首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The musculoskeletal capacity of 44 women and 39 men, mean age 55.0 +/- 3.4 years, was studied at the beginning and end of a 3.5 year period. The measurements included anthropometrics, maximal isometric trunk flexion and extension strength, maximal isometric hand grip strength and back mobility. According to a job analysis the subjects were divided into three dominating work groups: physical, mental and mixed groups. The results showed significant changes in anthropometrics, maximal isometric muscle strength and in mobility. The body weight and body mass index among women and the body mass index among men increased significantly during the period. The body height and sum of the skinfolds had on the other hand decreased significantly for both women and men. Women showed significant decreases of 9% and 10% (p less than 0.05 and p less than 0.01) in isometric trunk flexion and extension strength, and an increase of 9% in back mobility (p less than 0.05). In mental work, most of the significant changes occurred among women. Men had significant decreases in isometric trunk flexion and extension, 22% and 16% respectively (p less than 0.001) and an increase of 13% in back mobility (p less than 0.001). The men doing physical work had most of the significant changes in musculoskeletal capacity. The results revealed accelerated changes in musculoskeletal capacity in middle-aged employees.  相似文献   

2.
3.
The aim of this study was to examine the role of socio-economic status and the practice of physical exercise in explaining variation in muscle strength in 50 to 60-year-old women. Consequently, four study groups combining education and physical activity were formed: (1) university education, physically active; (2) university education, sedentary; (3) vocational or lower level of education, physically active; (4) vocational or lower level of education, sedentary. Maximal isometric strength of hand grip, arm flexion, body flexion and extension as well as dynamic power of the abdominal muscles were measured in 112 women. The results of the maximal isometric strength measurements were standardised by body mass index. The means of the maximal isometric strength results and sit-up tests were compared between the groups using two-way analysis of variance. The physically active women performed better than the sedentary in both the isometric and dynamic tests. Greater muscle strength was also found among the more highly educated compared with the less educated. The less educated sedentary women showed the poorest performance in the strength tests.  相似文献   

4.
A random sample of 778 subjects representing ages 25, 35, 45 and 55 years were studied for the amount of habitual physical activity, their anthropometric structure, vertical jumping height, trunk extension and flexion torques and dynamic endurance fitness of trunk extension and flexion. The proportion of subjects who were habitually physically active did not change systematically with age. The highest number of physically inactive subjects was found in men and women in the 35-year age group. The results in all the tests used to assess the strength characteristics were statistically significant when related to sex (P less than 0.001) and in all, except the relative maximal isometric torque of trunk extension, when related to age (P less than 0.001). Everyday physical activity was related to the variation in vertical jumping height (P less than 0.001), as well to the dynamic endurance fitness (P less than 0.001) of trunk extension and flexion. The decline in vertical jumping height and dynamic endurance fitness of trunk extension and flexion fitness was found to start at earlier ages than that of relative maximal isometric trunk extension and flexion torques. Dynamic endurance fitness of trunk flexion showed a more pronounced decline with age than trunk extension fitness.  相似文献   

5.
A group of 12 sedentary medical students (1 man and 11 women aged 21-27 years) participated in a strength training programme for the trunk muscles lasting 18 weeks. The maximal isometric flexion and extension forces of the trunk muscles were measured before the training and at 18 weeks by dynamometer. The cross-sectional area of the back muscles, i.e. erector spinae, multifidus and psoas muscles, was measured from magnetic resonance images (spin echo sequence TR/TE 1500/80, slice thickness 10 mm) obtained at the L4-L5 disc level before the training, at 11 and 18 weeks. During training, no significant change in the body mass or body fat content was found. Muscle forces or muscle cross-sectional area were not related to body mass. There was a significant increase in both trunk muscle cross-sectional area (psoas muscle P < 0.001 and back muscles P < 0.01) and trunk muscle forces (flexion and extension forces P < 0.01) during the training but no direct association between the muscle cross-sectional area and strength of the flexors and extensors was detected before or after the training.  相似文献   

6.
Values of maximal isometric strength of five muscle groups and associated factors including occupational status, life style and health were studied in three groups of men aged from 31 to 35, 51 to 55, and 71 to 75 years. The results indicated significant differences between the age groups in isometric handgrip, elbow flexion, knee extension, trunk extension and trunk flexion strength. In the youngest group, the manual workers tended to have higher strength values in all muscle groups than the lower and higher status white collar workers; whereas among the middle-aged and oldest men the manual workers tended to have the poorest performance. Good self-rated health and the intensity of physical exercise during leisure were positively associated with muscle strength in the youngest and middle-aged groups whereas in the oldest group the most important variable was home gymnastics. The multivariate structural equation models of isometric strength differed somewhat among the age groups and in these models the above-mentioned variables accounted for from 33% to 43% of the variance in isometric strength within the age groups. The results illustrated the most important factors associated with isometric strength in samples of men of different ages and also provided suggestions as to how these determinants might influence comparisons between different age groups in respect of muscle strength.  相似文献   

7.
Muscle strength in male athletes aged 70-81 years and a population sample.   总被引:1,自引:0,他引:1  
Muscle strength characteristics of different muscle groups were studied in active male strength-trained (ST, n = 14), speed-trained (SP, n = 16), and endurance-trained (EN, n = 67) athletes aged between 70 and 81 years. A population sample of similar age (n = 42) served as a control group. The isometric forces for hand grip, arm flexion, knee extension, trunk extension, and trunk flexion were higher for the athletes than the controls and higher for the ST than EN group. The SP athletes showed higher values in knee extension and trunk flexion than the EN group. When the isometric muscle forces were related to lean body mass, significant differences still existed between the athletes and controls. However, the differences between the ST and EN groups disappeared. The elevation of the body's centre of gravity in the vertical jump was also higher for the athletes than the controls. The SP group performed better in the vertical jump than either the ST or EN group. The results showed that the athletes who trained not only for strength and speed but also for endurance had superior muscle function compared to the average male population of the same age. Although the strength and speed athletes generally showed the highest muscle strength in absolute terms, the endurance athletes also preserved excellent strength characteristics related to body mass.  相似文献   

8.
Although progressive resistance training of trunk muscles on devices is very common, today, the effects of increasing resistance on trunk muscle activity during dynamic extension and flexion movements on training devices have not been reported yet. Thirty healthy subjects participated in maximal isometric and submaximal dynamic (at 30%, 50% and 70% of maximum mean torque (MMT)) extension and flexion exercises on Tergumed lumbar training devices. The normalized (as a percentage of maximal voluntary isometric contractions (MVIC)) electromyographic activity of 16 abdominal and back muscles was investigated. The results of the present study indicated that in general, with increasing resistance from 30% MMT to 50% MMT and 70% MMT, the activity of all back muscles during the extension exercises and the activity of all abdominal muscles during the flexion exercises increased significantly. To train strength (>60% of MVIC), low intensities (30% and 50% MMT) appeared sufficient to affect the back muscles, but for the abdominals higher resistance (70% MMT) was required. In contrast to the other back muscles, the lumbar multifidus demonstrated high activity levels during both the extension and the flexion exercises. As the lumbar multifidus is demonstrated to be an important muscle in segmental stabilization of the lumbar spine, this finding may help in understanding the efficacy of rehabilitation programs using specific training devices.  相似文献   

9.
The musculoskeletal capacity of 60 women and 69 men, average age 52.3 +/- 3.7 years was determined, including measurements of anthropometry, maximal isometric trunk flexion and extension, sit-ups, isometric hand grip strength and back mobility. According to the job and to cluster analysis, the subjects were divided into three dominating work groups; physical, mental, and mixed groups. The results showed significant differences in right hand grip strength of the women and in the number of sit-ups by men among the three work groups (p less than 0.05). The differences between the other tests were not significant, although the physical group in the women and either the physical or the mixed group in the men had systematically the lowest mean values in almost all tests. It is concluded that jobs with mainly physical demands do not guarantee superior musculoskeletal capacity in older employees.  相似文献   

10.
Monozygous twin pairs (two female and four male) were used in a strength training study so that one member of each pair served as training subject (TS) and the other members as nonexercising controls (CS). TS trained four times a week for 12 weeks with maximal isometric knee extensions of the right leg. The parameters studied included muscle strength, endurance time, electromyographic activity, and activities of several key enzymes in nonoxidative an oxidative muscle metabolism. The results disclosed that in addition to a 20% increase in isometric knee extension strength in the trained leg of TS, an average increase of 11% was observed in strength of TS untrained leg. CS did not demonstrate any change in muscle strength. Training also included an improvement in the maintenance of a static load of 60% of the pretraining maximum. Increase in the maximum integrated electromyographic activity (IEMG) of the rectus femoris muscle occurred concomitantly with the knee extension strength. Traning also caused reduction in the IEMG/tension ratio at submaximal loads indicating a more econimical usage of the rectus femoris muscles. Muscle biopsies taken from the vastus lateralis muscle showed that the enzyme activities of MDH, SDH, and HK were higher, and LDH and CPK lower in the trained leg as compared to the nontrained control leg of TS or to the values of the untrained member of the twin pair. It is concluded that isometric strength training as used in the present study can cause increased recruitment of the availabel motor unit pool, improved efficiency at submaximal loads, and surprisingly also enchancement of the oxidative metabolism in the muscle.  相似文献   

11.
Most studies about human responses to mechanical vibrations involve whole-body vibration and vibration applied perpendicularly to the tendon or muscle. The aim of the present study was to verify the effects of mechanical vibration applied in the opposite direction of muscle shortening on maximal isometric strength of the flexor muscles of the elbow due to neural factors. Conventional isometric training with maximal isometric contractions (MVCs) and isometric training with vibrations were compared. Nineteen untrained males, ages 24 +/- 3.28 years, were divided into 2 training groups. Group 1 performed conventional isometric training and group 2 isometric training with mechanical vibrations (frequency of 8 Hz and amplitude of 6 mm). Both groups executed 12 MVCs with a duration of 6 seconds and 2-minute intervals between the repetitions. The subjects trained 3 times per week for 4 weeks. The strength of the group subjected to vibrations increased significantly by 26 +/- 11% (p < 0.05), whereas the strength of the group with conventional isometric training increased only 10 +/- 5% (p < 0.05). These data suggest that training with vibrations applied in the opposite direction of muscle shortening enhances the mechanism of involuntary control of muscle activity and may improve strength in untrained males. Since these findings were in untrained males, further studies with athletes are necessary in order to generalize the results to athletes' training, although it seems that it would be possible.  相似文献   

12.
This study compared resistance-trained and untrained men for changes in commonly used indirect markers of muscle damage after maximal voluntary eccentric exercise of the elbow flexors. Fifteen trained men (28.2 +/- 1.9 years, 175.0 +/- 1.6 cm, and 77.6 +/- 1.9 kg) who had resistance trained for at least 3 sessions per week incorporating exercises involving the elbow flexor musculature for an average of 7.7 +/- 1.4 years, and 15 untrained men (30.0 +/- 1.5 years, 169.8 +/- 7.4 cm, and 79.9 +/- 4.4 kg) who had not performed any resistance training for at least 1 year, were recruited for this study. All subjects performed 10 sets of 6 maximal voluntary eccentric actions of the elbow flexors of one arm against the lever arm of an isokinetic dynamometer moving at a constant velocity of 90 degrees .s. Changes in maximal voluntary isometric and isokinetic torque, range of motion, upper arm circumference, plasma creatine kinase activity, and muscle soreness before, immediately after, and for 5 days after exercise were compared between groups. The trained group showed significantly (P < 0.05) smaller changes in all of the measures except for muscle soreness and faster recovery of muscle function compared with the untrained group. For example, muscle strength of the trained group recovered to the baseline by 3 days after exercise, where the untrained group showed approximately 40% lower strength than baseline. These results suggest that resistance-trained men are less susceptible to muscle damage induced by maximal eccentric exercise than untrained subjects.  相似文献   

13.
The purpose of this study was to examine the effects of unilateral isometric leg extension strength training on the strength and integrated electromyogram (IEMG) of both the trained and untrained limbs at multiple joint angles. A training (TRN) group [nine women; mean (SD) age, 20(1) years] exercised for 6 weeks with isometric leg extensions at 80% of maximal isometric torque. A control (CTL) group [eight women; 21(1) years] did not exercise. The training was performed three times per week on a Cybex II isokinetic dynamometer at a joint angle where the lever arm was 0.79 rad below the horizontal plane. The subjects were tested pre- and posttraining for maximal unilateral isometric torque in both limbs at joint angles of zero, 0.26, 0.79,1.31, and 1.57 rad below the horizontal plane. Bipolar surface electrodes were used to record the IEMG of the vastus lateralis (VL) and vastus medialis (VM) during the isometric tests. Three univariate (torque, IEMG-VL, and IEMG-VM) four-way (group x time x limb x angle) mixed factorial ANOVAs were used to analyze the data. The results indicated joint angle specificity for isometric torque in the TRN group only, with significant increases in torque at 0.79 (P = 0.0004) and 1.31 (P = 0.0039) rad. No significant increases in torque were found in the untrained limb of the TRN group or in either limb of the CTL group. Similarly, there were no significant changes in IEMG as a result of the training for the VL or VM. The joint-angle-specific strength increases without concomitant increases in IEMG were hypothesized to result from joint-angle-specific decreases in antagonistic co-contraction and/or preferential hypertropy of the quadriceps femoris at specific levels of the muscle group.  相似文献   

14.
Posture-dependent trunk function data are important for appropriate normalization of submaximal trunk exertions, and is also necessary to define a more precise and specific use for strength testing in the prevention and diagnosis of spinal disorders. The aim of the current study was to quantify maximal effort trunk muscle extensor activity and trunk isometric extension torque over a functional range of sagittal standing postures. Twenty healthy, young adult male and female subjects performed isometric extension tasks over a sagittal posture range of -20 degrees extension to +50 degrees flexion, in 10 degrees increments. Erector spinae muscle activity was recorded bilaterally at the level of L3 using surface EMG electrodes. Isometric trunk extension torque was measured using a trunk dynamometer. EMG and trunk torque differed significantly between genders, but there were no differences between male and female subjects when the data were normalized with respect to the upright posture. For the combined male and female population, upright posture normalized L3 EMG activity (EMGn) and trunk extension torque (Tn) increased 1.7-fold and 3.5-fold, respectively, over the 70 degrees range of sagittal postures examined. The ratio (Tn/EMGn) increased two-fold (0.83 to 1.67) from -20 degrees extension to +50 degrees flexion, indicating that the neuromuscular efficiency increases with flexion. Trunk extension torque normalized with respect to the upright posture was linearly and positively correlated (r = 0.59, P < 0.001) to similarly normalized L3 EMG activity. This relatively weak correlation suggests that trunk muscle synergism and/or intrinsic muscle length-tension relationships are also modulated by posture. This study provides data that can be used to estimate trunk extensor muscle function over a broad range of sagittal postures. Our findings indicate that appropriate postural normalization of trunk extensor EMG activity is necessary for studies where submaximal trunk exertions are performed over a range of upright postures.  相似文献   

15.
Determination of the trunk maximum voluntary exertion moment capacity and associated internal spinal forces could serve in proper selection of workers for specific occupational task requirements, injury prevention and treatment outcome evaluations. Maximum isometric trunk exertion moments in flexion and extension along with surface EMG of select trunk muscles are measured in 12 asymptomatic subjects. Subsequently and under individualized measured harness-subject forces, kinematics and upper trunk gravity, an iterative kinematics-driven finite element model is used to compute muscle forces and spinal loads in 4 of these subjects. Different co-activity and intra-abdominal pressure levels are simulated. Results indicate significantly larger maximal resistant moments and spinal compression/shear forces in extension exertions than flexion exertions. The agonist trunk muscles reach their maximum force generation (saturation) to greater extent in extension exertions compared to flexion exertions. Local lumbar extensor muscles are highly active in extension exertions and generate most of the internal spinal forces. The maximum exertion attempts produce large spinal compression and shear loads that increase with the antagonist co-activity level but decrease with the intra-abdominal pressure. Intra-abdominal pressure decreases agonist muscle forces in extension exertions but generally increase them in flexion exertions.  相似文献   

16.
The force-velocity curve (FVC) of arm flexion was established in 123 untrained males and 110 untrained females aged from 15 to 36 years, and 48 arm-trained athletes competing in different sport disciplines. The FVC was described by Hill's equation and defined by the parameters: maximal static moment (M0), maximal angular velocity (omega 0), maximal power (P0) and the concavity of the FVC (H). Within the given age range the level of the curve parameters of both untrained men and women was independent of age. On average, H was the same in all three groups. As compared to M0 of the untrained males, M0 of the athletes was 33% higher and M0 of the females was 38% lower; with regard to P0 these differences were +30% and -43% respectively. omega 0 was the same for trained and untrained males, whereas omega 0 of the women was 10% lower than omega 0 of the men.  相似文献   

17.
The purpose of this study was to investigate the effects of Swiss-ball core strength training on trunk extensor (abdominal)/flexor (lower back) and lower limb extensor (quadriceps)/flexor (hamstring) muscular strength, abdominal, lower back and leg endurance, flexibility and dynamic balance in sedentary women (n = 21; age = 34 ± 8.09; height = 1.63 ± 6.91 cm; weight = 64 ± 8.69 kg) trained for 45 minutes, 3 d·wk-1 for 12 weeks. Results of multivariate analysis revealed significant difference (p ≤ 0.05) between pre and postmeasures of 60 and 90° s trunk flexion/extension, 60 and 240° s-1 lower limb flexion/extension (Biodex Isokinetic Dynamometer), abdominal endurance (curl-up test), lower back muscular endurance (modified Sorensen test), lower limb endurance (repetitive squat test), lower back flexibility (sit and reach test), and dynamic balance (functional reach test). The results support the fact that Swiss-ball core strength training exercises can be used to provide improvement in the aforementioned measures in sedentary women. In conclusion, this study provides practical implications for sedentary individuals, physiotherapists, strength and conditioning specialists who can benefit from core strength training with Swiss balls.  相似文献   

18.
Eight men (20-23 years) weight trained 3 days.week-1 for 19 weeks. Training sessions consisted of six sets of a leg press exercise (simultaneous hip and knee extension and ankle plantar flexion) on a weight machine, the last three sets with the heaviest weight that could be used for 7-20 repetitions. In comparison to a control group (n = 6) only the trained group increased (P less than 0.01) weight lifting performance (heaviest weight lifted for one repetition, 29%), and left and right knee extensor cross-sectional area (CAT scanning and computerized planimetry, 11%, P less than 0.05). In contrast, training caused no increase in maximal voluntary isometric knee extension strength, electrically evoked knee extensor peak twitch torque, and knee extensor motor unit activation (interpolated twitch method). These data indicate that a moderate but significant amount of hypertrophy induced by weight training does not necessarily increase performance in an isometric strength task different from the training task but involving the same muscle group. The failure of evoked twitch torque to increase despite hypertrophy may further indicate that moderate hypertrophy in the early stage of strength training may not necessarily cause an increase in intrinsic muscle force generating capacity.  相似文献   

19.
Regular exercise training improves overall physical fitness and quality of life in postmenopausal women. The exigent training frequency depends on a user-specified training aim. The aim of this study was to confirm the benefits of regular once a week exercise training for the maintenance of fitness in postmenopausal women. The test group included 20 postmenopausal women (65 +/- 3.1 years) who have been attending the exercise training program conducted by the physiotherapist once a week for three years. The age-matched control group included 20 healthy women (65.5 +/- 2.4 years) who did not regularly attend the training program. The outcomes were: right and left lateral trunk flexion, right and left shoulder flexion, right and left grip strength, endurance capacity of the trunk extensors, lower limb muscle strength (1' chair stand test), and balance (one-leg standing duration time with eyes open and closed). Women from the test group achieved statistically significant better results in the following outcomes: right lateral trunk flexion (15.4 cm: 12.6 cm, p < 0.001), left lateral trunk flexion (15.4 cm: 12.6 cm, p = 0.001), trunk extension muscle endurance (53.4 s: 40.5 s, p < 0.001), lower limb muscle strength (28.4 x: 25 x, p < 0.001), and one-leg standing duration time with open eyes (33.5 s: 19.7 s, p < 0.001). The results suggest that a regular once a week exercise training program designed and conducted by the physiotherapist, may be helpful in the improvement or maintenance of flexibility, muscle strength and capacity, and balance in postmenopausal women. The better fitness proved by our study could be a result of other causes and not solely that of the designed training program.  相似文献   

20.
The purpose of this study was to examine the acute effects of maximal concentric vs. eccentric exercise on the isometric strength of the elbow flexor, as well as the biceps brachii muscle electromyographic (EMG) responses in resistance-trained (RT) vs. untrained (UT) men. Thirteen RT men (age: 24 ± 4 years; height: 180.2 ± 7.7 cm; body weight: 92.2 ± 16.9 kg) and twelve UT men (age: 23 ± 4 years; height: 179.2 ± 5.0 cm; body weight: 81.5 ± 8.6 kg) performed six sets of ten maximal concentric isokinetic (CON) or eccentric isokinetic (ECC) elbow flexion exercise in two separate visits. Before and after the exercise interventions, maximal voluntary contractions (MVCs) were performed for testing isometric strength. In addition, bipolar surface EMG signals were detected from the biceps brachii muscle during the strength testing. Both CON and ECC caused isometric strength to decrease, regardless of the training status. However, ECC caused greater isometric strength decline than CON did for the UT group (p = 0.006), but not for the RT group. Both EMG amplitude and mean frequency significantly decreased and increased, respectively, regardless of the training status and exercise intervention. Resistance-trained men are less susceptible to eccentric exercise-induced muscle damage, but this advantage is not likely linked to the chronic resistance training-induced neural adaptations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号