首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
Selection of optimal DNA oligos for gene expression arrays.   总被引:7,自引:0,他引:7  
MOTIVATION: High density DNA oligo microarrays are widely used in biomedical research. Selection of optimal DNA oligos that are deposited on the microarrays is critical. Based on sequence information and hybridization free energy, we developed a new algorithm to select optimal short (20-25 bases) or long (50 or 70 bases) oligos from genes or open reading frames (ORFs) and predict their hybridization behavior. Having optimized probes for each gene is valuable for two reasons. By minimizing background hybridization they provide more accurate determinations of true expression levels. Having optimum probes minimizes the number of probes needed per gene, thereby decreasing the cost of each microarray, raising the number of genes on each chip and increasing its usage. RESULTS: In this paper we describe algorithms to optimize the selection of specific probes for each gene in an entire genome. The criteria for truly optimum probes are easily stated but they are not computable at all levels currently. We have developed an heuristic approach that is efficiently computable at all levels and should provide a good approximation to the true optimum set. We have run the program on the complete genomes for several model organisms and deposited the results in a database that is available on-line (http://ural.wustl.edu/~lif/probe.pl). AVAILABILITY: The program is available upon request.  相似文献   

5.
Applications of DNA tiling arrays for whole-genome analysis   总被引:26,自引:0,他引:26  
  相似文献   

6.
7.
8.
Microarrays have been used extensively in gene expression profiling and genotyping studies. To reduce the high cost and enhance the consistency of microarray experiments, it is often desirable to strip and reuse microarray slides. Our genome-wide analysis of microRNA expression involves the hybridization of fluorescently labeled nucleic acids to custom-made, spotted DNA microarrays based on GAPSII-coated slides. We describe here a simple and effective method to regenerate such custom microarrays that uses a very low-salt buffer to remove labeled nucleic acids from microarrays. Slides can be stripped and reused multiple times without significantly compromising data quality. Moreover, our analyses of the performance of regenerated slides identifies parameters that influence the attachment of oligonucleotide probes to GAPSII slides, shedding light on the interactions between DNA and the microarray surface and suggesting ways in which to improve the design of oligonucleotide probes.  相似文献   

9.
Synthetic DNA probes attached to microarrays usually range in length from 25 to 70 nucleotides. There is a compromise between short probes with lower sensitivity, which can be accurately synthesized in higher yields, and long probes with greater sensitivity but lower synthesis yields. Described here are microarrays printed with spots containing a mixture of two short probes, each designed to hybridize at noncontiguous sites in the same targeted sequence. We have shown that, for a printed microarray, mixed probe spots containing a pair of 30mers show significantly greater hybridization than spots containing a single 30mer and can approach the amount of hybridization to spots containing a 60mer or a 70mer. These spots with mixed oligonucleotide probes display cooperative hybridization signals greater than those that can be achieved by either probe alone. Both the higher synthesis yields of short probes and the greater sensitivity of long oligonucleotides can be utilized. This strategy provides new design options for microarray hybridization assays to detect RNA abundance, RNA splice variants, or sequence polymorphisms.  相似文献   

10.
To establish a rapid, sensitive and specific diagnostic assay for Hantavirus with microarray techniques, specific primers and probes were designed according to the conservative and specific DNA sequence of 76-118 strain and R22 strain. The probes were spotted on glass slides to form microarrays.The Cy3-1abled single stranded DNA fragments prepared by dissymmetical PCR were hybridized with the probes on the glass slides. The microarrays were scanned and analyzed with a scanner. The results showed that the DNA microarray could detect the different typed DNA of HTN and SEO with adequate specificity and sensitivity. The developed DNA microarray and techniques might be a very useful method for diagnosis and prevention, and could be widely applied in specific pathogens detection ofinfectious diseases such as hemorrhagic fever with renal syndrome.  相似文献   

11.
AIMS: To compare genetic composition of plasmids using microarrays composed of randomly selected fragments of plasmid DNA. METHODS AND RESULTS: Separate shotgun libraries were constructed from plasmid DNA pooled from Escherichia coli and Salmonella enterica. Cloned fragments were used as probes for microarrays. Plasmid targets were labelled, hybridized overnight, and bound targets were imaged after enzymatic signal amplification. Control hybridizations demonstrated significantly higher signal when probes and targets shared >95% sequence identity. Diagnostic sensitivity and specificity of the assay was 95 and 99%, respectively. Cluster analysis showed close matches for replicate experiments with a high correlation between replicates (r = 0.91) compared with the correlation for nonreplicates (r = 0.09). Analysis of hybridization data from 43 plasmids generated five distinct clusters, two for known serovar-specific plasmids, one for enterohemorrhagic E. coli plasmids, and two for plasmids harboring a recently disseminated antibiotic resistance gene (bla(CMY-2)). CONCLUSION: Mixed-plasmid microarrays are suitable for comparing genetic content of wild-type plasmids and hybridization results from this study suggest several novel hypotheses about plasmid gene exchange between E. coli and S. enterica. SIGNIFICANCE AND IMPACT OF STUDY: Mixed-plasmid microarrays permit rapid, low cost analysis and comparison of many plasmids. This ability is critical to understanding the source, fate, and transport of plasmids amongst commensal and pathogenic bacteria.  相似文献   

12.
13.
DNA microarrays have been widely used in gene expression analysis of biological processes. Due to a lack of sequence information, the applications have been largely restricted to humans and a few model organisms. Presented within this study are results of the cross-species hybridization with Affymetrix human high-density oligonucleotide arrays or GeneChip® using distantly related mammalian species; cattle, pig and dog. Based on the unique feature of the Affymetrix GeneChip® where every gene is represented by multiple probes, we hypothesized that sequence conservation within mammals is high enough to generate sufficient signals from some of the probes for expression analysis. We demonstrated that while overall hybridization signals are low for cross-species hybridization, a few probes of most genes still generated signals equivalent to the same-species hybridization. By masking the poorly hybridized probes electronically, the remaining probes provided reliable data for gene expression analysis. We developed an algorithm to select the reliable probes for analysis utilizing the match/mismatch feature of GeneChip®. When comparing gene expression between two tissues using the selected probes, we found a linear correlation between the cross-species and same-species hybridization. In addition, we validated cross-species hybridization results by quantitative PCR using randomly selected genes. The method shown herein could be applied to both plant and animal research.  相似文献   

14.
应用限制性显示技术制备HCV cDNA诊断基因芯片的初步研究   总被引:4,自引:0,他引:4  
制备丙型肝炎病毒 (HCV)检测芯片并进行验证、初步检测质量评价。采用限制性显示 (Restrictiondisplay ,RD)技术制备芯片探针 ,从载体pCV_J4L6S中切出HCV全长cDNA ,Sau3AⅠ酶消化 ,所得的限制性片段进行RD_PCR扩增 ,经聚丙烯酰胺电泳 (PAGE)结合银染法进行分离。切胶回收后作 3次PCR ,得到较纯净的HCVcDNA限制性片段。扩增后的产物克隆至pMD18_T载体进行快速鉴定。将筛选出的限制性片段打印在氨基修饰的玻片上制备成检测芯片进行杂交验证分析 ,对芯片检测进行优化、初步的质量评估。运用RD技术 ,得到 2 4个 2 0 0~ 80 0bp、大小均一的基因片段 ,序列分析表明 ,均属于HCV特异基因 ,可以作为诊断芯片探针 ;杂交、测序结果显示 ,芯片检测的敏感性、特异性、准确度、重复性、线性等指标均佳。利用RD技术制备基因芯片探针是一种快速、简便的实用方法 ;制备的诊断芯片可以用于检测HCVRNA ,具有敏感、检测结果较为可靠的优点。  相似文献   

15.
A single Bacillus thuringiensis strain can harbor numerous different insecticidal crystal protein (cry) genes from 46 known classes or primary ranks. The cry1 primary rank is the best known and contains the highest number of cry genes which currently totals over 130. We have designed an oligonucleotide-based DNA microarray (cryArray) to test the feasibility of using microarrays to identify the cry gene content of B. thuringiensis strains. Specific 50-mer oligonucleotide probes representing the cry1 primary and tertiary ranks were designed based on multiple cry gene sequence alignments. To minimize false-positive results, a consentaneous approach was adopted in which multiple probes against a specific gene must unanimously produce positive hybridization signals to confirm the presence of a particular gene. In order to validate the cryArray, several well-characterized B. thuringiensis strains including isolates from a Mexican strain collection were tested. With few exceptions, our probes performed in agreement with known or PCR-validated results. In one case, hybridization of primary- but not tertiary-ranked cry1I probes indicated the presence of a novel cry1I gene. Amplification and partial sequencing of the cry1I gene in strains IB360 and IB429 revealed the presence of a cry1Ia gene variant. Since a single microarray hybridization can replace hundreds of individual PCRs, DNA microarrays should become an excellent tool for the fast screening of new B. thuringiensis isolates presenting interesting insecticidal activity.  相似文献   

16.
17.
制备丙型肝炎病毒(HCV) 1b亚型诊断芯片并进行初步验证评价.采用cDNA文库法制备探针,用限制性内切酶Sau3AⅠ消化HCV 1b全长cDNA ,所得的酶切片段72℃补平加A ,AT克隆,PCR初步鉴定,并测序.将筛选出的片段打印在氨基修饰的玻片上制备成检测芯片并进行杂交验证分析.运用cDNA文库法,得到2 2个大小相对一致(2 5 0~75 0bp)的基因片段.序列分析表明,均属于HCV 1b基因,可以作为诊断芯片探针;样品标记采用限制性显示(restrictiondisplay ,RD)技术,标记后进行杂交.杂交结果显示,样品和诊断基因芯片杂交的敏感性和特异性均佳.批内和批间精密度CV值分别为5 4 %和6 8% ,表明用cDNA文库法收集片段是一种快速、简便制备芯片探针的实用方法.  相似文献   

18.
DNA microarrays have been widely adopted by the scientific community for a variety of applications. To improve the performance of microarrays there is a need for a fundamental understanding of the interplay between the various factors that affect microarray sensitivity and specificity. We use lattice Monte Carlo simulations to study the thermodynamics and kinetics of hybridization of single-stranded target genes in solution with complementary probe DNA molecules immobilized on a microarray surface. The target molecules in our system contain 48 segments and the probes tethered on a hard surface contain 8-24 segments. The segments on the probe and target are distinct and each segment represents a sequence of nucleotides ( approximately 11 nucleotides). Each probe segment interacts exclusively with its unique complementary target segment with a single hybridization energy; all other interactions are zero. We examine how the probe length, temperature, or hybridization energy, and the stretch along the target that the probe segments complement, affect the extent of hybridization. For systems containing single probe and single target molecules, we observe that as the probe length increases, the probability of binding all probe segments to the target decreases, implying that the specificity decreases. We observe that probes 12-16 segments ( approximately 132-176 nucleotides) long gave the highest specificity and sensitivity. This agrees with the experimental results obtained by another research group, who found an optimal probe length of 150 nucleotides. As the hybridization energy increases, the longer probes are able to bind all their segments to the target, thus improving their specificity. The hybridization kinetics reveals that the segments at the ends of the probe are most likely to start the hybridization. The segments toward the center of the probe remain bound to the target for a longer time than the segments at the ends of the probe.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号