首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
宋海燕  刘再群  郑磊 《四川动物》2012,31(2):232-235,239,337
采用普通染色及免疫组化SABC染色法研究皖西白鹅小脑皮质的发育和多巴胺受体1(DRD1)阳性细胞在其发育中的表达.结果表明,小脑皮质在胚龄13 d(E13)由外向内分为外颗粒层(EGL)、浦肯野细胞层(PCL)和内颗粒层(IGL),E19由外向内分为EGL、分子层(ML)、PCL和IGL.随发育天数的增加,EGL的厚度和细胞层次呈先升后降的变化趋势,细胞密度逐渐下降;ML厚度逐渐增大,在E24到E28时增值最大;浦肯野细胞(PC)在E13、E19、E24和E28时随胚龄增大逐渐增大,在E28后趋于稳定,细胞密度随着发育天数的增加逐渐下降,在小脑皮质发育中还发现有一部分PC呈多层排列,且细胞层次逐渐变少;IGL厚度呈先升后降的变化趋势,细胞密度呈上升趋势.外颗粒层和内颗粒层在E13、E19、E24和E28时有DRD1阳性细胞表达,分子层在E24、E28、日龄7 d(P7)和15d(P15)有阳性细胞表达,PC在所检测的6个时段均有阳性表达.研究表明,小脑皮质的发育主要与细胞增殖、迁移和凋亡有关,外颗粒层的逐渐消失是以细胞迁移和凋亡为主,多层PC逐渐退化成单层是与细胞凋亡和正常突触联系的建立有关;DRD1在皖西白鹅小脑皮质发育中对外颗粒层细胞和PC起着重要作用.  相似文献   

2.
The generation cycle of germinative cells (external matrix cells) in the external granular layer of the cerebellar cortex of the 10-to 11-day-old mouse was studied by radioautography following repeated injections of H3-thymidine. The generation time is 19 hr, presynthetic time 8.5 hr, DNA-synthetic time 8 hr, postsynthetic time 2 hr, and mitotic time 0.5 hr. These proliferating cells occupy the outer half of the external granular layer and make up the external matrix layer. Neuroblasts are differentiated from the external matrix cell, migrate out from the layer and accumulate in the inner half of the external granular layer to form the external mantle layer. The transit time of the neuroblasts in the external mantle layer is 28 hr. Thereafter, they migrate farther into the molecular layer and the internal granular layer. By means of long-term cumulative labeling, the rate of daily production of neuroblasts from the external matrix cell is studied in quantitative terms. It becomes clear that the entire population of the inner granule neurons arises postnatally in the external granular layer between 1 and 18 days of age and that 95% of them is produced between postnatal days 4 and 15. Finally, the fate of the cells in the external granular layer at its terminal stage was studied by marking the cells with H3-thymidine during 15–16 days of life and following their subsequent migration and developmental changes up to 21 days of life. Comparison of radioautographs taken before and after the migration disclosed that the external matrix cells give rise to a small number of neuroglia cells. This finding revealed their multipotential nature.  相似文献   

3.
The external granular layer is a secondary proliferative zone that arises from the caudolateral margin of the cerebellar ventricular zone and then spreads beneath the pial surface, eventually covering the entire cerebellar anlage. Here, both a part of the Bergmann glia and granule cells are generated. Selective destruction of the leptomeningeal cell layer during development in vivo disrupts the subpial extension of the external granular layer and the laminar deposition of its descendant cells. The mechanisms by which meningeal fibroblasts exert their controlling influence on cortical development have remained unclear but could involve diffusible factors and/or interactions mediated by direct cellular contacts. In order to test these assumptions, we have co-cultivated cerebellar slice explants with meningeal cells with and without interposition of a microfilter barrier. In this setup, meningeal cells by a diffusible factor stimulated the emigration of immature neurons exclusively from the external granular layer. This effect could also be elicited by fibroblasts from other tissues but not by nonfibroblastic cells such as, e.g., astroglia. In the Boyden chamber assay, the migration of undifferentiated neurons isolated from the external granular layer was chemotactically oriented towards the source of meningeal cell-conditioned media. In comparison, neurons from the internal granular layer did not respond to this stimulus. The attraction of immature neurons towards the pial surface could (1) represent a mechanism for the establishment of (subpial) secondary proliferative zones and (2) hypothetically also play a role in the outward-directed migration of postmitotic cells, e.g., in the isocortical anlage.  相似文献   

4.
The primate cochlear nuclear complex exhibits several characteristic morphological differences in the various primate families from Lorisidae through Hominidae. The most striking differences occur in the organization of the dorsal cochlear nucleus in which the laminar pattern becomes progressively obscured. Granule cells form an external granular layer as well as being intermixed within the molecular and pyramidal layers in slow lorises and squirrel and rhesus monkeys. Whereas a prominent external granular layer remains in chimpanzees, granule cells are scant in other portions of the nucleus. Human adults lack an external granular layer. A small number of granule cells occur but with inconstant distribution. Primates lack the linear array of pyramidal cells oriented perpendicularly to the epithelial surface as seen in cats. The granule cell layer exhibits similar regression in development of the human cochlear complex. The external granular layer is prominent in the fetus but rapidly decreases in size after birth. It achieves its adult form prior to 18 months. The data suggest that neuronal attrition, or programmed cell death, may be the major mechanism accounting for the alterations that occur in the human granule cell layer. Other differences in cytoarchitecture, within the great apes and humans, include decreases in the small and giant cell populations of the cochlear complex. These changes, in consort with the organizational changes and reduction of granule cells as noted above, suggest a trend towards reduced intranuclear integration at the level of the cochlear nucleus coupled with encephalization of the auditory system.  相似文献   

5.
The major histogenetic events of the rat cerebellum take place in the early postnatal days. During this period, precursors of microneurons, such as granule cells, form the external granular layer (EGL), extend over the surface of the primordial cerebellum, and actively proliferate. Postmitotic granule cells leave the EOL and migrate to the internal granular layer (IGL). On the other hand, guided by radial glial fibers, immature Purkinje cells migrate from the ventricular zone of the fourth ventricle and settle in the Purkinje cell plate with thickness of several cells. Various cell adhesion molecules are involved in the interaction between the migratory immature Purkinje cells and processes of the radial glia as the basis for contact guidance. The second process is the formation of immature Purkinje cells to the monolayer. This process takes place at the first week after birth of the rat and cell adhesion molecules such as neural cell adhesion molecule (NCAM), fibronectin, tenascin and Reelin are also suggested to play an important role for the cell patterning. When rat fetuses are exposed to X-radiation in the last gestation period, abnormal foliation of the cerebellum develops with ectopic Purkinje cells. The molecular mechanism that contributes to abnormal migration of Purkinje cells and foliar malformation induced by X-irradiation in the cerebellum are not yet clear. This study was undertaken to elucidate the mechanisms of ectopic Purkinje cell formation by examining the expression of cell adhesion molecules.  相似文献   

6.
Abstract— Rat pups were reared in litters of 20 and litters of 6 to study effects of malnutrition on cerebellar development. Cell production and cell content were determined by assaying for DNA, as a measure of cell number, and RNA and protein, as indicators of cell constituents. By comparing DNA contents at 3, 4, 8, 11, 14, 17, 21, and 28 days after birth, we concluded that (a) there is little nutritional reserve at birth since significant differences appear by day 4, (b) most relative differences between groups appeared by day 8, with absolute differences increasing to day 21, and (c) there is partial recovery of cell number and cell constituents in the malnourished rats between 21 and 28 days.
Areal measurements of histological preparations showed that malnutrition resulted in less total area in cerebellar midsagittal sections at days 8, 11. and 14. In malnourished animals, the germinal matrix area of the cerebellum, the external granular layer, was smaller on the 8th postnatal day, the same on the eleventh day, and larger on the fourteenth day when compared with that of well fed animals. At all three ages alterations could be discerned in the distribution of cells between the mitotic external mantle and nonmitotic internal matrix portions of the external granular layer.
Further studies involving exchanging animals between large and small litters at various ages indicated that the time around days 4 to 8 is most sensitive to malnutrition. The results suggest a process in which malnutrition exerts its maximum effect by a slowing of cell production in the external granular layer in the initial exponential growth phase. It is likely that an adaptation occurs immediately in the external granular layer which subsequently permits a partial recovery of cerebellar growth between days 21 and 28.  相似文献   

7.
A rapid growth in human cerebellar development occurs in the third trimester, which is impeded by preterm delivery. The goal of this study was to characterize the impact of preterm delivery on the developmental program of the human cerebellum. Still born infants, which meant that all development up to that age had taken place in-utero, were age paired with preterm delivery infants, who had survived in an ex-utero environment, which meant that their development had also taken place outside the uterus. The two groups were assessed on quantitative measures that included molecular markers of granule neuron, purkinje neuron and bergmann glia differentiation, as well as the expression of the sonic hedgehog signaling pathway, that is important for cerebellar growth. We report that premature birth and development in an ex-utero environment leads to a significant decrease in the thickness and an increase in the packing density of the cells within the external granular layer and the inner granular layer well, as a reduction in the density of bergmann glial fibres. In addition, this also leads to a reduced expression of sonic hedgehog in the purkinje layer. We conclude that the developmental program of the cerebellum is specifically modified by events that follow preterm delivery.  相似文献   

8.
The rate of cerebellar granule cell migration is altered by neonatal hypo- and hyperthyroidism in a manner similar to previously reported effects on the growth of granule cell axons, the parallel fibers, suggesting that the two processes may be intimately linked. Altered rates of granule cell acquisition in these experimental animals reflect changes in germinal cell proliferation in the external granular layer (EGL), movement of postmitotic cells within the EGL, as well as the rate and time course of granule cell migration. Results of this study support the hypothesis that granule cells migrate to the internal granular layer by translocation of the cell body through the descending portion of the growing parallel fiber, rather than by amoeboid-like migration of the perikaryon trailing the elongating parallel fiber behind.  相似文献   

9.
We have correlated the times of appearance of the neural cell adhesion molecule (N-CAM), the neuron-glia cell adhesion molecule (Ng-CAM), and the extracellular matrix protein, cytotactin, during the development of the chicken cerebellar cortex, and have shown that these molecules make different functional contributions to granule cell migration. Immunofluorescent staining showed distinct spatiotemporal expression sequences for each adhesion molecule. N-CAM was present at all times in all layers. However, the large cytoplasmic domain polypeptide of N-CAM was always absent from the external granular layer and was enriched in the molecular layer as development proceeded. Ng-CAM began to be expressed in the premigratory granule cells just before migration and later disappeared from cell bodies but remained on parallel fibers. Cytotactin, which is synthesized by glia and not by neurons, appeared first in a speckled pattern within the external granular layer and later appeared in a continuous pattern along the Bergmann glia; it was also enriched in the molecular layer. After we established their order of appearance, we tested the separate functions of these adhesion molecules in granule cell migration by adding specific antibodies against each molecule to cerebellar explant cultures that had been labeled with tritiated thymidine and then measuring the differential distribution of labeled cells in the forming layers. Anti-N-CAM showed marginal effects. In contrast, anti-Ng-CAM arrested most cells in the external granular layer, while anti-cytotactin arrested most cells in the molecular layer. Time course analyses combined with sequential addition of different antibodies in different orders showed that anti-Ng-CAM had a major effect in the early period (first 36 h in culture) and a lesser effect in the second part of the culture period, while anti-cytotactin had essentially no effect at the earlier time but had major effects at a later period (18-72 h in culture). The two major stages of cerebellar granule cell migration thus appear to be differentially affected by distinct adhesion molecules of different cellular origins, binding mechanisms, and overall distributions. The results indicated that local cell surface modulation of adhesion molecules of different specificities at defined stages and sites is essential to the formation of cerebellar cortical layers.  相似文献   

10.
Differential neuronal loss following early postnatal alcohol exposure   总被引:5,自引:0,他引:5  
Neonatal rats were exposed to 6.6 g/kg of alcohol each day between postnatal days 4 and 10 while artificial-rearing procedures were used, in a manner which produced high peak and low trough blood alcohol concentrations each day. Gastrostomy controls were reared artificially with maltose/dextrin isocalorically substituted for alcohol in the milk formula, and suckle controls were reared normally by dams. The pups were sacrificed on day 10 and tissue sections (2 microns thick) were obtained in the sagittal plane through the cerebellum and in the horizontal plane through the hippocampal formation. Overall area measures were obtained for the hippocampus proper, area dentata, and cerebellum, along with areas of the cell layers of these regions. In the hippocampal formation, cell counts were made of the pyramidal cells of the hippocampus proper, the multiple cell types of the hilus, and the granule cells of the area dentata. In the cerebellum, cell counts of Purkinje cells, granule cells of the granular layer, granule cells of the external granular layer, and mitotic cells of the external granular layer were obtained from lobules I, V, VII, VIII, and IX. Alcohol selectively reduced areas and neuronal numbers in the cerebellum but had no significant effects on neuronal numbers in the hippocampal formation. Purkinje cells exhibited the greatest percent reductions, and cerebellar granule cells were significantly reduced in the granular layer but not in the external granular layer. All lobules showed these effects, but lobule I was significantly more affected than the other four lobules that were analyzed. The results demonstrate the differential vulnerability of selected neuronal populations to the developmental toxicity of alcohol exposure during the brain growth spurt.  相似文献   

11.
The major anatomical divisions of the cerebellum of the European eel, i.e., corpus cerebelli, lobus vestibulolateralis, and valvula, were studied morphologically and morphometrically. There were differences in cerebellar cytoarchitecture and gross morphology in two stages of the eel life cycle, the trophic stage (yellow eel), and the reproductive stage (silver eel), which are characterized by different degrees of swimming activity. The principal differences between silver and yellow eels in the cytoarchitecture of the corpus cerebelli and the lobus vestibulolateralis were in distribution of Purkinje or Purkinje-like cells in the molecular layer, which is wider in silver eels, in part because of a decreased thickness of the granular cell layer. In the silver eel, the scattering of Purkinje cells was more evident in the lobus vestibulolateralis where the molecular layer is also thicker. The data indicate the transition from the yellow eel to the silver eel is characterized by a migration of granule cells from the ganglionic cell layer to the internal granular layer and by a further development of molecular layer components, e.g., parallel fibers, Purkinje-cell dendrites, etc. In contrast, the thickness of the granular layer and of the Purkinje cell layer, limited to the lower part of the valvula, decreased. There is also a slight increase of cerebellar volume in the silver eel. The volume of the lobus vestibulolateralis was constant. Hypertrophy of the valvula and eminentiae granulares is observed and is due to the migration of cells from the granular layer of the corpus cerebelli whose volume slightly decreases. Perhaps the lobus vestibulolateralis also contributes to the increased volume of eminentiae granulares. Our findings suggest that the cerebellum continues to develop during the passage from the trophic to the reproductive stage of the eel. The appearance of new afferents from the lateral line which becomes more visible in the silver eel probably completes cerebellar ontogeny.  相似文献   

12.
为了解小熊猫(Ailurus fulgens)小脑皮层的结构特征,观察神经丝蛋白抗体RT-97、角质细胞生长因子(KGF)及Bax蛋白在小脑皮层中的表达,利用组织学方法和免疫组织化学方法观察了小熊猫小脑皮层的显微结构,检测了RT-97、KGF和Bax蛋白的表达.结果表明,小脑皮层从外向内依次可分为分子层、Purkinje细胞层、颗粒层3层.RT-97在小熊猫小脑皮层Purkinje细胞层、颗粒层中神经细胞的轴突、分子层中颗粒细胞的轴突及小脑髓质中有阳性表达;KGF在小脑皮层分子层、Purkinje细胞层和颗粒细胞层及髓质中均有阳性表达;Bax蛋白在小脑皮层分子层、Purkinje细胞层和颗粒细胞层中有阳性表达.RT-97、KGF和Bax蛋白在小脑皮层神经结构的构筑中可能发挥着不同的功能.  相似文献   

13.
Epidermis micromorphology of in situ Erica arborea L. exposed for generations to long-term effect of volcanic gases in Pisciarelli and Solfatara di Pozzuoli areas have been studied by X-ray analyses, SEM and TEM observations. In particular, the aim of this study is to investigate the effects of volcanic gases on extant and possibly fossil plants. Plants of the same species living in a nearby control site were also studied for comparison. SEM coupled with EDX analysis was used to localize different elements within the leaves (mesophyll, cell wall and cuticle). After conventional and cryo preparation, SEM of mature leaves ascertained that the abaxial side is more serrate in fumigated leaves and hairs, epicuticular wax alterations have also been noted. Leaves experiencing chronic fumigation display stomata more sunken with respect to the epidermal surface. TEM of transverse and longitudinal sections of cuticle showed an outer A2 granular amorphous layer and external to a B1 fibrillous layer. Significant statistical variations of ultrastructural components of the cuticle revealed a response of E. arborea to this extreme environment. At the ultrastructural level, significant variations in thickness of the cell wall plus cuticle, cell wall and A2 layer among fumigated and non-fumigated leaves have been found. In the studied localities a positive correlation between atmospheric CO2 concentration and the thickness of A2 layer also exists. The results are of interest being applicable in the understanding of plant cuticle responses during periods of normal vs. volcanic activity.  相似文献   

14.
Information processing of the cerebellar granular layer composed of granule and Golgi cells is regarded as an important first step toward the cerebellar computation. Our previous theoretical studies have shown that granule cells can exhibit random alternation between burst and silent modes, which provides a basis of population representation of the passage-of-time (POT) from the onset of external input stimuli. On the other hand, another computational study has reported that granule cells can exhibit synchronized oscillation of activity, as consistent with observed oscillation in local field potential recorded from the granular layer while animals keep still. Here we have a question of whether an identical network model can explain these distinct dynamics. In the present study, we carried out computer simulations based on a spiking network model of the granular layer varying two parameters: the strength of a current injected to granule cells and the concentration of Mg2+ which controls the conductance of NMDA channels assumed on the Golgi cell dendrites. The simulations showed that cells in the granular layer can switch activity states between synchronized oscillation and random burst-silent alternation depending on the two parameters. For higher Mg2+ concentration and a weaker injected current, granule and Golgi cells elicited spikes synchronously (synchronized oscillation state). In contrast, for lower Mg2+ concentration and a stronger injected current, those cells showed the random burst-silent alternation (POT-representing state). It is suggested that NMDA channels on the Golgi cell dendrites play an important role for determining how the granular layer works in response to external input.  相似文献   

15.
Cellular and molecular mechanisms of cerebellar granule cell migration   总被引:9,自引:0,他引:9  
The real-time observation of cell movement in brain slice preparations reveals that in the developing brain, postmitotic neurons alter their shape concomitantly with changes in the mode, direction, tempo, and rate of migration as they traverse different cortical layers. Although it has been hypothesized that orchestrated activities of multiple external cues and cell-cell contact are essential for controlling the cortical-layer-specific changes in cell migration, signaling mechanisms and external guidance cues related to the alteration of neuronal cell migration remain to be determined. In this article, we will first review recent studies on position-specific changes in granule cell behavior through different migratory terrains of the developing cerebellar cortex. We will then present possible roles for the coordinated activity of Ca2+ channels, NMDA type of glutamate receptors, and intracellular Ca2+ fluctuations in controlling cerebellar granule cell movement. Furthermore, we will discuss the crucial roles of brain-derived neurotrophic factor (BDNF), neuregulin (NRG), stromal cell-derived factor 1alpha (SDF-1alpha), ephrin-B2, and EphB2 receptor in providing directional cues promoting granule cell migration from the external granular layer (EGL) to the internal granular layer (IGL). Finally, we will demonstrate that endogenous somatostatin controls the migration of granule cells in a cortical layer-specific manner: Endogenous somatostatin accelerates granule cell movement near the birthplace within the EGL, but significantly slows down the movement near their final destination within the IGL.  相似文献   

16.
A Helmholtz resonance technique was employed to predict the airflow resistance of layers of granular materials, namely glass beads, brown rice, soybean, adzuki beans, and corn kernels. Each granular sample was placed on the tube mouth of an open-type Helmholtz resonator. The resonant frequency was determined by measuring the electric impedance of a loudspeaker that was installed in the resonator and driven by a chirp signal linearly sweeping from 90 to 220 Hz for 6.0 s. For a changing sample layer thickness, the resonant frequency was measured, and the specific airflow resistance was calculated by measuring the static pressure drop required for N2 gas to flow through the layer at a constant velocity of 0.042 m/s. When the thickness of the layer was fixed, the Helmholtz resonant frequency decreased as the specific airflow resistance increased, regardless of the kind of granular material.  相似文献   

17.
Nucleotide sequence analysis of two rat alpha-tubulin cDNA clones showed a marked divergence in their 3'-untranslated regions. However, each of the alpha-tubulin isotypes shows a high interspecies homology in this region, when compared with an isotubulin sequence from human and Chinese hamster. In situ hybridization of rat cerebellum with alpha-tubulin cDNA revealed differential expression in various cell layers. The mitotically active cells in the external granular layer show the highest level of alpha-tubulin mRNA, while lower levels are observed in the migrating cells in the molecular layer and in the differentiating cells in the internal granular layer. Very low levels of the mRNA are observed in the prenatally differentiated Purkinje cells.  相似文献   

18.
During postnatal development, immature granule cells (excitatory interneurons) exhibit tangential migration in the external granular layer, and then radial migration in the molecular layer and the Purkinje cell layer to reach the internal granular layer of the cerebellar cortex. Default in migratory processes induces either cell death or misplacement of the neurons, leading to deficits in diverse cerebellar functions. Centripetal granule cell migration involves several mechanisms, such as chemotaxis and extracellular matrix degradation, to guide the cells towards their final position, but the factors that regulate cell migration in each cortical layer are only partially known. In our method, acute cerebellar slices are prepared from P10 rats, granule cells are labeled with a fluorescent cytoplasmic marker and tissues are cultured on membrane inserts from 4 to 10 hr before starting real-time monitoring of cell migration by confocal macroscopy at 37 °C in the presence of CO2. During their migration in the different cortical layers of the cerebellum, granule cells can be exposed to neuropeptide agonists or antagonists, protease inhibitors, blockers of intracellular effectors or even toxic substances such as alcohol or methylmercury to investigate their possible role in the regulation of neuronal migration.  相似文献   

19.
Using an affinity purified antibody raised against the RI-H fragment of rat intestinal lectin L-36, the latter protein has been identified within the esophageal epithelium by means of ultracryotomy followed by immunogold labeling. The epithelium consists of 4 morphologically distinct cell-types, namely, the basal, spiny, granular and squamous cells, and each of these exhibits a different immunolabeling pattern. The basal cells form a layer on the basal lamina, and in these a diffuse cytoplasmic staining is observed. This basal cell layer is overlaid by spiny cells that extend many cell processes into wide intercellular spaces. In these cells, immunogold particles are found only on small granular inclusions consisting of an electron-lucent homogeneous substance. The granular cells from a third layer over the spiny cells, and are characterized by a number of large granular inclusions with an electron-dense core rimmed by a less electron-dense substance. Immunogold labeling is found on these granules, both on the core and peripheral region. Squamous cell-types constitute the most superficial layer of the epithelium. They are without granular inclusions, and immunogold labeling is confined to the cytoplasmic surface of the thickened plasma membrane. These findings suggest that L-36 is produced in the basal cells as free cytosolic protein, then becomes progressively aggregated into the granular inclusions of the spiny and granular cells, and is eventually transferred onto the cytoplasmic surface of the squamous cell plasma membrane where it may interact with complementary glycoconjugate(s) located at this site. The membrane lining substance thus formed may play a role in stabilizing the squamous cell membranes, thereby maintaining the structural integrity of the epithelium against mechanical stress coming from the esophageal lumen.  相似文献   

20.
Summary In the developing cerebellum of the neonate rats membranefusions and cytoplasmic bridges between cells were observed. These membrane-fusions were characterized by the presence of loops of membrane and cytoplasmic bridges between the two limits of the membrane-fusions. They were found between Purkinje cells, Purkinje cells and the migratory cells, mitotically potent cells of the external granular layer, and differentiating granule cells of the internal granular layer. The membrane-fusions were found to be a transient developmental phenomenon. Issues pertaining to the universality of membrane-fusions, their significance in the induction for cell differentiation, and the problem of fixation artifacts are discussed.This research was supported by N.I.H. Research Grants No. NS-08817 and CA-14650. Assistance of Mrs. Kunda Das in various aspects of electron microscopy is gratefully acknowledged  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号