首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Flying fish wing area and wing-loading both rise in strongly negative allometric fashion with increasing body length and mass. Evidence is presented to show that this occurs because: (1) the leading edge of the pectoral fin 'wing' is fixed at 24% of standard length (  L S) from the snout, (2) the wing length cannot exceed 76% of L S or the tips will interfere with propulsive tail beat and (3) increased mass demands faster flying and wings with better lift : drag ratios; this selects for tapered, higher aspect ratio wing shapes. A consequence of this situation is that larger flying fishes have centres of mass increasingly further behind the centre of wing pressure. Resultant longitudinal instability restricts the maximum size of the two-winged design and the pelvic fins of four-wingers act as a stabilizing tailplane. These data indicate that the accepted model of evolution of flight in flying fishes (by extension of ballistic leaps) is flawed; it is proposed that evolution of lift-supported surface taxiing in half-beaks with enlarged pectoral fins (enhanced by ground effect) was an essential preliminary; subsequent forward migration of the centre of mass to within the wing chord permitted effective gliding.  相似文献   

2.
This paper addresses the design of a biomimetic fish robot actuated by piezoeeramic actuators and the effect of artificial caudal fins on the fish robot's performance. The limited bending displacement produced by a lightweight piezocomposite actuator was amplified and transformed into a large tail beat motion by means of a linkage system. Caudal fins that mimic the shape of a mackerel fin were fabricated for the purpose of examining the effect of caudal fm characteristics on thrust production at an operating frequency range. The thickness distribution of a real mackerel's fin was measured and used to design artificial caudal fins. The thrust performance of the biomimetic fish robot propelled by fins of various thicknesses was examined in terms of the Strouhal number, the Froude number, the Reynolds number, and the power consumption. For the same fm area and aspect ratio, an artificial caudal fin with a distributed thickness shows the best forward speed and the least power consumption.  相似文献   

3.
Kinematic data of high spatial and temporal resolution, acquired from image sequences of adult long-finned squid, Loligo pealei, during steady swimming in a flume, were used to examine the role of fins and the coordination between fin and jet propulsion in squid locomotion. Fin shape and body outlines were digitized and used to calculate fin wave speed, amplitude, frequency, angle of attack, body deformation, speed, and acceleration. L. pealei were observed to have two fin gait patterns with a transition at 1.4-1.8 mantle lengths per second (Lm s-1) marked by alternation between the two patterns. Fin motion in L. pealei exhibited characteristics of both traveling waves and flapping wings. At low speeds, fin motion was more wave-like; at high speeds, fin motion was more flap-like and was marked by regular periods during which the fins were wrapped tightly against the mantle. Fin cycle frequencies were dependent on swimming speed and gait, and obvious coordination between the fins and jet were observed. Fin wave speed, angle of attack, and body acceleration confirmed the role of fins in thrust production and revealed a role of fins at all swimming speeds by a transition from drag-based to lift-based thrust when fin wave speed dropped below swimming speed. Estimates of peak fin thrust were as high as 0.44-0.96 times peak jet thrust in steady swimming over the range of swimming speeds observed. Fin downstrokes generally contributed more to thrust than did upstrokes, especially at high speeds.  相似文献   

4.
Kinematic data of high spatial and temporal resolution, acquired from image sequences of adult long-finned squid, Loligo pealei, during steady swimming in a flume, were used to examine the role of fins and the coordination between fin and jet propulsion in squid locomotion. Fin shape and body outlines were digitized and used to calculate fin wave speed, amplitude, frequency, angle of attack, body deformation, speed, and acceleration. L. pealei were observed to have two fin gait patterns with a transition at 1.4-1.8 mantle lengths per second (Lm s-1) marked by alternation between the two patterns. Fin motion in L. pealei exhibited characteristics of both traveling waves and flapping wings. At low speeds, fin motion was more wave-like; at high speeds, fin motion was more flap-like and was marked by regular periods during which the fins were wrapped tightly against the mantle. Fin cycle frequencies were dependent on swimming speed and gait, and obvious coordination between the fins and jet were observed. Fin wave speed, angle of attack, and body acceleration confirmed the role of fins in thrust production and revealed a role of fins at all swimming speeds by a transition from drag-based to lift-based thrust when fin wave speed dropped below swimming speed. Estimates of peak fin thrust were as high as 0.44-0.96 times peak jet thrust in steady swimming over the range of swimming speeds observed. Fin downstrokes generally contributed more to thrust than did upstrokes, especially at high speeds.  相似文献   

5.
Many evolutionary ecological studies have documented sexual dimorphism in morphology or behaviour. However, to what extent a sex-specific morphology is used differently to realize a certain level of behavioural performance is only rarely tested. We experimentally quantified flight performance and wing kinematics (wing beat frequency and wing stroke amplitude) and flight morphology (thorax mass, body mass, forewing aspect ratio, and distance to centre of forewing area) in the butterfly Pararge aegeria (L.) using a tethered tarsal reflex induced flight set-up under laboratory conditions. On average, females showed higher flight performance than males, but frequency and amplitude did not differ. In both sexes, higher flight performance was partly determined by wing beat frequency but not by wing stroke amplitude. Dry body mass, thorax mass, and distance to centre of forewing area were negatively related to wing beat frequency. The relationship between aspect ratio and wing stroke amplitude was sex-specific: females with narrower wings produced higher amplitude whereas males show the opposite pattern. The results are discussed in relation to sexual differences in flight behaviour.  © 2006 The Linnean Society of London, Biological Journal of the Linnean Society , 2006, 89 , 675–687.  相似文献   

6.
Ecomorphology of Locomotion in Labrid Fishes   总被引:8,自引:0,他引:8  
The Labridae is an ecologically diverse group of mostly reef associated marine fishes that swim primarily by oscillating their pectoral fins. To generate locomotor thrust, labrids employ the paired pectoral fins in motions that range from a fore-aft rowing stroke to a dorso-ventral flapping stroke. Species that emphasize one or the other behavior are expected to benefit from alternative fin shapes that maximize performance of their primary swimming behavior. We document the diversity of pectoral fin shape in 143 species of labrids from the Great Barrier Reef and the Caribbean. Pectoral fin aspect ratio ranged among species from 1.12 to 4.48 and showed a distribution with two peaks at about 2.0 and 3.0. Higher aspect ratio fins typically had a relatively long leading edge and were narrower distally. Body mass only explained 3% of the variation in fin aspect ratio in spite of four orders of magnitude range and an expectation that the advantages of high aspect ratio fins and flapping motion are greatest at large body sizes. Aspect ratio was correlated with the angle of attachment of the fin on the body (r = 0.65), indicating that the orientation of the pectoral girdle is rotated in high aspect ratio species to enable them to move their fin in a flapping motion. Field measures of routine swimming speed were made in 43 species from the Great Barrier Reef. Multiple regression revealed that fin aspect ratio explained 52% of the variation in size-corrected swimming speed, but the angle of attachment of the pectoral fin only explained an additional 2%. Labrid locomotor diversity appears to be related to a trade-off between efficiency of fast swimming and maneuverability in slow swimming species. Slow swimmers typically swim closer to the reef while fast swimmers dominate the water column and shallow, high-flow habitats. Planktivory was the most common trophic associate with high aspect ratio fins and fast swimming, apparently evolving six times.  相似文献   

7.
The diverse cartilaginous fish lineage, Batoidea (rays, skates, and allies), sister taxon to sharks, comprises a huge range of morphological diversity which to date remains unquantified and unexplained in terms of evolution or locomotor style. A recent molecular phylogeny has enabled us to confidently assess broadscale aspects of morphology across Batoidea. Geometric morphometrics quantifies the major aspects of shape variation, focusing on the enlarged pectoral fins which characterize batoids, to explore relationships between ancestry, locomotion and habitat. A database of 253 specimens, encompassing 60 of the 72 batoid genera, reveals that the majority of morphological variation across Batoidea is attributable to fin aspect‐ratio and the chordwise location of fin apexes. Both aspect‐ratio and apex location exhibit significant phylogenetic signal. Standardized independent linear contrast analysis reveals that fin aspect‐ratio can predict locomotor style. This study provides the first evidence that low aspect‐ratio fins are correlated with undulatory‐style locomotion in batoids, whereas high aspect‐ratio fins are correlated with oscillatory locomotion. We also show that it is phylogeny that determines locomotor style. In addition, body‐ and caudal fin‐locomotors are shown to exhibit low aspect‐ratio fins, whereas a pelagic lifestyle correlates with high aspect‐ratio fins. These results emphasize the importance of phylogeny in determining batoid pectoral fin shape, however, interactions with other constraints, most notably locomotor style, are also highlighted as significant. J. Morphol. 275:1173–1186, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

8.
We propose to use bending type tri-layer polymer actuators as propulsion fins for a biomimetic device consisting of a rigid body, like a box fish having a carapace, and paired fins running through the rigid body, like a fish having pectoral fins. The fins or polymer bending actuators can be considered as individually controlled flexible membranes. Each fin is activated with sinusoidal inputs such that there is a phase lag between the movements of successive fins to create enough thrust force for propulsion. Eight fins with 0.125 aspect ratio have been used along both sides of the rigid body to move the device in the direction perpendicular to the longitudinal axis of the body. The designed device with the paired fins was successfully tested, moving in an organic solution consisting of solvent, propylene carbonate (PC), and electrolyte. The design procedure outlined in this study is offered as a guide to making functional devices based on polymer actuators and sensors.  相似文献   

9.
LARRY B. SPEAR  DAVID G. AINLEY 《Ibis》1997,139(2):221-233
We studied flight direction relative to wind direction (hereafter referred to as "flight direction"), the relation between wing morphology and flight behaviour and interspecies relationships in flight behaviour among all major seabird taxa. We calculated wing loading and aspect ratios for 98 species from 1029 specimens. Species were sorted into 13 groups on the basis of similarity in patterns of flight direction. The primary flight direction of Pelecaniformes and Charadriiformes was into and across headwinds. The most common flight direction of Procellariiformes was across wind. Seabirds avoided flying with tailwinds. Wing loading and aspect ratios were positively correlated in Procellariiformes, Pelecaniformes and alcids but negatively correlated in larids. In Procellariiformes, incidence of headwind flight and that of tailwind flight were significantly correlated with wing loading and aspect ratio; species with higher wing loading and aspect ratios flew more often into headwinds and less often with tailwinds. In contrast, the proportion of Pelecaniformes and Charadriiformes flying with tailwinds increased significantly with increased wing loading. Our results demonstrate a close link in seabirds between flight behaviour, wing morphology and natural history patterns in terms of distribution, colony location, dispersal and foraging behaviour.  相似文献   

10.
Hovering and fast forward flapping represent two strenuous types of flight that differ in aerodynamic power requirement. Maximal capabilities of ruby-throated hummingbirds (Archilochus colubris) in hovering and forward flight were compared under varying body mass and wing area. The capability to hover in low-density gas mixtures was adversely affected by body mass, whereas the capability to fly in a wind tunnel did not show any adverse mass effect. Molting birds that lost primary flight feathers and reduced wing area also displayed mass loss and loss of aerodynamic power and flight speed. This suggests that maximal flight speed is insensitive to short-term perturbations of body mass but that molting is stressful and reduces the birds' speed and capacity for chase and escape. Hummingbirds' flight behavior in confined space was also investigated. Birds reduced their speeds flying through a narrow tube to approximately one-fifth of that in the wind tunnel and did not display differences under varying body mass and wing area. Hence, performance in the flight tube was submaximal and did not correlate with performance variation in the wind tunnel. For ruby-throated hummingbirds, both maximal mass-specific aerodynamic power derived from hovering performance in low-density air media and maximal flight velocity measured in the wind tunnel were invariant with body mass.  相似文献   

11.
12.
Fin rays of ray-finned fishes are composed of multiple bony segments, and each fin ray elongates by adding a new segment to the tip. Therefore, fin ray length is determined by the number of segments and the length of each segment. A comparison of the anal fin rays of a northern and southern wild population of the medaka, Oryzias latipes, revealed that southern fish had more segments per fin ray, resulting in longer anal fins than the northern fish. When fish were reared in a laboratory common environment, segmentation of the fin rays started earlier with respect to body size in the southern fish. In the southern males, moreover, the rate of segment addition accelerated after a certain body size, indicating sexual maturity. These patterns of segment addition during ontogeny were consistent with the patterns of fin ray elongation. Although distal segments tended to be longer, except for the most proximal segment, in both populations, the southern fish had shorter segments than the northern fish at any position on fin rays. These results indicate that the interpopulation variation in fin length is largely due to genetically-based differences in the control of segment addition, and that the length of each segment does not contribute to it. We suspect that fin ray segmentation is regulated by thyroid and sex hormones that differ between populations. We also found that some segments fuse with each other at the base of each fin ray, the functions and mechanisms of which remain unclear.  相似文献   

13.
Design Features and Mechanics of Axial Locomotion in Fish   总被引:7,自引:4,他引:3  
SYNOPSIS. Locomotion is the result of transfer of momentum fromthe fish musculature to the surrounding water. The present paperdiscusses some basic principles of this momentum transfer andshows the effects of various adaptations of body shape and finshape, size and positioning. Muscles take up a large part of the fish body volume in manycases. The effects of distribution of muscle mass on externalshape, and drag (with its reciprocal influence on the muscularsystem) are analysed. Fins provide an effective means of momentumtransfer, by allowing large amounts of water to be moved bysmall body masses. Fin shape, variable flexibility and positioningall interact to influence thrust producing performance. A frameworkfor understanding the various combinations of fins, their shapesand motion is presented. Reasons for shifting the center ofpropulsion to the rear part of the fish, in anguilliform, andmuch more so in carangiform swimmers are discussed. This shiftis shown to result from considerations of propulsive efficiency.Double-tailed fin configurations, defined as dorsal and ventralfins placed at the same longitudinal positions so as to producea "continuous" are analysed. Examples of both fast starters(such as esocids) and cruising species (scombrids, etc.) areused to point out the advantages of such fin placement.  相似文献   

14.
Synopsis The purpose of this study was to determine if body and fin form affected the maneuverability of teleostean fishes as measured by their ability to negotiate simple obstacles. Obstacles were vertical and horizontal rectangular slits of different widths, for which width was defined as the minimum dimension of a slit irrespective of slit orientation. Performance was measured as the smallest slit width traversed. Three species with different body and fin patterns were induced to swim through slits. Species tested were; goldfish Carassius auratus with a fusiform body, anterio-ventral pectoral fins and posterio-ventral pelvic fins; silver dollars Metynnis hypsauchen with the same fin configurations but a gibbose body; angelfish Pterophyllum scalare with a gibbose body and anterio-lateral pectoral fins. Minimum slit widths negotiated were normalized with the length of various body dimensions: total length, maximum width, span at the pectoral fins, and volume1/3 (numerically equal to mass1/3). Goldfish had the poorest performance, requiring the largest slit widths relative to these body dimensions. No consistent patterns in performance were found for silver dollars vs. angelfish. There were no differences among species in the ratio of minimum vertical slit width negotiated to that for horizontal slits, indicating fish were equally able to control posture while swimming on their sides. There were also no consistent patterns in the times taken to transit slits. Although the deep-bodied fish were able to maneuver through smaller slits, the most striking result is the similarity of minimum slit widths traversed in spite of the large variation in body form. Body form and fin plan may be more important for maneuvering and posture control during sub-maximum routine activities.  相似文献   

15.
The muscles and bones of the pectoral fin of Serrasalmus nattereri, the piranha, resemble those of generalized, lower teleosts with specializations related to a body shape adapted for high-speed carnivory; the pectoral fins being highly mobile with strong ligaments to the rays. The presence of two occipital nerves appears primitive, while the emergence of the subclavian artery within the branchial cavity, as in Gasteropelecus sternicla, appears specialized. The muscles and bones of the latter fish, a fresh-water flying fish, are specialized for self-propelled, aerial flight in the fusion of the right and left girdles greatly expanded for insertions of complex appendicular (flight) muscles, and in the consolidation of the rays and radials into one functional unit moving vertically in flight through contraction of vertical, massive ventral flight muscles. The bony pectoral anatomy of Electrophorus electricus, the electric eel, is specialized in having a mobile joint between the primary girdle and the cleithrum, the former being suspended vertically from the cleithrum by ligaments. The proximal radials and rays are very numerous and vertically aligned. The cleithrum is shaped to accommodate the extensive sternohyoid and pharyngocleithral muscles. The sheet-like appendicular muscles extend beyond the special joint and control its movement. The deeper muscles do not cross this joint. The arterial system is specialized in lacking a deep brachial artery.  相似文献   

16.
The tendency for flying organisms to possess small genomes has been interpreted as evidence of natural selection acting on the physical size of the genome. Nonetheless, the flight–genome link and its mechanistic basis have yet to be well established by comparative studies within a volant clade. Is there a particular functional aspect of flight such as brisk metabolism, lift production or maneuverability that impinges on the physical genome? We measured genome sizes, wing dimensions and heart, flight muscle and body masses from a phylogenetically diverse set of bird species. In phylogenetically controlled analyses, we found that genome size was negatively correlated with relative flight muscle size and heart index (i.e. ratio of heart to body mass), but positively correlated with body mass and wing loading. The proportional masses of the flight muscles and heart were the most important parameters explaining variation in genome size in multivariate models. Hence, the metabolic intensity of powered flight appears to have driven genome size reduction in birds.  相似文献   

17.
DASH+Wings is a small hexapedal winged robot that uses flapping wings to increase its locomotion capabilities. To examine the effects of flapping wings, multiple experimental controls for the same locomotor platform are provided by wing removal, by the use of inertially similar lateral spars, and by passive rather than actively flapping wings. We used accelerometers and high-speed cameras to measure the performance of this hybrid robot in both horizontal running and while ascending inclines. To examine consequences of wing flapping for aerial performance, we measured lift and drag forces on the robot at constant airspeeds and body orientations in a wind tunnel; we also determined equilibrium glide performance in free flight. The addition of flapping wings increased the maximum horizontal running speed from 0.68 to 1.29 m s?1, and also increased the maximum incline angle of ascent from 5.6° to 16.9°. Free flight measurements show a decrease of 10.3° in equilibrium glide slope between the flapping and gliding robot. In air, flapping improved the mean lift:drag ratio of the robot compared to gliding at all measured body orientations and airspeeds. Low-amplitude wing flapping thus provides advantages in both cursorial and aerial locomotion. We note that current support for the diverse theories of avian flight origins derive from limited fossil evidence, the adult behavior of extant flying birds, and developmental stages of already volant taxa. By contrast, addition of wings to a cursorial robot allows direct evaluation of the consequences of wing flapping for locomotor performance in both running and flying.  相似文献   

18.
Flying fishes are extraordinary aquatic vertebrates capable of gliding great distances over water by exploiting their enlarged pectoral fins and asymmetrical caudal fin. Some 50 species of extant flying fishes are classified in the Exocoetidae (Neopterygii: Teleostei), which have a fossil record no older than the Eocene. The Thoracopteridae is the only pre-Cenozoic group of non-teleosts that shows an array of features associated with the capability of over-water gliding. Until recently, however, the fossil record of the Thoracopteridae has been limited to the Upper Triassic of Austria and Italy. Here, we report the discovery of exceptionally well-preserved fossils of a new thoracopterid flying fish from the Middle Triassic of China, which represents the earliest evidence of an over-water gliding strategy in vertebrates. The results of a phylogenetic analysis resolve the Thoracopteridae as a stem-group of the Neopterygii that is more crown-ward than the Peltopleuriformes, yet more basal than the Luganoiiformes. As the first record of the Thoracopteride in Asia, this new discovery extends the geographical distribution of this group from the western to eastern rim of the Palaeotethys Ocean, providing new evidence to support the Triassic biological exchanges between Europe and southern China. Additionally, the Middle Triassic date of the new thoracopterid supports the hypothesis that the re-establishment of marine ecosystems after end-Permian mass extinction is more rapid than previously thought.  相似文献   

19.
《Journal of morphology》2017,278(12):1716-1725
The dorsal fin is one of the most varied swimming structures in Acanthomorpha, the spiny‐finned fishes. This fin can be present as a single contiguous structure supported by bony spines and soft lepidotrichia, or it may be divided into an anterior, spiny dorsal fin and a posterior, soft dorsal fin. The freshwater fish family Percidae exhibits especially great variation in dorsal fin spacing, including fishes with separated fins of varying gap length and fishes with contiguous fins. We hypothesized that fishes with separated dorsal fins, especially those with large gaps between fins, would have stiffened fin elements at the leading edge of the soft dorsal fin to resist hydrodynamic loading during locomotion. For 10 percid species, we measured the spacing between dorsal fins and calculated the second moment of area of selected spines and lepidotrichia from museum specimens. There was no significant relationship between the spacing between dorsal fins and the second moment of area of the leading edge of the soft dorsal fin.  相似文献   

20.
Bluegill Lepomis macrochirus showed intraspecific morphological and behavioural differences dependent on the environment. Pelagic L. macrochirus had more fusiform bodies, a higher pectoral fin aspect ratio, a larger spiny dorsal fin area and pectoral fins located farther from the centre of mass than littoral L. macrochirus (P < 0·05). The shape of the body and pectoral fins, in particular, were suggestive of adaptation for sustained high-speed and economical labriform swimming. Littoral L. macrochirus had a deeper and wider body, deeper caudal fins and wider mouths than pelagic L. macrochirus (P < 0·05). Additionally, the soft dorsal, pelvic, anal and caudal fins of littoral L. macrochirus were positioned farther from the centre of mass (P < 0·05). The size and placement of these fins suggested that they will be effective in creating turning moments to facilitate manoeuvring in the macrophyte-dense littoral habitat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号