首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Characterization of two Arabidopsis thaliana glutathione S-transferases   总被引:2,自引:0,他引:2  
Glutathione S-transferases (GST) are multifunctional proteins encoded by a large gene family, divided on the basis of sequence identity into phi, tau, theta, zeta and lambda classes. The phi and tau classes are present only in plants. GSTs appear to be ubiquitous in plants and are involved in herbicide detoxification and stress response, but little is known about the precise role of GSTs in normal plant physiology and during biotic and abiotic stress response. Two cDNAs representing the two plant classes tau and phi, AtGSTF9 and AtGSTU26, were expressed in vitro and the corresponding proteins were analysed. Both GSTs were able to catalyse a glutathione conjugation to 1-chloro-2,4-dinitrobenzene (CDNB), but they were inactive as transferases towards p-nitrobenzylchloride (pNBC). AtGSTF9 showed activity towards benzyl isothiocyanate (BITC) and an activity as glutathione peroxidase with cumene hydroperoxide (CumHPO). AtGSTU26 was not active as glutathione peroxidase and towards BITC. RT-PCR analysis was used to evaluate the expression of the two genes in response to treatment with herbicides and safeners, chemicals, low and high temperature. Our results reveal that AtGSTU26 is induced by the chloroacetanilide herbicides alachlor and metolachlor and the safener benoxacor, and after exposure to low temperatures. In contrast, AtGSTF9 seems not to be influenced by the treatments employed.  相似文献   

2.
3.
The functions of plant glutathione S-transferases (GSTs) under normal growth conditions are poorly understood, but their activity as detoxification enzymes has been harnessed in agriculture for selective weed control. Herbicide safeners protect monocot crops from herbicide injury but have little effect on weedy monocot or dicot species. Protection by safeners is associated with expression of herbicide-metabolizing enzymes including GSTs, but the basis for selective action of safeners between monocots and dicots is not known. To address this question we have studied the response of Arabidopsis (Arabidopsis thaliana) to various safeners. Benoxacor, fenclorim, and fluxofenim did not protect Arabidopsis from herbicide injury but did induce RNA expression of the glutathione-conjugate transporters encoded by AtMRP1, AtMRP2, AtMRP3, and AtMRP4. These safeners also induced the organ-specific expression of AtGSTU19 and AtGSTF2, two previously characterized Arabidopsis GSTs from different classes of this enzyme family. RNA hybridization, immunoblot, and reporter gene analyses indicated expression of AtGSTU19 induced by safeners predominated in roots. To test the hypothesis that increased expression of AtGSTU19 would be sufficient to provide tolerance to chloroacetamide herbicides, a chimeric gene was produced containing the open reading frame for this GST driven by a constitutive promoter. Plants containing this transgene had a modest increase in AtGSTU19 protein, predominantly in roots, but this had no effect on tolerance to chloroacetamide herbicides. The localized induction of GSTs by safeners in roots of Arabidopsis may explain why these compounds are unable to provide herbicide tolerance to dicot plant species.  相似文献   

4.
5.
Plant glutathione S -transferases (GSTs) are a large group of multifunctional proteins that are induced by diverse stimuli. Using proteomic approaches we identified 20 GSTs at the protein level in Arabidopsis cell culture with a combination of GST antibody detection, LC-MS/MS analysis of 23-30 kDa proteins and glutathione-affinity chromatography. GSTs identified were from phi, tau, theta, zeta and DHAR sub-sections of the GST superfamily of 53 members. We have uncovered preliminary evidence for post-translational modifications of plant GSTs and show that phosphorylation is unlikely to be responsible. Detailed analysis of GST expression in response to treatment with 0.01-1 mM of the plant defence signal salicylic acid (SA) uncovered some interesting features. Firstly, GSTs appear to display class-specific concentration-dependent SA induction profiles highlighting differences between the large, plant specific phi and tau classes. Secondly, different members of the same class, while sharing similar SA dose responses, may display differences in terms of magnitude and timing of induction, further highlighting the breadth of GST gene regulation. Thirdly, closely related members of the same class ( GSTF6 and GSTF7 ), arising via tandem duplication, may be regulated differently in terms of basal expression levels and also magnitude of induction raising questions about the role of subfunctionalisation within this family. Our results reveal that GSTs exhibit class specific responses to SA treatment suggesting that several mechanisms are acting to induce GSTs upon SA treatment and hinting at class-specific functions for this large and important, yet still relatively elusive gene family.  相似文献   

6.
The plant‐specific tau class of glutathione S‐transferases (GSTs) is often highly stress‐inducible and expressed in a tissue‐specific manner, thereby suggesting its important protective roles. Although activities associated with the binding and transport of reactive metabolites have been proposed, little is known about the regulatory functions of GSTs. Expression of AtGSTU19 is induced by several stimuli, but the function of this GST remains unknown. In this study, we demonstrated that transgenic over‐expressing (OE) plants showed enhanced tolerance to different abiotic stresses and increased percentage of seed germination and cotyledon emergence. Transgenic plants exhibited an increased level of proline and activities of antioxidant enzymes, along with decreased malonyldialdehyde level under stress conditions. Real‐time polymerase chain reaction (PCR) analyses revealed that the expression levels of several stress‐regulated genes were altered in AtGSTU19 OE plants. These results indicate that AtGSTU19 plays an important role in tolerance to salt/drought/methyl viologen stress in Arabidopsis.  相似文献   

7.
8.
Plant glutathione transferases (GSTs) comprise a large family of inducible enzymes that play important roles in stress tolerance and herbicide detoxification. Treatment of Phaseolus vulgaris leaves with the aryloxyphenoxypropionic herbicide fluazifop-p-butyl resulted in induction of GST activities. Three inducible GST isoenzymes were identified and separated by affinity chromatography. Their full-length cDNAs with complete open reading frame were isolated using RACE-RT and information from N-terminal amino acid sequences. Analysis of the cDNA clones showed that the deduced amino acid sequences share high homology with GSTs that belong to phi and tau classes. The three isoenzymes were expressed in E. coli and their substrate specificity was determined towards 20 different substrates. The results showed that the fluazifop-inducible glutathione transferases from P. vulgaris (PvGSTs) catalyze a broad range of reactions and exhibit quite varied substrate specificity. Molecular modeling and structural analysis was used to identify key structural characteristics and to provide insights into the substrate specificity and the catalytic mechanism of these enzymes. These results provide new insights into catalytic and structural diversity of GSTs and the detoxifying mechanism used by P. vulgaris.  相似文献   

9.
10.
11.
Induction of glutathione S-transferases in Arabidopsis by herbicide safeners   总被引:13,自引:0,他引:13  
Herbicide safeners increase herbicide tolerance in cereals but not in dicotyledenous crops. The reason(s) for this difference in safening is unknown. However, safener-induced protection in cereals is associated with increased expression of herbicide detoxifying enzymes, including glutathione S-transferases (GSTs). Treatment of Arabidopsis seedlings growing in liquid medium with various safeners similarly resulted in enhanced GST activities toward a range of xenobiotics with benoxacor, fenclorim, and fluxofenim being the most effective. Safeners also increased the tripeptide glutathione content of Arabidopsis seedlings. However, treatment of Arabidopsis plants with safeners had no effect on the tolerance of seedlings to chloroacetanilide herbicides. Each safener produced a distinct profile of enhanced GST activity toward different substrates suggesting a differential induction of distinct isoenzymes. This was confirmed by analysis of affinity-purified GST subunits by two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis. AtGSTU19, a tau class GST, was identified as a dominant polypeptide in all samples. When AtGSTU19 was expressed in Escherichia coli, the recombinant enzyme was highly active toward 1-chloro-2,4-dinitrobenzene, as well as chloroacetanilide herbicides. Immunoblot analysis confirmed that AtGSTU19 was induced in response to several safeners. Differential induction of tau GSTs, as well as members of the phi and theta classes by safeners, was demonstrated by RNA-blot analysis. These results indicate that, although Arabidopsis may not be protected from herbicide injury by safeners, at least one component of their detoxification systems is responsive to these compounds.  相似文献   

12.
Although glutathione S-transferases (GSTs) are thought to play major roles in oxidative stress metabolism, little is known about the regulatory functions of GSTs. We have reported that Arabidopsis (Arabidopsis thaliana) GLUTATHIONE S-TRANSFERASE U17 (AtGSTU17; At1g10370) participates in light signaling and might modulate various aspects of development by affecting glutathione (GSH) pools via a coordinated regulation with phytochrome A. Here, we provide further evidence to support a negative role of AtGSTU17 in drought and salt stress tolerance. When AtGSTU17 was mutated, plants were more tolerant to drought and salt stresses compared with wild-type plants. In addition, atgstu17 accumulated higher levels of GSH and abscisic acid (ABA) and exhibited hyposensitivity to ABA during seed germination, smaller stomatal apertures, a lower transpiration rate, better development of primary and lateral root systems, and longer vegetative growth. To explore how atgstu17 accumulated higher ABA content, we grew wild-type plants in the solution containing GSH and found that they accumulated ABA to a higher extent than plants grown in the absence of GSH, and they also exhibited the atgstu17 phenotypes. Wild-type plants treated with GSH also demonstrated more tolerance to drought and salt stresses. Furthermore, the effect of GSH on root patterning and drought tolerance was confirmed by growing the atgstu17 in solution containing l-buthionine-(S,R)-sulfoximine, a specific inhibitor of GSH biosynthesis. In conclusion, the atgstu17 phenotype can be explained by the combined effect of GSH and ABA. We propose a role of AtGSTU17 in adaptive responses to drought and salt stresses by functioning as a negative component of stress-mediated signal transduction pathways.  相似文献   

13.
14.
15.
Marine Glutathione <Emphasis Type="Italic">S</Emphasis>-Transferases   总被引:2,自引:0,他引:2  
The aquatic environment is generally affected by the presence of environmental xenobiotic compounds. One of the major xenobiotic detoxifying enzymes is glutathione S-transferase (GST), which belongs to a family of multifunctional enzymes involved in catalyzing nucleophilic attack of the sulfur atom of glutathione (γ-glutamyl-cysteinylglycine) to an electrophilic group on metabolic products or xenobiotic compounds. Because of the unique nature of the aquatic environment and the possible pollution therein, the biochemical evolution in terms of the nature of GSTs could by uniquely expressed. The full complement of GSTs has not been studied in marine organisms, as very few aquatic GSTs have been fully characterized. The focus of this article is to present an overview of the GST superfamily and their critical role in the survival of organisms in the marine environment, emphasizing the critical roles of GSTs in the detoxification of marine organisms and the unique characteristics of their GSTs compared to those from non-marine organisms.  相似文献   

16.
A number of cDNAs corresponding to auxin-regulated mRNAs have been isolated from tobacco and found to be encoded by a multigene family consisting of three subfamilies. Homologous proteins have been isolated independently from soybean and potato. Here we report that the encoded proteins show a limited but significant homology to both plant and animal glutathione S-transferases (GST, EC 2.5.1.18). For the protein NT103, encoded by a member of the Nt103 subfamily, we demonstrate an in vitro GST activity. This is the first time a function is attributed to a member of this group of auxin-induced proteins or any of its homologues. The implications of this finding and the possible relationships between auxins and GSTs are discussed.  相似文献   

17.
18.
Glutathione S-transferases (GST) were characterized from the digestive gland of Cyphoma gibbosum (Mollusca; Gastropoda), to investigate the possible role of these detoxification enzymes in conferring resistance to allelochemicals present in its gorgonian coral diet. We identified the collection of expressed cytosolic Cyphoma GST classes using a proteomic approach involving affinity chromatography, HPLC and nano-spray liquid chromatography-tandem mass spectrometry (LC-MS/MS). Two major GST subunits were identified as putative mu-class GSTs; while one minor GST subunit was identified as a putative theta-class GST, apparently the first theta-class GST identified from a mollusc. Two Cyphoma GST cDNAs (CgGSTM1 and CgGSTM2) were isolated by RT-PCR using primers derived from peptide sequences. Phylogenetic analyses established both cDNAs as mu-class GSTs and revealed a mollusc-specific subclass of the GST-mu clade. These results provide new insights into metazoan GST diversity and the biochemical mechanisms used by marine organisms to cope with their chemically defended prey.  相似文献   

19.
Expression of the Arabidopsis glutathione S-transferase (GST) gene AtGSTF2 is induced by several stimuli, but the function of this GST remains unknown. We demonstrate that AtGSTF2 expression is also induced by glutathione, paraquat, copper, and naphthalene acetic acid (NAA) via a mechanism independent of ethylene perception, as determined by analysis of the ethylene-insensitive etr1 mutant. Deletion analyses identified two promoter regions important for regulation of AtGSTF2 expression in response to several of these inducers. Previous studies have suggested that AtGSTF2 interacts with indole-3-acetic acid (IAA) and the auxin transport inhibitor 1-N-naphthylphthalamic acid (NPA). We show that recombinant AtGSTF2 directly binds IAA, NPA, and the artificial auxin NAA. As NPA may act as an endogenous flavonoid regulator of auxin transport, competition between NPA and flavonoids for binding to AtGSTF2 was examined. Both quercetin and kaempferol competed with NPA for AtGSTF2 binding, indicating that all three compounds bind AtGSTF2 at the same site. In transgenic Arabidopsis seedlings, AtGSTF2::GUS expression occurred at the root-shoot transition zone and was induced in this region, as well as at the root distal elongation zone, after treatment with IAA. In wild-type seedlings, AtGSTF2 is localized near the plasma membrane of cells in the root-shoot transition zone. However, both AtGSTF2::GUS expression and localization of AtGSTF2 protein were disrupted in flavonoid-deficient tt4 seedlings. Our results indicate that AtGSTF2 is involved not only in stress responses but also in development under normal growth conditions.  相似文献   

20.
The glutathione-S-transferases (GSTs) from the Northern quahog (Mercenaria mercenaria) were examined after an injection of a polychlorinated biphenyl (PCB) mixture, Aroclor 1248, to a concentration of ~50 ppm. Enzymatic analysis indicated a fourfold increase in the GST activity of quahogs injected with PCBs compared with that of the control. An electrophoretic analysis of the GST from the PCB-exposed quahogs showed a 1.5-fold increase in the concentration over that of the control. Purification of the GST on a glutathione affinity column yielded a glutathione binding protein, in addition to the GSTs. However, the amount of the glutathione binding protein in the PCB-injected quahogs was found to decrease by ~50% in comparison to the glutathione binding protein in the control quahogs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号