; (b) to be less effective than Trolox in inhibiting lipid peroxidation initiated by the water soluble AAPH peroxyl radicals; (c) when exogenously added to liposomes, to be more potent than alpha-tocopherol and Trolox, in the inhibition of peroxidation initiated by the lipid soluble AMVN peroxyl radicals; (d) when incorporated within liposomes, to be a less potent chain-breaking antioxidant than alpha-tocopherol; (e) to be a weaker antiradical than alpha-tocopherol in the reduction of the stable radical DPPH*. Resveratrol reduced Fe3+ but its reduction rate was much slower than that observed in the presence of either ascorbate or Trolox. However, at the concentration inhibiting iron catalyzed lipid peroxidation, resveratrol did not significantly reduce Fe3+, contrary to ascorbate. In their complex, our data indicate that resveratrol inhibits lipid peroxidation mainly by scavenging lipid peroxyl radicals within the membrane, like alpha-tocopherol. Although it is less effective, its capacity of spontaneously entering the lipid environment confers on it great antioxidant potential.  相似文献   

18.
Our previous results indicated that cytochrome P450 destruction by benzene metabolites was caused mainly by benzoquinone (Soucek et al., Biochem. Pharmacol. 47 (1994) 2233-2242). The aim of this study was to investigate the interconversions between hydroquinone, semiquinone, and benzoquinone with regard to both spontaneous and enzymatic processes in order to test the above hypothesis. We have also studied the participation of hydroquinone and benzoquinone in OH radicals formation and lipid peroxidation as well as the role of ascorbate and transition metals. In buffered aqueous solution, hydroquinone was slowly oxidized to benzoquinone via a semiquinone radical. This conversion was slowed down by the addition of NADPH and completely stopped by microsomes in the presence of NADPH. Benzoquinone was reduced to semiquinone radical at a significantly higher rate and this conversion was stimulated by NADPH and more effectively by microsomes plus NADPH while semiquinone radical was quenched there. In microsomes with NADPH. both hydroquinone and benzoquinone stimulated the formation of OH radicals but inhibited peroxidation of lipids. Ascorbate at 0.5-5 mM concentration also produced significant generation of OH radicals in microsomes. Neither hydroquinone nor benzoquinone did change this ascorbate effect. On the contrary, 0.1-1.0 mM ascorbate stimulated peroxidation of lipids in microsomes whereas presence of hydroquinone or benzoquinone completely inhibited this deleterious effect of ascorbate. Iron-Fe2+ apparently played an important role in lipid peroxidation as shown by EDTA inhibition, but it did not influence OH radical production. In contrast, Fe3+ did not influence lipid peroxidation, but stimulated OH radical production. Thus, our results indicate that iron influenced the above processes depending on its oxidation state, but it did not influence hydroquinone/benzoquinone redox processes including the formation of semiquinone. It can be concluded that interconversions between hydroquinone and benzoquinone are influenced by NADPH and more effectively by the complete microsomal system. Ascorbate, well-known antioxidant produces OH radicals and peroxidation of lipids. On the other hand, both hydroquinone and benzoquinone appear to be very efficient inhibitors of lipid peroxidation.  相似文献   

19.
There has been considerable controversy regarding the role of oxygen free radicals as important mediators of cell damage in reperfused myocardium. This controversy regards whether superoxide and hydroxyl free radicals are generated on reperfusion and if these radicals actually cause impaired contractile function. In this study, EPR studies using the spin trap 5,5-dimethyl-1-pyroline-n-oxide (DMPO) demonstrate the formation of .OH and R. free radicals in the reperfused heart. EPR signals of DMPO-OH, aN = aH = 14.9 G, and DMPO-R aN = 15.8 G aH = 22.8 G are observed, with peak concentrations during the first minute of reperfusion. It is demonstrated that these radicals are derived from .O2- since reperfusion in the presence of enzymatically active recombinant human superoxide dismutase markedly reduced the formation of these signals while inactive recombinant human superoxide dismutase had no effect. On reperfusion with perfusate pretreated to remove adventitial iron, the concentration of the DMPO-OH signal was increased 2-fold and a 4-fold decrease in the DMPO-R signal was observed demonstrating that iron-mediated Fenton chemistry occurs. Hearts reperfused with recombinant human superoxide dismutase exhibited improved contractile function in parallel with the marked reduction in measured free radicals. In order to determine if the reperfusion free radical burst results in impaired contractile function, simultaneous measurements of free radical generation and contractile function were performed. A direct relationship between free radical generation and subsequent impaired contractile function was observed. These studies suggest that superoxide derived .OH and R. free radicals are generated in the reperfused heart via Fenton chemistry. These radicals appear to be key mediators of myocardial reperfusion injury.  相似文献   

20.
Lipid peroxidation in kidney of rats fed with vitamin B-6 deficient diet for a period of 12 weeks was studied with pair-fed controls. The basal lipid peroxide level as well as the degree of susceptibility to lipid peroxidation in presence of promotors such as NADPH, ascorbate, t-butyl hydroperoxide, Fe2+, Cu2+ and oxalate, were increased in vitamin B-6 deficient kidney. The observed increased lipid peroxidation in vitamin B-6 deficient kidney was correlated with high levels of lipids, copper, iron, calcium and oxalate, low levels of antioxidants and antioxidant enzymes and increased levels of hydroperoxides and hydroxyl radicals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号