首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The changes in the light-harvesting antenna size of photosystem I were investigated in the green alga Chlamydobotrys stellata during transition from autotrophic to photoheterotrophic nutrition by measuring the light-saturation behavior of hydrogen evolution following single turnover flashes. It was found that during autotrophic-to-photoheterotrophic transition the antenna size of photosystem I increased from 180 to 250 chlorophyll. The chlorophyll (a + b)/P700 ratio decreased from 800 to 550. The electron transport of photosystem I measured from reduced 2,6-dichloro-phenolindophenol to methylviologen was accelerated 1.4 times. In the 77K fluorescence spectra, the photosystem II fluorescence yield was considerably lowered relative to the photosystem I fluorescence yield. It is suggested that the increased light-harvesting capacity and redistribution of absorbed excitation energy in favor of photosystem I is a response of photoheterotrophic algae to meet the ATP demand for acetate metabolism by efficient photosystem I cyclic electron transport when the noncyclic photophosphorylation is inhibited by CO2 deficiency.  相似文献   

2.
《BBA》2021,1862(12):148494
Quenching of excess excitation energy is necessary for the photoprotection of light-harvesting complexes. In cyanobacteria, quenching of phycobilisome (PBS) excitation energy is induced by the Orange Carotenoid Protein (OCP), which becomes photoactivated under high light conditions. A decrease in energy transfer efficiency from the PBSs to the reaction centers decreases photosystem II (PS II) activity. However, quantitative analysis of OCP-induced photoprotection in vivo is complicated by similar effects of both photochemical and non-photochemical quenching on the quantum yield of the PBS fluorescence overlapping with the emission of chlorophyll. In the present study, we have analyzed chlorophyll a fluorescence induction to estimate the effective cross-section of PS II and compared the effects of reversible OCP-dependent quenching of PBS fluorescence with reduction of PBS content upon nitrogen starvation or mutations of key PBS components. This approach allowed us to estimate the dependency of the rate constant of PS II primary electron acceptor reduction on the amount of PBSs in the cell. We found that OCP-dependent quenching triggered by blue light affects approximately half of PBSs coupled to PS II, indicating that under normal conditions, the concentration of OCP is not sufficient for quenching of all PBSs coupled to PS II.  相似文献   

3.
The role of iron in regulating light harvesting and photochemical energy conversion processes was examined in the marine unicellular chlorophyte Dunaliella tertiolecta and the marine diatom Phaeodactylum tricornutum. In both species, iron limitation led to a reduction in cellular chlorophyll concentrations, but an increase in the in vivo, chlorophyll-specific, optical absorption cross-sections. Moreover, the absorption cross-section of photosystem II, a measure of the photon target area of the traps, was higher in iron-limited cells and decreased rapidly following iron addition. Iron-limited cells exhibited reduced variable/maximum fluorescence ratios and a reduced fluorescence per unit absorption at all wave-lengths between 400 and 575 nm. Following iron addition, variable/maximum fluorescence ratios increased rapidly, reaching 90% of the maximum within 18 to 25 h. Thus, although more light was absorbed per unit of chlorophyll, iron limitation reduced the transfer efficiency of excitation energy in photosystem II. The half-time for the oxidation of primary electron acceptor of photosystem II, calculated from the kinetics of decay of variable maximum fluorescence, increased 2-fold under iron limitation. Quantitative analysis of western blots revealed that cytochrome f and subunit IV (the plastoquinone-docking protein) of the cytochrome b6/f complex were also significantly reduced by lack of iron; recovery from iron limitation was completely inhibited by either cycloheximide or chloramphenicol. The recovery of maximum photosynthetic energy conversion efficiency occurs in three stages: (a) a rapid (3-5 h) increase in electron transfer rates on the acceptor side of photosystem II correlated with de novo synthesis of the cytochrome b6/f complex; (b) an increase (10-15 h) in the quantum efficiency correlated with an increase in D1 accumulation; and (c) a slow (>18 h) increase in chlorophyll levels accompanied by an increase in the efficiency of energy transfer from the light-harvesting chlorophyll proteins to the reaction centers.  相似文献   

4.
Summary Irradiation of the principal photosystem II light-harvesting chlorophyll-protein antenna complex, LHC II, with high light intensities brings about a pronounced quenching of the chlorophyll fluorescence. Illumination of isolated thylakoids with high light intensities generates the formation of quenching centres within LHC II in vivo, as demonstrated by fluorescence excitation spectroscopy. In the isolated complex it is demonstrated that the light-induced fluorescence quenching: a) shows a partial, biphasic reversibility in the dark; b) is approximately proportional to the light intensity; c) is almost independent of temperature in the range 0–30°C; d) is substantially insensitive to protein modifying reagents and treatments; e) occurs in the absence of oxygen. A possible physiological importance of the phenomenon is discussed in terms of a mechanism capable of dissipating excess excitation energy within the photosystem II antenna.Abbreviations chla chlorophyll a - chlb chlorophyll b - F0 fluorescence yield with reaction centers open - Fm fluorescence yield with reaction centres closed - Fi fluorescence at the plateau level of the fast induction phase - LHC II light-harvesting chlorophyll a/b protein complex II - PS II photosystem II - PSI photosystem I - Tricine N-[2-hydroxy-1,1-bis(hydroxymethyl)ethyl]glycine  相似文献   

5.
Mono- and divalent cations were found to increase the transfer of excitation energy within Photosystem I from the light-harvesting chlorophyll a molecules to P700. The P700-chlorophyll a protein of Shiozawa et al. (J. A. Shiozawa, R. S. Alberte, and J. P. Thornber, 1974, Arch. Biochem. Biophys.165, 388–397) was used for these studies. Cations stimulated the quantum yields for electron transport when the light-harvesting chlorophyll a molecules were irradiated. They also decreased chlorophyll a fluorescence. Half-maximal effects were observed at 0.5–0.6 mm for divalent cations and at 5–6 mm for monovalent cations. Triton X-100, 0.02%, also increased energy transfer. The increases in energy transfer are due to an intramolecular conformational change in the protein. A structural change is involved, since there is a correlation between the cation-induced changes in energy transfer and increases in 90 ° light scattering. However, there was no change in the molecular weight upon the addition of MgCl2. The molecular weight, as determined by gel filtration, was 105,000 in the presence of 0.05% Triton X-100. On the other hand, circular dichroism measurements showed an increase in the α-helical content from 51 to 63% when 5 mm MgCl2 was added. Changes in the absorption spectra were also observed. We believe that the cation regulation of Photosystem I activity provides a fine-tuning mechanism for the regulation of energy transfer.  相似文献   

6.
Excitation spectra of chlorophyll a fluorescence in chloroplasts from spinach and barley were measured at 4.2 K. The spectra showed about the same resolution as the corresponding absorption spectra. Excitation spectra for long-wave chlorophyll a emission (738 or 733 nm) indicate that the main absorption maximum of the photosystem (PS) I complex is at 680 nm, with minor bands at longer wavelengths. From the corresponding excitation spectra it was concluded that the emission bands at 686 and 695 nm both originate from the PS II complex. The main absorption bands of this complex were at 676 and 684 nm. The PS I and PS II excitation spectra both showed a contribution by the light-harvesting chlorophyll ab protein(s), but direct energy transfer from PS II to PS I was not observed at 4 K. Omission of Mg2+ from the suspension favored energy transfer from the light-harvesting protein to PS I. Excitation spectra of a chlorophyll b-less mutant of barley showed an average efficiency of 50–60% for energy transfer from β-carotene to chlorophyll a in the PS I and in the PS II complexes.  相似文献   

7.
Chloroplasts isolated from triazine-susceptible and triazine-resistant biotypes of Brassica campestris L. were analyzed for lipid composition, ultrastructure, and relative quantum requirements of photosynthesis. In general, phospholipids, but not glycolipids in chloroplasts from the triazine-resistant biotype had a higher linolenic acid concentration and lower levels of oleic and linoleic fatty acids, than chloroplasts from triazine-susceptible plants. Chloroplasts from the triazine-resistant biotype had a 1.6-fold higher concentration of t-Δ3-hexadecenoic acid with a concomitantly lower palmitic acid concentration in phosphatidylglycerol. Phosphatidylglycerol previously has been hypothesized to be a boundary lipid for photosystem II. Chloroplasts from the triazine-resistant biotype had a lower chlorophyll a/b ratio and exhibited increased grana stacking. Light-saturation curves revealed that the relative quantum requirement for whole chain electron transport at limiting light intensities was lower for the susceptible biotype than for the triazine-resistant biotype. Although the level of the chlorophyll a/b light-harvesting complex associated with photosystem II was greater in resistant biotypes, the increased levels of the light-harvesting complex did not increase the photosynthetic efficiency enough to overcome the rate limitation that is inherited concomitantly with the modification of the Striazine binding site.  相似文献   

8.
It was shown earlier that in etiolated bean (Phaseolus vulgaris, var. red kidney) leaves exposed to continuous light for a short time and then transferred to darkness a reorganization of their photosystem II (PSII) unit components occurs. This reorganization involves disorganization of the light-harvesting complex of PSII (LHC-II), destruction of its chlorophyll b and the 25 kilodalton polypeptide, and reuse of its chlorophyll a for the formation of additional, small in size, PSII units (Argyroudi-Akoyunoglou, Akoyunoglou, Kalosakas, Akoyunoglou 1982 Plant Physiol 70: 1242-1248). The present study further shows that parallel to the PSII unit reorganization a reorganization of the PSI unit components also occurs: upon transfer to darkness the 24, 23, and 21 kilodalton polypeptides, components of the light-harvesting complex of PSI (LHC-I), are decreased, the 69 kilodalton polypeptide, component of the chlorophyll a-rich P700-protein complex (CPI), is increased and new smallsized PSI units are formed. Concomitantly, the cytochrome f/chlorophyll and the cytochrome b/chlorophyll ratios are gradually increased. This suggests that the concentration of the electron transport components is also modulated in darkness to allow for adequate electron flow to occur between the newly synthesized PSII and PSI units.  相似文献   

9.
In order to study the effects of desiccation on a photosynthetic system, light harvesting and light-induced electron transport processes were examined in pea cotyledons at various moisture levels, using in vivo fluorescence excitation spectra and fluorescence induction kinetics. Water sorption isotherms yielded thermodynamic data that suggested very strong water binding between 4 to 11% water, intermediate sorption between water contents of 13 to 22%, and very weak binding at moisture contents between 24 to 32%. The fluorescence properties of the tissue changed with the moisture contents, and these changes correlated generally with the three regions of water binding. Peak fluorescence and fluorescence yield remained at low levels when water content was limited to the tightly bound regions, below 12%. Several new peaks appeared in the chlorophyll a excitation spectrum and both peak fluorescence and fluorescence yield increased at intermediate water-binding levels (12-22%). At moisture contents where water is weakly bound (>24%), peak fluorescence and fluorescence yield were maximum and the fluorescence excitation spectrum was unchanging with further increases in water content.

The state of water is an important component in the energy transfer and electron transport system. At hydration levels where water is most tightly bound, energy transfer from pigments is limited and electron transport is blocked. At intermediate water binding levels, energy transfer and electron transport increase and, in the region of weak water binding, energy transfer and electron transport are maximized.

  相似文献   

10.
The effects of protein phosphorylation and cation depletion on the electron transport rate and fluorescence emission characteristics of photosystem I at two stages of chloroplast development in light-grown wheat leaves are examined. The light-harvesting chlorophyll a/b protein complex associated with photosystem I (LHC I) was absent from the thylakoids at the early stage of development, but that associated with photosystem II (LHC II) was present. Protein phosphorylation produced an increase in the light-limited rate of photosystem I electron transport at the early stage of development when chlorophyll b was preferentially excited, indicating that LHC I is not required for transfer of excitation energy from phosphorylated LHC II to the core complex of photosystem I. However, no enhancement of photosystem I fluorescence at 77 K was observed at this stage of development, demonstrating that a strict relationship between excitation energy density in photosystem I pigment matrices and the long-wavelength fluorescence emission from photosystem I at 77 K does not exist. Depletion of Mg2+ from the thylakoids produced a stimulation of photosystem I electron transport at both stages of development, but a large enhancement of the photosystem I fluorescence emission was observed only in the thylakoids containing LHC I. It is suggested that the enhancement of PS I electron transport by Mg2+-depletion and phosphorylation of LHC II is associated with an enhancement of fluorescence at 77 K from LHC I and not from the core complex of PS I.  相似文献   

11.
《BBA》2020,1861(5-6):148186
The light-harvesting complexes II (LHCIIs) of spinach and Bryopsis corticulans as a green alga are similar in structure, but differ in carotenoid (Car) and chlorophyll (Chl) compositions. Carbonyl Cars siphonein (Spn) and siphonaxanthin (Spx) bind to B. corticulans LHCII likely in the sites as a pair of lutein (Lut) molecules bind to spinach LHCII in the central domain. To understand the light-harvesting and photoprotective properties of the algal LHCII, we compared its excitation dynamics and relaxation to those of spinach LHCII been well documented. It was found that B. corticulans LHCII exhibited a substantially longer chlorophyll (Chl) fluorescence lifetime (4.9 ns vs 4.1 ns) and a 60% increase of the fluorescence quantum yield. Photoexcitation populated 3Car* equally between Spn and Spx in B. corticulans LHCII, whereas predominantly at Lut620 in spinach LHCII. These results prove the functional differences of the LHCIIs with different Car pairs and Chl a/b ratios: B. corticulans LHCII shows the enhanced blue-green light absorption, the alleviated quenching of 1Chl*, and the dual sites of quenching 3Chl*, which may facilitate its light-harvesting and photoprotection functions. Moreover, for both types of LHCIIs, the triplet excitation profiles revealed the involvement of extra 3Car* formation mechanisms besides the conventional Chl-to-Car triplet transfer, which are discussed in relation to the ultrafast processes of 1Chl* quenching. Our experimental findings will be helpful in deepening the understanding of the light harvesting and photoprotection functions of B. corticulans living in the intertidal zone with dramatically changing light condition.  相似文献   

12.
Safe and efficient conversion of solar energy to metabolic energy by plants is based on tightly inter-regulated transfer of excitation energy, electrons and protons in the photosynthetic machinery according to the availability of light energy, as well as the needs and restrictions of metabolism itself. Plants have mechanisms to enhance the capture of energy when light is limited for growth and development. Also, when energy is in excess, the photosynthetic machinery slows down the electron transfer reactions in order to prevent the production of reactive oxygen species and the consequent damage of the photosynthetic machinery. In this opinion paper, we present a partially hypothetical scheme describing how the photosynthetic machinery controls the flow of energy and electrons in order to enable the maintenance of photosynthetic activity in nature under continual fluctuations in white light intensity. We discuss the roles of light-harvesting II protein phosphorylation, thermal dissipation of excess energy and the control of electron transfer by cytochrome b6f, and the role of dynamically regulated turnover of photosystem II in the maintenance of the photosynthetic machinery. We present a new hypothesis suggesting that most of the regulation in the thylakoid membrane occurs in order to prevent oxidative damage of photosystem I.  相似文献   

13.
Light green pigment mutants with a reduced chlorophyll b content were constructed in the microalga Chlamydomonas reinhardtii Dangeard. A simultaneous recording of the induction curves for prompt and delayed fluorescence and the redox state of P700 in the microsecond range with a M-PEA-2 fluorometer revealed decreases in the quantum yield of electron transport in PS2 (φE0) and the performance index (PIABS) and increases in the quantum efficiency of energy dissipation (φD0) and ΔpH-dependent nonphotochemical quenching (qE and NPQ). The light-dependence curves of the fluorescence parameters confirmed a decrease in the coefficient of maximum utilization of light energy (α) for the mutants. However, the mutants showed an adequate rate of electron transport at a medium light intensity under steady-state conditions. The mutations did not directly affect the oxidation reactions of the PS1 pigment (P700) and the decrease in delayed fluorescence. Experience in using the mutants to test polluted waters of Kazakhstan confirmed that the mutants are promising for use in biomonitoring for mutagens.  相似文献   

14.
C.J. Arntzen  C.L. Ditto 《BBA》1976,449(2):259-274
When isolated chloroplasts from mature pea (Pisum sativum) leaves were treated with digitonin under “low salt” conditions, the membranes were extensively solubilized into small subunits (as evidenced by analysis with small pore ultrafilters). From this solubilized preparation, a photochemically inactive chlorophyll · protein complex (chlorophyll ab ratio, 1.3) was isolated. We suggest that the detergent-derived membrane fragment from mature membranes is a structural complex within the membrane which contains the light-harvesting chlorophyll ab protein and which acts as a light-harvesting antenna primarily for Photosystem II.Cations dramatically alter the structural interaction of the light-harvesting complex with the photochemically active system II complex. This interaction has been measured by determining the amount of protein-bound chlorophyll b and Photosystem II activity which can be released into dispersed subunits by digitonin treatment of chloroplast lamellae. When cations are present to cause interaction between the Photosystem II complex and the light-harvesting pigment · protein, the combined complexes pellet as a “heavy” membranous fraction during differential centrifugation of detergent treated lamellae. In the absence of cations, the two complexes dissociate and can be isolated in a “light” submembrane preparation from which the light-harvesting complex can be purified by sucrose gradient centrifugation.Cation effects on excitation energy distribution between Photosystems I and II have been monitored by following Photosystem II fluorescence changes under chloroplast incubation conditions identical to those used for detergent treatment (with the exception of chlorophyll concentration differences and omission of detergents). The cation dependency of the pigment · protein complex and Photosystem II reaction center interactions measured by detergent fractionation, and regulation of excitation energy distribution as measured by fluorescence changes, were identical. We conclude that changes in substructural organization of intact membranes, involving cation induced changes in the interaction of intramembranous subunits, are the primary factors regulating the distribution of excitation energy between Photosystems II and I.  相似文献   

15.
缺铁对大豆叶片光合作用和光系统Ⅱ功能的影响   总被引:2,自引:0,他引:2  
通过气体交换和叶绿素荧光测定研究了缺铁对大豆叶片碳同化和光系统Ⅱ的影响。缺铁条件下大豆光合速率(Pn)大幅下降;最大光化学效率(po)下降幅度较小;荧光诱导动力学曲线发生明显的变化,其中电子传递活性明显下降,K相(VK)相对荧光产量提高。缺铁大豆的天线转化效率(Fv'/Fm')、光化学猝灭系数(qP)和光系统Ⅱ实际光化学效率(ΦPSⅡ)降低,而非光化学猝灭(NPQ)则明显增加。此外,缺铁大豆的光后荧光上升增强。据此,认为铁缺乏伤害了光系统Ⅱ复合物供体侧和受体侧的电子传递;缺铁条件下光系统I环式电子传递的增强可能在维持激发能耗散和ATP供给方面起一定作用。  相似文献   

16.
Two foxtail millet (Setaria italica L.) varieties were subjected to different shading intensity treatments during a grain-filling stage in a field experiment in order to clarify physiological mechanisms of low-light effects on the yield. Our results showed that the grain fresh mass per panicle, yield, photosynthetic pigment contents, net photosynthetic rate, stomatal conductance, effective quantum yield of PSII photochemistry, and electron transport rate decreased with the increase of shading intensity, whereas the intercellular CO2 concentration increased in both varieties. In addition, shading changed a double-peak diurnal variation of photosynthesis to a one-peak curve. In conclusion, the lower yield of foxtail millet was caused mainly by a reduction of grain mass assimilated, a decline in chlorophyll content, and the low photosynthetic rate due to low light during the grain-filling stage. Reduced light energy absorption and conversion, restricted electron transfer, and reduced stomatal conductance might cause the decrease in photosynthesis.  相似文献   

17.
Spectrophotometric and kinetic measurements were applied to yield photosystem (PS) stoichiometries and the functional antenna size of PSI, PSIIα, and PSIIβ in Zea mays chloroplasts in situ. Concentrations of PSII and PSI reaction centers were determined from the amplitude of the light-induced absorbance change at 320 and 700 nm, which reflect the photoreduction of the primary electron acceptor Q of PSII and the photooxidation of the reaction center P700 of PSI, respectively. Determination of the functional chlorophyll antenna size (N) for each photosystem was obtained from the measurement of the rate of light absorption by the respective reaction center. Under the experimental conditions employed, the rate of light absorption by each reaction center was directly proportional to the number of light-harvesting chlorophyll molecules associated with the respective photosystem. We determined NP700 = 195, Nα = 230, Nβ = 50 for the number of chlorophyll molecules in the light-harvesting antenna of PSI, PSIIα, and PSIIβ, respectively. The above values were used to estimate the PSII/PSI electron-transport capacity ratio (C) in maize chloroplasts. In mesophyll chloroplasts C > 1.4, indicating that, under green actinic excitation when Chl a and Chl b molecules absorb nearly equal amounts of excitation, PSII has a capacity to turn over electrons faster than PSI. In bundle sheath chloroplasts C < 1, suggesting that such chloroplasts are not optimally poised for linear electron transport and reductant generation.  相似文献   

18.
The effect of light quality on the composition, function and structure of the thylakoid membranes, as well as on the photosynthetic rates of intact fronds from Asplenium australasicum, a shade plant, grown in blue, white, or red light of equal intensity (50 microeinsteins per square meter per second) was investigated. When compared with those isolated from plants grown in white and blue light, thylakoids from plants grown in red light have higher chlorophyll a/chlorophyll b ratios and lower amounts of light-harvesting chlorophyll a/b-protein complexes than those grown in blue light. On a chlorophyll basis, there were higher levels of PSII reaction centers, cytochrome f and coupling factor activity in thylakoids from red light-grown ferns, but lower levels of PSI reaction centers and plastoquinone. The red light-grown ferns had a higher PSII/PSI reaction center ratio of 4.1 compared to 2.1 in blue light-grown ferns, and a larger apparent PSI unit size and a lower PSII unit size. The CO2 assimilation rates in fronds from red light-grown ferns were lower on a unit area or fresh weight basis, but higher on a chlorophyll basis, reflecting the higher levels of electron carriers and electron transport in the thylakoids.

The structure of thylakoids isolated from plants grown under the three light treatments was similar, with no significant differences in the number of thylakoids per granal stack or the ratio of appressed membrane length/nonappressed membrane length. The large freeze-fracture particles had the same size in the red-, blue-, and white-grown ferns, but there were some differences in their density. Light quality is an important factor in the regulation of the composition and function of thylakoid membranes, but the effects depend upon the plant species.

  相似文献   

19.
In the article, we report that effects of nano-anatase on the spectral characteristics and content of light-harvesting complex II (LHCII) on the thylakoid membranes of spinach were investigated. The results showed that nano-anatase treatment could increase LHCII content on the thylakoid membranes of spinach and the trimer of LHCII; nano-anatase could enter the spinach chloroplasts and bind to PSII. Meanwhile, spectroscopy assays indicated that the absorption intensity of LHCII from nano-anatase-treated spinach was obviously increased in the red and the blue region, fluorescence quantum yield near 685 nm of LHCII was enhanced, the fluorescence excitation intensity near 440 and 480 nm of LHCII significantly rose and F 480/F 440 ratio was reduced. Oxygen evolution rate of PSII was greatly improved. Together, nano-anatase promoted energy transferring from chlorophyll (chl) b and carotenoid to chl a, and nano-anatase TiO2 was photosensitized by chl of LHCII, which led to enhance the efficiency of absorbing, transferring, and converting light energy.  相似文献   

20.
Ora Canaani  Shmuel Malkin 《BBA》1984,766(3):525-532
In intact leaves, a new physiological state is obtained reversibly at low light intensity (typically 1 W / m2), in which oxygen evolution yield, monitored by the photoacoustic method, approaches zero. In this ‘low-light’ state, irradiation with far-red (λ > 700 nm) background light immediately restores the normal oxygen yield, resulting in an unusually high Emerson enhancement ratio. Quantitative analysis of the enhancement ratio and the saturation curve of enhancement by far-red light shows that in the new state, short wavelength excitation does not reach PS I reaction centers, resulting in an extreme imbalance between the two photosystems. We suggest that adaptation to the low-light state occurs through loss of excitonic interaction between antennae of PS I and their reaction-centers. It appears also that the ‘far-red’ absorbing pigments do not participate in the disconnection and remain closely attached to the reaction centers of PS I. Their number is estimated to be less than 30 per reaction center. The disconnection of the antennae from the reaction center appears to be reversed by readaptation to ‘normal’ light levels, as well as by a brief preillumination with broad band (400–600 nm) light, acting as a trigger. In the last case, the transition to high oxygen yield state is transient. The quantum requirement of this recovery process is very small (approx. 10 hv / reaction center). The adaptation times after switching from higher to lower intensities and vice versa are in the range of minutes. The fluorescence yield remains virtually constant during adaptation to the low-light state in contrast to expectations, suggesting the possibility of cyclic electron flow around PS II in this state. In a chlorophyll-b-less barley mutant, which lacks the light-harvesting chlorophyll-ab protein (LHC) (and possibly the newly discovered light-harvesting chlorophyll-ab protein associated with PS I (LHC-I)), the ‘low-light’ state was absent. These results are consistent with the hypothesis that these antennae complexes participate directly in the adaptation to low light intensities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号