首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Deep-ocean hydrothermal-vent environments are rich in heavy metals and metalloids and present excellent sites for the isolation of metal-resistant microorganisms. Both metalloid-oxide-resistant and metalloid-oxide-reducing bacteria were found. Tellurite- and selenite-reducing strains were isolated in high numbers from ocean water near hydrothermal vents, bacterial films, and sulfide-rich rocks. Growth of these isolates in media containing K(2)TeO(3) or Na(2)SeO(3) resulted in the accumulation of metallic tellurium or selenium. The MIC of K(2)TeO(3) ranged from 1,500 to greater than 2,500 micro g/ml, and the MIC of Na(2)SeO(3) ranged from 6,000 to greater than 7,000 micro g/ml for 10 strains. Phylogenetic analysis of 4 of these 10 strains revealed that they form a branch closely related to members of the genus Pseudoalteromonas, within the gamma-3 subclass of the Proteobacteria. All 10 strains were found to be salt tolerant, pH tolerant, and thermotolerant. The metalloid resistance and morphological, physiological, and phylogenetic characteristics of newly isolated strains are described.  相似文献   

2.
A thermophilic bacterium Bacillus stearothermophilus IFO 12550 (ATCC 12980) was transformed with each of the following plasmids, pUB110 (kanamycin resistance, Kmr), pTB19 (Kmr and tetracycline resistance [Tcr]), and its derivative pTB90 (Kmr Tcr), by the protoplast procedure in the presence of polyethylene glycol at 48 degrees C. The transformation frequencies per regenerant for pUB110, pTB19, and pTB90 were 5.9 x 10(-3), 5.5 x 10(-3), and 2.0 x 10(-1), respectively. Among these plasmids, pTB90 was newly derived, and the restriction endonuclease cleavage map was constructed. When tetracycline (5 micrograms/ml) was added into the culture medium, the copy number of pTB90 in B. stearothermophilus was about fourfold higher than that when kanamycin (5 micrograms/ml) was added instead of tetracycline. Bacillus subtilis could also be transformed with the plasmids extracted from B. stearothermophilus and vice versa. Accordingly, pUB110, pTB19, and pTB90 served as shuttle vectors between B. stearothermophilus and B. subtilis. The requirements for replication of pTB19 in B. subtilis and B. stearothermophilus appear to be different, because some deletion plasmids (pTB51, pTB52, and pTB53) derived from pTB19 could replicate only in B. subtilis, whereas another deletion plasmid pTB92 could replicate solely in B. stearothermophilus. Plasmids pTB19 and pTB90 could be maintained and expressed in B. stearothermophilus up to 65 degrees C, whereas the expression of pUB110 in the same strain was up to 55 degrees C.  相似文献   

3.
Klebsiella pneumoniae and Escherichia coli respond inversely toward P1 bacteriophage or TeO3(-2). Klebsiella pneumoniae is resistant to both antagonists and E. coli is sensitive. However, P1 cmts lysogens (P1 cmts resistant) of K. pneumoniae became sensitive to tellurite and when cured from P1 cmts regained resistance. Escherichia coli spontaneous mutants selected for resistance to either P1 or TeO3(-2) were collaterally resistant to the other. As well, TeO3(-3) enhanced the adsorption of P1 vir to both E. coli and K. pneumoniae. Several outer membrane proteins were enhanced in the K. pneumoniae lysogens and were reduced in E. coli lysogens; one of which was the same molecular weight (77 000) in both bacteria. When partially purified it enhanced the plaque efficiency of P1 vir. Lipopolysaccharide (LPS) from E. coli C600 inactivated P1 vir, but neither the P1 lysogens nor LPS derived from the lysogens inactivated P1 vir. Escherichia coli P1 lysogens produced only heptose-deficient LPS. It is suggested that both LPS and outer membrane protein(s) comprise the P1 receptor. TeO3(-2) may interact with one or both components.  相似文献   

4.
J A Bercovich  S Grinstein  J Zorzopulos 《BioTechniques》1992,12(2):190, 192-190, 193
We describe conditions for optimal recovery of recombinant plasmids after blunt-end ligation. It was found that one of the most critical parameters of the blunt-end ligation reaction is total DNA concentration (vector plus incoming DNA). This concentration was optimal in the range of 1-5 micrograms/ml of reaction mixture. Concentrations larger than 10 micrograms/ml result in strong inhibition. The optimal molar relationship between incoming DNA and vector was found to be 1 or less. Under these conditions, using dephosphorylated vector, recombinants are generated at a frequency of 10(6) colonies per microgram of insert, provided that transforming efficiency is about 5 x 10(7) colonies per microgram of plasmid DNA.  相似文献   

5.
A methicillin-susceptible, novobiocin-resistant strain of Staphylococcus aureus (RN2677; methicillin MIC, 0.8 micrograms/ml) was transformed with DNA prepared from highly and homogeneously methicillin-resistant S. aureus strains (methicillin MIC, greater than or equal to 400 micrograms/ml) or from heterogeneous strains in which the majority of cells had a low level of resistance (methicillin MIC, 6.3 micrograms/ml). All methicillin-resistant transformants showed low and heterogeneous resistance (methicillin MIC, 3.1 micrograms/ml) irrespective of the resistance level of DNA donors. All transformants examined produced normal amounts of the low-affinity penicillin-binding protein (PBP) 2a, and methicillin resistance and the capacity to produce PBP 2a showed the same degree of genetic linkage to the novobiocin resistance marker with both homogeneous and heterogeneous DNA donors. Next, we isolated a methicillin-susceptible mutant from a highly and homogeneously resistant strain which had a Tn551 insertion near or within the PBP 2a gene and thus did not produce PBP 2a. With this mutant used as the recipient, genetic transformation of the methicillin resistance gene was repeated with DNA isolated either from highly and homogeneously resistant strains or from heterogeneous (low-resistance) strains. All transformants obtained expressed high and homogeneous resistance and produced PBP 2a irrespective of the resistance level of the DNA donors. Our findings suggest that (i) the methicillin resistance locus is identical to the structural gene for PBP 2a, (ii) although the ability to produce PBP 2a is essential for resistance, the MICs for the majority of cells are not related to the cellular concentration of PBP 2a, and (iii) high MICs and homogeneous expression of resistance require the products of other distinct genetic elements as well.  相似文献   

6.
The Escherichia coli chromosomal determinant for tellurite resistance consists of two genes (tehA and tehB) which, when expressed on a multicopy plasmid, confer resistance to K(2)TeO(3) at 128 microg/ml, compared to the MIC of 2 microg/ml for the wild type. TehB is a cytoplasmic protein which possesses three conserved motifs (I, II, and III) found in S-adenosyl-L-methionine (SAM)-dependent non-nucleic acid methyltransferases. Replacement of the conserved aspartate residue in motif I by asparagine or alanine, or of the conserved phenylalanine in motif II by tyrosine or alanine, decreased resistance to background levels. Our results are consistent with motifs I and II in TehB being involved in SAM binding. Additionally, conformational changes in TehB are observed upon binding of both tellurite and SAM. The hydrodynamic radius of TehB measured by dynamic light scattering showed a approximately 20% decrease upon binding of both tellurite and SAM. These data suggest that TehB utilizes a methyltransferase activity in the detoxification of tellurite.  相似文献   

7.
During 4 hr after puromycin (PUR: 20 micrograms/ml) treatment, the synthesis of three major heat shock protein families (HSPs: Mr = 110,000, 87,000, and 70,000) was enhanced 1.5-fold relative to that of untreated cells, as studied by one-dimensional gel electrophoresis. The increase of unique HSPs, if studied with two-dimensional gels, would probably be much greater. In parallel, thermotolerance was observed at 10(-3) isosurvival as a thermotolerance ratio (TTR) of either 2 or greater than 5 after heating at either 45.5 degrees C or 43 degrees C, respectively. However, thermotolerance was induced by only intermediate concentrations (3-30 micrograms/ml) of puromycin that inhibited protein synthesis by 15-80%; a high concentration of PUR (100 micrograms/ml) that inhibited protein synthesis by 95% did not induce either HSPs or thermotolerance. Also, thermotolerance was never induced by any concentration (0.01-10 micrograms/ml) of cycloheximide that inhibited protein synthesis by 5-94%. Furthermore, after PUR (20 micrograms/ml) treatment, the addition of cycloheximide (CHM: 10 micrograms/ml), at a concentration that reduces protein synthesis by 94%, inhibited both thermotolerance and synthesis of HSP families. Thus, thermotolerance induced by intermediate concentrations of PUR correlated with an increase in newly synthesized HSP families. This thermotolerance phenomenon was compared with another phenomenon termed heat resistance and observed when cells were heated at 43 degrees C in the presence of CHM or PUR immediately after a 2-hr pretreatment with CHM or PUR. Heat protection increased with inhibition of synthesis of both total protein and HSP families. Moreover, this heat protection decayed rapidly as the interval between pretreatment and heating increased to 1-2 hr, and did not have any obvious relationship to the synthesis of HSP families. Therefore, there are two distinctly different pathways for developing thermal resistance. The first is thermotolerance after intermediate concentrations of PUR treatment, and it requires incubation after treatment and apparently the synthesis of HSP families. The second is resistance to heat after CHM or PUR treatment immediately before and during heating at 43 degrees C, and it apparently does not require synthesis of HSP families. This second pathway not requiring the synthesis of HSP families also was observed by the increase in thermotolerance at 45.5 degrees C caused by heating at 43 degrees C after cells were incubated for 2-4 hr following pretreatment with an intermediate concentration of PUR.  相似文献   

8.
9.
Adult T cell leukemia-derived factor (ADF) is a human homologue of thioredoxin with many biologic functions including IL-2R induction, growth promotion, thiol-dependent reducing activity, and radical scavenging activity. The regulatory effect of ADF on the cytotoxic activity of TNF was examined by using a human histiocytic lymphoma cell line, U937. When U937 cells were preincubated with recombinant ADF (rADF) (0.1-100 micrograms/ml) at 37 degrees C for 30 min, TNF-dependent cytotoxicity on U937 cells was markedly inhibited. This inhibitory effect was as high as 95% in the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay (rADF 100 micrograms/ml) and 85% in the 51Cr-releasing assay (rADF 10 micrograms/ml). After pretreatment of U937 cells with IFN-gamma to augment the sensitivity to TNF, an inhibitory effect of rADF was also found. When U937 cells were washed after preincubation with rADF, resistance to TNF-dependent cytotoxicity was still observed, indicating that rADF inhibited the sensitivity of U937 to TNF-dependent cytotoxicity rather than modifying TNF molecules. Scatchard analysis of TNF receptors on U937 cells using 125I-TNF showed that rADF modulated neither the density nor the affinity of the cell membrane significantly. rADF also reduced the cytotoxicity induced by anti-Fas IgM mAb which shows cytotoxicity quite similar to TNF. rADF (10 micrograms/ml) reduced 90% of the cytotoxicity by anti-Fas IgM mAb, without a detectable change either in Fas Ag expression (MFI 58.1 vs 53.3) or in the degradation of anti-Fas IgM mAb as determined by flow cytometric analysis. These findings indicated that the rADF-induced resistance to the cytotoxic effect of TNF and anti-Fas mAb was not related to the modulation of the TNF receptor or Fas Ag.  相似文献   

10.
J S Grewal  R P Tiwari 《Cytobios》1999,98(388):113-123
Milk samples and milk products (69 in toto) were screened for the presence of Klebsiella pneumoniae (52%), and maximum isolations (77%) were from ice cream samples (13). The isolates were hydrophobic, non-haemolytic and possessed both mannose resistant (MR) and mannose sensitive (MS) pili or only MR pili when tested with human or sheep blood, respectively. All isolates were resistant to one metal at least whereas about 98% exhibited resistance to two or more metal ions. The resistance frequency of 93%, 90% and 66.7% was observed against silver (20 micrograms/ml), cadmium (20 micrograms/ml) and mercuric ions (20 micrograms/ml), respectively. Multiple drug resistance (MDR) was observed in 10% of the isolates only. A direct correlation between the metal ion and antibiotic resistance was found in MDR strains. The klebocin typeability of 53% and 61% was observed with 153-158 and 153-156, U-5 and U-6 groups, respectively. The most common typing patterns involved strains 424 (21%) and 442 (31.8%). Only 61% of the isolates showed enterotoxigenicity by the coagglutination test.  相似文献   

11.
The sensitivity of the methanogenic archaebacterium Methanococcus voltae to 12 inhibitors was tested in liquid medium. Four compounds appeared to be inhibitors of growth. Their MICs were as follows: pseudomonic acid, 0.1 micrograms/ml (0.19 microM); puromycin, 2 micrograms/ml (3.6 microM); methionine sulfoximine, 30 micrograms/ml (170 microM); and fusidic acid, 100 micrograms/ml (170 microM). On solid medium, the MICs were similar and the frequency of spontaneous resistance was found to be 5 X 10(-5) (methionine sulfoximine), 10(-7) (pseudomonic acid), and less than 10(-7) (puromycin and fusidic acid). Pseudomonic acid was found to inhibit isoleucyl-tRNA synthetase activity as measured by the in vitro aminoacylation of M. voltae tRNA with L-[U-14C]isoleucine. Fusidic acid and puromycin were shown to inhibit poly(U)-dependent polyphenylalanine synthesis in S30 extracts. Acetylpuromycin was inhibitory at much higher concentrations both in vivo and in vitro for M. voltae. Thus, the pac gene of Streptomyces alboniger, which is responsible for acetylation of puromycin and which conferred resistance to puromycin when introduced in eubacteria and eucaryotes, is a potential selective marker in gene transfer experiments with M. voltae. The latter was recently shown to be transformable. The same would be true for the cat gene of Tn9, which encodes resistance to fusidic acid in eubacteria in addition to resistance to chloramphenicol.  相似文献   

12.
The sensitivity of the methanogenic archaebacterium Methanococcus voltae to 12 inhibitors was tested in liquid medium. Four compounds appeared to be inhibitors of growth. Their MICs were as follows: pseudomonic acid, 0.1 micrograms/ml (0.19 microM); puromycin, 2 micrograms/ml (3.6 microM); methionine sulfoximine, 30 micrograms/ml (170 microM); and fusidic acid, 100 micrograms/ml (170 microM). On solid medium, the MICs were similar and the frequency of spontaneous resistance was found to be 5 X 10(-5) (methionine sulfoximine), 10(-7) (pseudomonic acid), and less than 10(-7) (puromycin and fusidic acid). Pseudomonic acid was found to inhibit isoleucyl-tRNA synthetase activity as measured by the in vitro aminoacylation of M. voltae tRNA with L-[U-14C]isoleucine. Fusidic acid and puromycin were shown to inhibit poly(U)-dependent polyphenylalanine synthesis in S30 extracts. Acetylpuromycin was inhibitory at much higher concentrations both in vivo and in vitro for M. voltae. Thus, the pac gene of Streptomyces alboniger, which is responsible for acetylation of puromycin and which conferred resistance to puromycin when introduced in eubacteria and eucaryotes, is a potential selective marker in gene transfer experiments with M. voltae. The latter was recently shown to be transformable. The same would be true for the cat gene of Tn9, which encodes resistance to fusidic acid in eubacteria in addition to resistance to chloramphenicol.  相似文献   

13.
The participation of both microtubules and microfilaments in granulosa cell steroidogenesis was assessed by monitoring the effects of colchicine (0-250 microM) and/or cytochalasin B (0-10 micrograms/ml) or dihydrocytochalasin B (0-2.0 micrograms/ml) on cellular morphology and production of progestins during 24 h of culture. Both colchicine and the cytochalasins increased granulosa cell production of progesterone and of 20 alpha-hydroxy-pregn-4-en-3-one (20 alpha-OH-progesterone) in a dose-dependent manner. The largest increase in steroidogenesis (about 2- to 3-fold) was observed at 4-250 microM colchicine and at 2-10 micrograms/ml cytochalasin. Those concentrations of the inhibitors of microtubule or microfilament polymerization that stimulated basal progestin production also markedly influenced cell spreading. Whereas cells cultured for 24 h in medium alone became very flattened with numerous cytoplasmic extensions, those cultured with colchicine (0.2-250 microM) or cytochalasin (0.4-2 micrograms/ml) were much less spread and progressively became more rounded and regular in outline. These changes in cell morphology were reflected by decreases in the mean area occupied by the cells on the culture surface of up to 60-65% and reductions in mean contour index values from 5.7 +/- 0.1 (control) to 3.9 +/- 0.1 (250 microM colchicine), 4.2 +/- 0.1 (2 micrograms/ml cytochalasin B), or 4.1 +/- 0.1 (2 micrograms/ml dihydrocytochalasin B). Cultures containing both colchicine and cytochalasin B exhibited a greater steroidogenic response than that elicited by either inhibitor alone. For example, granulosa cell progesterone production was stimulated almost 2-fold by 4 microM colchicine or 2 microM/ml cytochalasin B, but 5.5-fold by 4 microM colchicine plus 2 micrograms/ml cytochalasin B.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Five hundred fifty DNA fragments 100-500 base pairs in length were cloned from total chromosomal DNA of Escherichia coli, each capable of promoting the synthesis of beta-lactamase when inserted upstream of the ampC structural gene without its own promoter in a promoter-probe plasmid. All clones in this library of putative promoters were classified based on the level of resistance to ampicillin, which ranged from 10 to more than 1,500 micrograms/ml. Most of the higher levels of drug resistance (more than 1,000 micrograms/ml) were due not only to an increase in gene expression but also to an increase in plasmid copy number. The DNA fragments which produced the highest level of drug resistance all mapped at 5.7 min on the E. coli chromosome and shared the same nucleotide sequence. In these fragments, a strong promoter was found, which carries an up stream AT-rich sequence in addition to -35 and -10 signals of the promoter consensus.  相似文献   

15.
Phytohemagglutinin (PHA), picibanil (OK432) and tumor promoting agent (TPA) were tested in various combinations for optimal induction of human interferon-gamma (HuIFN-gamma). It was found that the use of a mixture of all 3 inducers resulted in IFN production 2-3 times higher than either PHA (10 micrograms/ml) in combination with TPA (5 ng/ml) or picibanil (10 micrograms/ml) alone. The IFN was produced by T lymphocytes and could be neutralized by specific IFN-gamma antiserum. It was pH 2.0 labile and species specific.  相似文献   

16.
The resistance to tetracycline decreased in Escherichia coli C600 cells containing plasmid RP4 and grown under the conditions of continuous cultivation. The population of cells containing plasmid RP4 is heterogeneous in the trait of tetracycline resistance, and most cells cannot grow in a selective medium with tetracycline at a concentration of 20 micrograms/ml. The decreased resistance to tetracycline was most pronounced for a glucose-limited chemostat culture and also in the presence of two plasmids, RP4 and pBS94 , in the cells. No decrease was found in the resistance to other drugs determined by plasmid genes.  相似文献   

17.
The study of 40 clinical strains of Ps. aeruginosa isolated from the wound surfaces of the patients showed that all the isolates were resistant to one or several antibiotics. The number of the strains resistant to 5, 4, 3, 2 or 1 drug was 5, 22.5, 25. 30 or 17.5 per cent respectively. Fifteen strains carried resistance plasmids capable of conjugative transfer. Eleven out of 21 plasmids controlled resistance to chloramphenicol, 7 plasmids controlled resistance to streptomycin and sulfanylamides, 1 plasmid controlled resistance to streptomycin and chloramphenicol. The presence of two types of the plasmids controlling resistance to chloramphenicol and streptomycin + sulfanylamides respectively was found. All the plasmids proved to be capable of conjugative transfer between the strains of Ps. aeruginosa ML (PAO). The frequency of the plasmid conjugative transfer in such crosses ranged from 10(-6) to 10(-3). Most of the plasmids belonged to the incompatibility groups P-2 and P-7. One plasmid belonged to the incompatibility group P-5. It should be noted that about a half of the plasmids (11 out of 21) belonged to the incompatibility group P-7 which up to the present time was conditional, since was represented by a single plasmid Rms 148.  相似文献   

18.
E R Ward  W M Barnes 《Gene》1989,75(2):305-314
A method for constructing Ti plasmids bearing multiple copies of a sequence integrated in tandem is described. A small plasmid that confers tetracycline resistance (TcR), contains homology to a Ti plasmid, and is unable to replicate in Agrobacterium tumefaciens, was mobilized from Escherichia coli to A. tumefaciens. Ti plasmids of exconjugants selected for resistance to 12-14 micrograms Tc/ml all contained multiple tandem repeats of the integrative plasmid. Tc-sensitive variants with fewer integrated copies arose spontaneously at low frequency in the absence of Tc selection, or could be enriched for by selection on Tc in combination with the bactericidal antibiotic augmentin. Variants having an increased number of integrated copies were obtained by growth on high Tc concentrations. Tandem repeats integrated between border sequences provide, in principle, a way to reproducibly introduce many linked copies of any foreign gene into plants.  相似文献   

19.
Conditions for inactivating chromosomal genes of Chlorobium tepidum by natural transformation and homologous recombination were established. As a model, mutants unable to perform nitrogen fixation were constructed by interrupting nifD with various antibiotic resistance markers. Growth of wild-type C. tepidum at 40 degrees C on agar plates could be completely inhibited by 100 microg of gentamicin ml(-1), 2 microg of erythromycin ml(-1), 30 microg of chloramphenicol ml(-1), or 1 microg of tetracycline ml(-1) or a combination of 300 microg of streptomycin ml(-1) and 150 microg of spectinomycin ml(-1). Transformation was performed by spotting cells and DNA on an agar plate for 10 to 20 h. Transformation frequencies on the order of 10(-7) were observed with gentamicin and erythromycin markers, and transformation frequencies on the order of 10(-3) were observed with a streptomycin-spectinomycin marker. The frequency of spontaneous mutants resistant to gentamicin, erythromycin, or spectinomycin-streptomycin was undetectable or significantly lower than the transformation frequency. Transformation with the gentamicin marker was observed when the transforming DNA contained 1 or 3 kb of total homologous flanking sequence but not when the transforming DNA contained only 0.3 kb of homologous sequence. Linearized plasmids transformed at least an order of magnitude better than circular plasmids. This work forms a foundation for the systematic targeted inactivation of genes in C. tepidum, whose 2.15-Mb genome has recently been completely sequenced.  相似文献   

20.
A new method was developed for direct selection of plasmid-free segregants using mercury hypersensitivity (Hg(ss)) as a phenotypic marker of bacterial plasmids. The Hg(ss) marker originated from the 4.8-kb EcoRI fragment H of the R-factor R100. Since the EcoRI fragment H spans the majority of the mercury resistance operon (mer), but lacks the intact merA gene coding for the mercury reductase enzyme, this fragment conferred the Hg(ss) phenotype. The Hg(ss) marker was introduced into high-copy-number plasmids pUC18, pBR322, and pHSG298. Segregational loss of the Hg(ss) plasmids caused a significant increase of resistance to Hg(2+), and this allowed direct selection of plasmid-free segregants on nutrient agars containing 1-2 mug HgCl(2) ml(-1). Plasmid-loss segregants were estimated to appear at frequencies ranging from 10(-3) to 10(-7) for the tested high-copy-number plasmids. THe Hg(ss) marker proved to be useful for direct selection of plasmid-free segregants from a mixed population of plasmid-harboring and plasmid-free cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号