首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have identified, cloned, and studied a gene, cap, encoding a protein that is associated with adenylyl cyclase in the fission yeast Schizosaccharomyces pombe. This protein shares significant sequence homology with the adenylyl cyclase-associated CAP protein in the yeast Saccharomyces cerevisiae. CAP is a bifunctional protein; the N-terminal domain appears to be involved in cellular responsiveness to RAS, whereas loss of the C-terminal portion is associated with morphological and nutritional defects. S. pombe cap can suppress phenotypes associated with deletion of the C-terminal CAP domain in S. cerevisiae but does not suppress phenotypes associated with deletion of the N-terminal domain. Analysis of cap disruptants also mapped the function of cap to two domains. The functional loss of the C-terminal region of S. pombe cap results in abnormal cellular morphology, slow growth, and failure to grow at 37 degrees C. Increases in mating and sporulation were observed when the entire gene was disrupted. Overproduction of both cap and adenylyl cyclase results in highly elongated large cells that are sterile and have measurably higher levels of adenylyl cyclase activity. Our results indicate that cap is required for the proper function of S. pombe adenylyl cyclase but that the C-terminal domain of cap has other functions that are shared with the C-terminal domain of S. cerevisiae CAP.  相似文献   

2.
The adenylyl cyclases of both Saccharomyces cerevisiae and Schizosaccharomyces pombe are associated with related proteins named CAP. In S. cerevisiae, CAP is required for cellular responses mediated by the RAS/cyclic AMP pathway. Both yeast CAPs appear to be bifunctional proteins: the N-terminal domains are required for the proper function of adenylyl cyclase, while loss of the C-terminal domains results in morphological and nutritional defects that appear to be unrelated to the cAMP pathways. Expression of either yeast CAP in the heterologous yeast suppresses phenotypes associated with loss of the C-terminal domain of the endogenous CAP but does not suppress loss of the N-terminal domain. On the basis of the homology between the two yeast CAP proteins, we have designed degenerate oligonucleotides that we used to detect, by the polymerase chain reaction method, a human cDNA fragment encoding a CAP-related peptide. Using the polymerase chain reaction fragment as a probe, we isolated a human cDNA clone encoding a 475-amino-acid protein that is homologous to the yeast CAP proteins. Expression of the human CAP protein in S. cerevisiae suppresses the phenotypes associated with loss of the C-terminal domain of CAP but does not suppress phenotypes associated with loss of the N-terminal domain. Thus, CAP proteins have been structurally and, to some extent, functionally conserved in evolution between yeasts and mammals.  相似文献   

3.
A Vojtek  B Haarer  J Field  J Gerst  T D Pollard  S Brown  M Wigler 《Cell》1991,66(3):497-505
CAP is a component of the S. cerevisiae adenylyl cyclase complex. The N-terminal domain is required for cellular RAS responsiveness. Loss of the C-terminal domain is associated with morphological and nutritional defects. Here we report that cap- cells bud randomly and are defective in actin distribution. The morphological and nutritional defects associated with loss of the CAP C-terminal domain are suppressed by over-expression of PFY, the gene encoding profilin, an actin- and polyphosphoinositide-binding protein. The phenotype of cells lacking PFY resembles that of cells lacking the CAP C-terminal domain. Study of mutated yeast profilins and profilins from Acanthamoeba suggests that the ability of profilin to suppress cap- cells is dependent upon a property other than, or in addition to, its ability to bind actin. This property may be its ability to bind polyphosphoinositides. We propose that CAP and profilin provide a link between growth signals and remodeling of the cellular cytoskeleton.  相似文献   

4.
Adenylyl cyclase from S. cerevisiae contains at least two subunits, a 200 kd catalytic subunit and a subunit with an apparent molecular size of 70 kd, which we now call CAP (cyclase-associated protein). We cloned a cDNA encoding CAP by screening a yeast cDNA expression library in E. coli with antisera raised against the purified protein. The cDNA contained an open reading frame capable of encoding a 526 amino acid protein that is not homologous to any sequences in the current data bases. Adenylyl cyclase activity in membranes from cells that lacked CAP was not stimulated by RAS2 proteins in vitro. These results suggest that CAP is required for at least some aspects of the RAS-responsive signaling system. Mutants lacking CAP had four additional phenotypes that appear to be unrelated to effects of the RAS/adenylyl cyclase pathway: the inability to grow on rich medium (YPD), temperature sensitivity on minimal medium, sensitivity to nitrogen starvation, and a swollen cell morphology.  相似文献   

5.
Saccharomyces cerevisiae cyclase-associated protein (CAP or Srv2p) is multifunctional. The N-terminal third of CAP binds to adenylyl cyclase and has been implicated in adenylyl cyclase activation in vivo. The widely conserved C-terminal domain of CAP binds to monomeric actin and serves an important cytoskeletal regulatory function in vivo. In addition, all CAP homologs contain a centrally located proline-rich region which has no previously identified function. Recently, SH3 (Src homology 3) domains were shown to bind to proline-rich regions of proteins. Here we report that the proline-rich region of CAP is recognized by the SH3 domains of several proteins, including the yeast actin-associated protein Abp1p. Immunolocalization experiments demonstrate that CAP colocalizes with cortical actin-containing structures in vivo and that a region of CAP containing the SH3 domain binding site is required for this localization. We also demonstrate that the SH3 domain of yeast Abp1p and that of the yeast RAS protein guanine nucleotide exchange factor Cdc25p complex with adenylyl cyclase in vitro. Interestingly, the binding of the Cdc25p SH3 domain is not mediated by CAP and therefore may involve direct binding to adenylyl cyclase or to an unidentified protein which complexes with adenylyl cyclase. We also found that CAP homologous from Schizosaccharomyces pombe and humans bind SH3 domains. The human protein binds most strongly to the SH3 domain from the abl proto-oncogene. These observations identify CAP as an SH3 domain-binding protein and suggest that CAP mediates interactions between SH3 domain proteins and monomeric actin.  相似文献   

6.
In Saccharomyces cerevisiae, adenylyl cyclase forms a complex with the 70-kDa cyclase-associated protein (CAP). By in vitro mutagenesis, we assigned a CAP-binding site of adenylyl cyclase to a small segment near its C terminus and created mutants which lost the ability to bind CAP. CAP binding was assessed first by observing the ability of the overproduced C-terminal 150 residues of adenylyl cyclase to sequester CAP, thereby suppressing the heat shock sensitivity of yeast cells bearing the activated RAS2 gene (RAS2Val-19), and then by immunoprecipitability of adenylyl cyclase activity with anti-CAP antibody and by direct measurement of the amount of CAP bound. Yeast cells whose chromosomal adenylyl cyclase genes were replaced by the CAP-nonbinding mutants possessed adenylyl cyclase activity fully responsive to RAS2 protein in vitro. However, they did not exhibit sensitivity to heat shock in the RAS2Val-19 background. When glucose-induced accumulation of cyclic AMP (cAMP) was measured in these mutants carrying RAS2Val-19, a rapid transient rise indistinguishable from that of wild-type cells was observed and a high peak level and following persistent elevation of the cAMP concentration characteristic of RAS2Val-19 were abolished. In contrast, in the wild-type RAS2 background, similar cyclase gene replacement did not affect the glucose-induced cAMP response. These results suggest that the association with CAP, although not involved in the in vivo response to the wild-type RAS2 protein, is somehow required for the exaggerated response of adenylyl cyclase to activated RAS2.  相似文献   

7.
8.
Fnr mutants that activate gene expression in the presence of oxygen.   总被引:11,自引:5,他引:6       下载免费PDF全文
The regulatory protein Fnr is required for anaerobic expression of several anaerobic respiratory enzymes in Escherichia coli. To gain insight into how Fnr activity is regulated by oxygen, we have isolated Fnr mutants that increase expression of the nitrate reductase operon in the presence of oxygen (Fnr* mutants). Seven single-amino-acid substitutions that mapped within two regions of Fnr have been characterized. Two mutants mapped adjacent to two Cys residues in the N-terminal Cys cluster. Five Fnr* substitutions mapped to a region of Fnr that is similar to the cyclic AMP-binding domain of the catabolite activator protein (CAP). Within this group, four mutants were clustered in a region analogous to the CAP C helix, which is important in CAP dimer subunit interactions. Taken together, these data implicate regions in Fnr that may be important either in sensing oxygen deprivation or in the conformational change proposed to be necessary for Fnr activation under anaerobic conditions.  相似文献   

9.
10.
Cyclase-associated proteins (CAPs) are highly conserved actin monomer binding proteins present in all eukaryotes. However, the mechanism by which CAPs contribute to actin dynamics has been elusive. In mammals, the situation is further complicated by the presence of two CAP isoforms whose differences have not been characterized. Here, we show that CAP1 is widely expressed in mouse nonmuscle cells, whereas CAP2 is the predominant isoform in developing striated muscles. In cultured NIH3T3 and B16F1 cells, CAP1 is a highly abundant protein that colocalizes with cofilin-1 to dynamic regions of the cortical actin cytoskeleton. Analysis of CAP1 knockdown cells demonstrated that this protein promotes rapid actin filament depolymerization and is important for cell morphology, migration, and endocytosis. Interestingly, depletion of CAP1 leads to an accumulation of cofilin-1 into abnormal cytoplasmic aggregates and to similar cytoskeletal defects to those seen in cofilin-1 knockdown cells, demonstrating that CAP1 is required for proper subcellular localization and function of ADF/cofilin. Together, these data provide the first direct in vivo evidence that CAP promotes rapid actin dynamics in conjunction with ADF/cofilin and is required for several central cellular processes in mammals.  相似文献   

11.
The Chlamydia trachomatis type three-secreted effector protein CT694 is expressed during late-cycle development yet is secreted by infectious particles during the invasion process. We have previously described the presence of at least two functional domains within CT694. CT694 was found to interact with the human protein Ahnak through a C-terminal domain and affect formation of host-cell actin stress fibers. Immunolocalization analyses of ectopically expressed pEGFP-CT694 also revealed plasma membrane localization for CT694 that was independent of Ahnak binding. Here we provide evidence that CT694 contains multiple functional domains. Plasma membrane localization and CT694-induced alterations in host cell morphology are dependent on an N-terminal domain. We demonstrate that membrane association of CT694 is dependent on a domain resembling a membrane localization domain (MLD) found in anti-host proteins from Yersinia, Pseudomonas, and Salmonella spp. This domain is necessary and sufficient for localization and morphology changes but is not required for Ahnak binding. Further, the CT694 MLD is able to complement ExoS ΔMLD when ectopically expressed. Taken together, our data indicate that CT694 is a multidomain protein with the potential to modulate multiple host cell processes.  相似文献   

12.
Inhibition of protein kinase C (PKC) activity in transformed cells and tumor cells containing activated p21(RAS) results in apoptosis. To investigate the pro-apoptotic pathway induced by the p21(RAS) oncoprotein, we first identified the specific PKC isozyme necessary to prevent apoptosis in the presence of activated p21(RAS). Dominant-negative mutants of PKC, short interfering RNA vectors, and PKC isozyme-specific chemical inhibitors directed against the PKCdelta isozyme demonstrated that PKCdelta plays a critical role in p21(RAS)-mediated apoptosis. An activating p21(RAS) mutation, or activation of the phosphatidylinositol 3-kinase (PI3K) Ras effector pathway, increased the levels of PKCdelta protein and activity in cells, whereas inhibition of p21(RAS) activity decreased the expression of the PKCdelta protein. Activation of the Akt survival pathway by oncogenic Ras required PKCdelta activity. Akt activity was dramatically decreased after PKCdelta suppression in cells containing activated p21(RAS). Conversely, constitutively activated Akt rescued cells from apoptosis induced by PKCdelta inhibition. Collectively, these findings demonstrate that p21(RAS), through its downstream effector PI3K, induces PKCdelta expression and that this increase in PKCdelta activity, acting through Akt, is required for cell survival. The p21(RAS) effector molecule responsible for the initiation of the apoptotic signal after suppression of PKCdelta activity was also determined to be PI3K. PI3K (p110(C)(AAX), where AA is aliphatic amino acid) was sufficient for induction of apoptosis after PKCdelta inhibition. Thus, the same p21(RAS) effector, PI3K, is responsible for delivering both a pro-apoptotic signal and a survival signal, the latter being mediated by PKCdelta and Akt. Selective suppression of PKCdelta activity and consequent induction of apoptosis is a potential strategy for targeting of tumor cells containing an activated p21(RAS).  相似文献   

13.
J Colgan  H E Yuan  E K Franke    J Luban 《Journal of virology》1996,70(7):4299-4310
The cellular peptidyl-prolyl isomerase cyclophilin A (CyPA) is incorporated into human immunodeficiency virus type 1 (HIV-1) virions via direct contacts with the HIV-1 Gag polyprotein. Disruption of the Gag-CyPA interaction leads to the production of HIV-1 particles lacking CyPA; these virions are noninfectious, indicating that contacts between CyPA and Gag are necessary for HIV-1 replication. Here, we have used the yeast two-hybrid system in conjunction with an in vitro binding assay to identify the minimal domain of Gag required for binding to CyPA. Analysis of a panel of gag deletion mutants in the two-hybrid system indicated that a region spanning the central portion of the capsid (CA) domain was sufficient for interactions with CyPA, but discrepancies between results obtained in different fusion protein contexts suggested that multimerization of Gag might also be necessary for binding to CyPA. Consistent with a requirement for multimerization, the binding of Gag to CyPA in vitro required a region within the nucleocapsid (NC) domain shown previously to be important for Gag self-association. Substitution of a heterologous dimerization motif for the region from NC also promoted specific binding to CyPA, confirming that interactions with CyPA are dependent on Gag multimerization. Fusion of the heterologous dimerization motif to a 100-amino-acid domain from CA was sufficient for binding to CyPA in vitro. These results define the minimal CyPA-binding domain within Gag and provide insight into the mechanism by which CyPA is incorporated into HIV-1 virions.  相似文献   

14.
The ras proto-oncogene in mammalian cells encodes a 21-kilodalton guanosine triphosphate (GTP)-binding protein. This gene is frequently activated in human cancer. As one approach toward understanding the mechanisms of cellular transformation by ras, the function of this gene in lower eucaryotic organisms has been studied. In the yeast Saccharomyces cerevisiae, the RAS gene products serve as essential function by regulating cyclic adenosine monophosphate metabolism. Stimulation of adenylyl cyclase is dependent not only on RAS protein complexed to GTP, but also on the CDC25 and IRA gene products, which appear to control the RAS GTP-guanosine diphosphate cycle. Although analysis of RAS biochemistry in S. cerevisiae has identified mechanisms central to RAS action, RAS regulation of adenylyl cyclase appears to be strictly limited to this particular organism. In Schizosaccharomyces pombe, Dictyostelium discoideum, and Drosophila melanogaster, ras-encoded proteins are not involved with regulation of adenylyl cyclase, similar to what is observed in mammalian cells. However, the ras gene product in these other lower eucaryotes is clearly required for appropriate responses to extracellular signals such as mating factors and chemoattractants and for normal growth and development of the organism. The identification of other GTP-binding proteins in S. cerevisiae with distinct yet essential functions underscores the fundamental importance of G-protein regulatory processes in normal cell physiology.  相似文献   

15.
Control of cell shape and motility requires rearrangements of the actin cytoskeleton. One cytoskeletal protein that may regulate actin dynamics is CAP (cyclase associated protein; CAP/Srv2p; ASP-56). CAP was first isolated from yeast as an adenylyl cyclase associated protein required for RAS regulation of cAMP signaling. In addition, CAP also regulates the actin cytoskeleton primarily through an actin monomer binding activity. CAP homologs are found in many eukaryotes, including mammals where they also bind actin, but little is known about their biological function. We, therefore, designed experiments to address CAP1 regulation of the actin cytoskeleton. CAP1 localized to membrane ruffles and actin stress fibers in fixed cells of various types. To address localization in living cells, we constructed GFP-CAP1 fusion proteins and found that fusion proteins lacking the actin-binding region localized like the wild type protein. We also performed microinjection studies with affinity-purified anti-CAP1 antibodies in Swiss 3T3 fibroblasts and found that the antibodies attenuated serum stimulation of stress fibers. Finally, CAP1 purified from platelets through a monoclonal antibody affinity purification step stimulated the formation of stress fiber-like filaments when it was microinjected into serum-starved Swiss 3T3 cells. Taken together, these data suggest that CAP1 promotes assembly of the actin cytoskeleton.  相似文献   

16.
17.
We previously identified a gene encoding a CAP (adenylyl cyclase-associated protein) homologue from the edible Basidiomycete Lentinus edodes. To further discover the cellular functions of the CAP protein, we searched for CAP-interacting proteins using a yeast two-hybrid system. Among the candidates thus obtained, many clones encoded the C-terminal half of an L. edodes 14-3-3 homologue (designated cip3). Southern blot analysis indicated that L. edodes contains only one 14-3-3 gene. Overexpression of the L. edodes 14-3-3 protein in the fission yeast Schizosaccharomyces pombe rad24 null cells complemented the loss of endogenous 14-3-3 protein functions in cell morphology and UV sensitivity, suggesting functional conservation of 14-3-3 proteins between L. edodes and S. pombe. The interaction between L. edodes CAP and 14-3-3 protein was restricted to the N-terminal domain of CAP and was confirmed by in vitro co-precipitation. Results from both the two-hybrid system and in vivo co-precipitation experiments showed the conservation of this interaction in S. pombe. The observation that a 14-3-3 protein interacts with the N-terminal portion of CAP but not with full-length CAP in L. edodes and S. pombe suggests that the C-terminal region of CAP may have a negative effect on the interaction between CAP and 14-3-3 proteins, and 14-3-3 proteins may play a role in regulation of CAP function.  相似文献   

18.
19.
Cyclase-associated protein (CAP), also called Srv2 in Saccharomyces cerevisiae, is a conserved actin monomer-binding protein that promotes cofilin-dependent actin turnover in vitro and in vivo. However, little is known about the mechanism underlying this function. Here, we show that S. cerevisiae CAP binds with strong preference to ADP-G-actin (Kd 0.02 microM) compared with ATP-G-actin (Kd 1.9 microM) and competes directly with cofilin for binding ADP-G-actin. Further, CAP blocks actin monomer addition specifically to barbed ends of filaments, in contrast to profilin, which blocks monomer addition to pointed ends of filaments. The actin-binding domain of CAP is more extensive than previously suggested and includes a recently solved beta-sheet structure in the C-terminus of CAP and adjacent sequences. Using site-directed mutagenesis, we define evolutionarily conserved residues that mediate binding to ADP-G-actin and demonstrate that these activities are required for CAP function in vivo in directing actin organization and polarized cell growth. Together, our data suggest that in vivo CAP competes with cofilin for binding ADP-actin monomers, allows rapid nucleotide exchange to occur on actin, and then because of its 100-fold weaker binding affinity for ATP-actin compared with ADP-actin, allows other cellular factors such as profilin to take the handoff of ATP-actin and facilitate barbed end assembly.  相似文献   

20.
Srv2/CAP is a conserved actin-binding protein with important roles in driving cellular actin dynamics in diverse animal, fungal, and plant species. However, there have been conflicting reports about whether the activities of Srv2/CAP are conserved, particularly between yeast and mammalian homologs. Yeast Srv2 has two distinct functions in actin turnover: its hexameric N-terminal-half enhances cofilin-mediated severing of filaments, while its C-terminal-half catalyzes dissociation of cofilin from ADP-actin monomers and stimulates nucleotide exchange. Here, we dissected the structure and function of mouse CAP1 to better understand its mechanistic relationship to yeast Srv2. Although CAP1 has a shorter N-terminal oligomerization sequence compared with Srv2, we find that the N-terminal-half of CAP1 (N-CAP1) forms hexameric structures with six protrusions, similar to N-Srv2. Further, N-CAP1 autonomously binds to F-actin and decorates the sides and ends of filaments, altering F-actin structure and enhancing cofilin-mediated severing. These activities depend on conserved surface residues on the helical-folded domain. Moreover, N-CAP1 enhances yeast cofilin-mediated severing, and conversely, yeast N-Srv2 enhances human cofilin-mediated severing, highlighting the mechanistic conservation between yeast and mammals. Further, we demonstrate that the C-terminal actin-binding β-sheet domain of CAP1 is sufficient to catalyze nucleotide-exchange of ADP-actin monomers, while in the presence of cofilin this activity additionally requires the WH2 domain. Thus, the structures, activities, and mechanisms of mouse and yeast Srv2/CAP homologs are remarkably well conserved, suggesting that the same activities and mechanisms underlie many of the diverse actin-based functions ascribed to Srv2/CAP homologs in different organisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号