首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Dengue virus (DENV) nonstructural protein 1 (NS1) is a highly conserved 46-kDa protein that contains 2 glycosylation sites (Asn-130 and Asn-207) and 12 conserved cysteine (Cys) residues. Here, we performed site-directed mutagenesis to generate systematic mutants of viral strain TSV01. The results of the subsequent analysis showed that an alanine substitution at the second N-linked glycan Asn-207 in NS1 delayed viral RNA synthesis, reduced virus plaque size, and weakened the cytopathic effect. Three mutants at Cys sites (Cys-4, Cys-55, Cys-291) and a C-terminal deletion (ΔC) mutant significantly impaired RNA synthesis, and consequently abolished viral growth, whereas alanine mutations at Asn-130 and Glu-173 resulted in phenotypes that were similar to the wild-type (WT) virus. Further analysis showed that the Asn-207 mutation slightly delayed viral replication. These results suggest that the three conserved disulfide bonds and the second N-linked glycan in NS1 are required for DENV-2 replication.  相似文献   

2.
L K Naeger  J Cater    D J Pintel 《Journal of virology》1990,64(12):6166-6175
Seven mutations which affect only the small nonstructural protein NS2 were introduced into the infectious clone of the autonomous parvovirus, minute virus of mice (MVM). The majority of these mutants were severely defective for replication following transfection of normal host murine A9 fibroblasts; however, all were found to replicate more efficiently and produce infectious virus in certain other cell types, including human NB324K. The isolation of viral stocks from NB324K cells permitted a more detailed analysis of the mutant defect on A9 cells. NS2 mutant NS2-2018 was shown to be approximately 10-fold deficient for viral monomer replicative-form DNA production within a single-burst cycle in infected A9 cells and produced a reduced amount of progeny single strand. Mutant NS2-2018 generated wild-type levels of monomer replicative-form DNA on NB324K cells but made reduced levels of progeny single strand and small plaques on these cells. The accumulation of NS1 is reduced late in NS2-2018 infection of A9 cells, but NS1 accumulates to wild-type levels late in NB324K cell infections. NS1 nuclear localization is not dependent on NS2 in A9 or NB324K cells. These results indicate that NS2 participates in MVM DNA replication and is required for efficient viral growth. The requirement for NS2 during MVM replication is also host cell specific. This requirement is significantly more pronounced in the normal host murine A9 cells than in certain other cell types, including NB324K.  相似文献   

3.
Influenza A viruses circulating in humans from ∼1950 to ∼1987 featured a nonstructural (NS1) protein with a C-terminal extension of seven amino acids. The biological significance of this NS1 elongation remained elusive. We observed that replication kinetics of the wild-type virus A/Hong Kong/01/68 (H3N2) and a mutant encoding a truncated NS1 were indistinguishable in most experimental systems. However, wild-type virus outcompeted the mutant during mixed infections, suggesting that the NS1 extension conferred minor growth advantages.  相似文献   

4.
Hepatitis C virus (HCV) is a positive-strand RNA virus that frequently causes persistent infection associated with severe liver disease. HCV nonstructural protein 5A (NS5A) is essential for viral replication. Here, the kinase Raf-1 was identified as a novel cellular binding partner of NS5A, binding to the C-terminal domain of NS5A. Raf-1 colocalizes with NS5A in the HCV replication complex. The interaction of NS5A with Raf-1 results in increased Raf-1 phosphorylation at serine 338. Integrity of Raf-1 is crucial for HCV replication: inhibition of Raf-1 by the small-molecule inhibitor BAY43-9006 or downregulation of Raf-1 by siRNA attenuates viral replication.  相似文献   

5.
The infection outcome of the Parvoviridae largely relies on poorly characterized intracellular factors modulated by proliferation, differentiation, and transformation of host cells. We have studied the interactions displayed by the highly homologous p and i strains of the murine parvovirus minute virus of mice (MVM), with a series of transformed cells of rat (C6) and human (U373, U87, SW1088, SK-N-SH) nervous system origin, seeking for molecular mechanisms governing parvovirus host range. The MVMp infection of C6 and U373 cells was cytotoxic and productive, whereas the other nervous cells behaved essentially as resistant to this virus. In contrast, MVMi did not complete its life cycle in any of the human nervous cells, though it efficiently killed the astrocytic tumor cells by two types of nonproductive infections: (i) normal synthesis of all viral macromolecules with a late defect in infectious virion maturation and release to the medium in U373; and (ii) high levels of accumulation of the full set of viral messenger RNAs and of both nonstructural (NS-1) and structural (VP-1 and VP-2) proteins, under a very low viral DNA amplification, in U87 and SW1088 cells. Further analyses showed that U87 was permissive for nuclear transport of MVMi proteins, leading to efficient assembly of empty viral capsids with a normal phosphorylation and VP1-to-VP2 ratio. The DNA amplification blockade in U87 occurred after conversion of the incoming MVMi genome to the monomeric replicative form, and it operated independently of the delivery pathway used by the viral particle, since it could not be overcome by transfection with cloned infectious viral DNA. Significantly, a chimeric MVMi virus harboring the coding region of the nonstructural (NS) gene replaced with that of MVMp showed a similar pattern of restriction in U87 cells as the parental MVMi virus, and it attained in U373 cultures an infectious titer above 100-fold higher under equal levels of DNA amplification and genome encapsidation. The results suggest that the activity of complexes formed by the NS polypeptides and recruited cellular factors restrict parvovirus DNA amplification in a cell type-dependent manner and that NS functions may in addition determine MVM host range acting at postencapsidation steps of viral maturation. These data are relevant for understanding the increased multiplication of autonomous parvovirus in some transformed cells and the transduction efficacy of nonreplicative parvoviral vectors, as well as a general remark on the mechanisms by which NS genes may regulate viral tropism and pathogenesis.  相似文献   

6.
The nonstructural protein 2 (NS2) from parvovirus minute virus of mice (MVMp) is a 25-kDa polypeptide which localizes preferentially to the cytoplasm and associates with cellular proteins in cytoplasm. These lines of evidence suggest that NS2 is positively exported from the nucleus to cytoplasm and functions in cytoplasm. We report here that nuclear export of NS2 is inhibited by leptomycin B (LMB), a drug that specifically blocks nuclear export signal (NES)-chromosomal region maintenance 1 (CRM1) interactions. CRM1 binds specifically to the 81- to 106-amino-acid (aa) region of NS2, and the region of NS2 actually functions as a NES. Interestingly, this region appears to be distinct from a typical NES sequence, which consists of leucine-rich sequences. These results indicate that NS2 protein is continuously exported from the nucleus by a CRM1-dependent mechanism and suggest that CRM1 also exports to distinct type of NESs.  相似文献   

7.
Hepatitis C virus (HCV) nonstructural protein 4A (NS4A) is only 54 amino acids (aa) in length, yet it is a key regulator of the essential serine protease and RNA helicase activities of the NS3-4A complex, as well as a determinant of NS5A phosphorylation. Here we examine the structure and function of the C-terminal acidic region of NS4A through site-directed mutagenesis of a Con1 subgenomic replicon and through biophysical characterization of a synthetic peptide corresponding to this region. Our genetic studies revealed that in 8 of the 15 C-terminal residues of NS4A, individual Ala substitutions or charge reversal substitutions led to severe replication phenotypes, as well as decreased NS5A hyperphosphorylation. By selecting for replication-competent mutants, several second-site changes in NS3 were identified and shown to suppress these defects in replication and NS5A hyperphosphorylation. Circular-dichroism spectroscopy and nuclear magnetic resonance spectroscopy on a peptide corresponding to the C-terminal 19 aa of NS4A revealed that this region can adopt an alpha-helical conformation, but that this folding requires neutralization of a cluster of acidic residues. Taken together, these data suggest that the C terminus of NS4A acts as a dynamic regulator of NS3-4A interaction, NS5A hyperphosphorylation, and HCV replicase activity.  相似文献   

8.
9.
The multifunctional protein NS1 of minute virus of mice (MVMp) is posttranslationally modified and at least in part regulated by phosphorylation. The atypical lambda isoform of protein kinase C (PKClambda) phosphorylates residues T435 and S473 in vitro and in vivo, leading directly to an activation of NS1 helicase function, but it is insufficient to activate NS1 for rolling circle replication. The present study identifies an additional cellular protein kinase phosphorylating and regulating NS1 activities. We show in vitro that the recombinant novel PKCeta phosphorylates NS1 and in consequence is able to activate the viral polypeptide in concert with PKClambda for rolling circle replication. Moreover, this role of PKCeta was confirmed in vivo. We thereby created stably transfected A9 mouse fibroblasts, a typical MVMp-permissive host cell line with Flag-tagged constitutively active or inactive PKCeta mutants, in order to alter the activity of the NS1 regulating kinase. Indeed, tryptic phosphopeptide analyses of metabolically (32)P-labeled NS1 expressed in the presence of a dominant-negative mutant, PKCetaDN, showed a lack of distinct NS1 phosphorylation events. This correlates with impaired synthesis of viral DNA replication intermediates, as detected by Southern blotting at the level of the whole cell population and by BrdU incorporation at the single-cell level. Remarkably, MVM infection triggers an accumulation of endogenous PKCeta in the nuclear periphery, suggesting that besides being a target for PKCeta, parvovirus infections may also affect the regulation of this NS1 regulating kinase. Altogether, our results underline the tight interconnection between PKC-mediated signaling and the parvoviral life cycle.  相似文献   

10.
The small nonstructural NS2 proteins of parvovirus minute virus of mice (MVMp) were previously shown to interact with the nuclear export receptor Crm1. We report here the analysis of two MVM mutant genomic clones generating NS2 proteins that are unable to interact with Crm1 as a result of amino acid substitutions within their nuclear export signal (NES) sequences. Upon transfection of human and mouse cells, the MVM-NES21 and MVM-NES22 mutant genomic clones were proficient in synthesis of the four virus-encoded proteins. While the MVM-NES22 clone was further able to produce infectious mutant virions, no virus could be recovered from cells transfected with the MVM-NES21 clone. Whereas the defect of MVM-NES21 appeared to be complex, the phenotype of MVM-NES22 could be traced back to a novel distinct NS2 function. Infection of mouse cells with the MVM-NES22 mutant led to stronger nuclear retention not only of the NS2 proteins but also of infectious progeny MVM particles. This nuclear sequestration correlated with a severe delay in the release of mutant virions in the medium and with prolonged survival of the infected cell populations compared with wild-type virus-treated cultures. This defect could explain, at least in part, the small size of the plaques generated by the MVM-NES22 mutant when assayed on mouse indicator cells. Altogether, our data indicate that the interaction of MVMp NS2 proteins with the nuclear export receptor Crm1 plays a critical role at a late stage of the parvovirus life cycle involved in release of progeny viruses.  相似文献   

11.
The core of the VP-1 and VP-2 proteins forming the T=1 icosahedral capsid of the prototype strain of the parvovirus minute virus of mice (MVMp) share amino acids sequence and a common three-dimensional structure; however, the roles of these polypeptides in the virus infection cycle differ. To gain insights into this paradox, the nature, distribution, and biological significance of MVMp particle phosphorylation was investigated. The VP-1 and VP-2 proteins isolated from purified empty capsids and from virions containing DNA harbored phosphoserine and phosphothreonine amino acids, which in two-dimensional tryptic analysis resulted in complex patterns reproducibly composed by more than 15 unevenly phosphorylated peptides. Whereas secondary protease digestions and comigration of most weak peptides in the fingerprints revealed common phosphorylation sites in the VP-1 and VP-2 subunits assembled in capsids, the major tryptic phosphopeptides were remarkably characteristic of either polypeptide. The VP-2-specific peptide named B, containing the bulk of the (32)P label of the MVMp particle in the form of phosphoserine, was mapped to the structurally unordered N-terminal domain of this polypeptide. Mutations in any or all four serine residues present in peptide B showed that the VP-2 N-terminal domain is phosphorylated at multiple sites, even though none of them was essential for capsid assembly or virus formation. Chromatographic analysis of purified wild-type (wt) and mutant peptide B digested with a panel of specific proteases allowed us to identify the VP-2 residues Ser-2, Ser-6, and Ser-10 as the main phosphate acceptors for MVMp capsid during the natural viral infection. Phosphorylation at VP-2 N-terminal serines was not necessary for the externalization of this domain outside of the capsid shell in particles containing DNA. However, the plaque-forming capacity and plaque size of VP-2 N-terminal phosphorylation mutants were severely reduced, with the evolutionarily conserved Ser-2 determining most of the phenotypic effect. In addition, the phosphorylated amino acids were not required for infection initiation or for nuclear translocation of the expressed structural proteins, and thus a role at a late stage of MVMp life cycle is proposed. This study illustrates the complexity of posttranslational modification of icosahedral viral capsids and underscores phosphorylation as a versatile mechanism to modulate the biological functions of their protein subunits.  相似文献   

12.
13.
The nonstructural NS2 proteins of the prototype strain of minute virus of mice (MVMp) were previously shown to be involved in parvoviral DNA amplification as well as in efficient virus production in a host cell-specific manner (L. K. Naeger, N. Salomé, and D. J. Pintel, J. Virol. 67:1034-1043, 1993). NS2 polypeptides were also reported to participate in the cytotoxic activity of parvoviruses (C. Legrand, J. Rommelaere, and P. Caillet-Fauquet, Virology 195:149-155, 1993), for which transformed cells are preferential targets. To identify cellular partners of NS2 proteins, coimmunoprecipitation experiments were performed with various antibodies directed against the parvoviral products. Two cellular proteins with molecular masses of 30 and 32 kDa were found to associate in vivo with the NS2 polypeptides. From amino acid sequence homology, these NS2 partners were assigned to the 14-3-3 family of cellular proteins, showing at least partial identity with the epsilon and beta or zeta 14-3-3 isoforms. In agreement with this assignment, NS2-30/32-kDa protein immune complexes displayed an activating function for exoenzyme S in vitro, a hallmark of 14-3-3 polypeptides. Interactions with 14-3-3 proteins did not appear sufficient for NS2 functions, since they were not disrupted by NS2 C-terminal modifications that impaired virus replication. Binding of NS2 to 14-3-3 proteins was detected in various cells of mouse, rat, hamster, monkey, and human origin, irrespective of NS2 dispensability and host cell transformation or permissiveness. The ubiquitous 14-3-3 proteins were recently reported to associate with several other cellular or viral polypeptides involved in signal transduction and/or cell cycle regulation pathways (A. Aitken, Trends Biochem. Sci. 20:95-97, 1995). The NS2 products may connect with one of these pathways through their interaction with specific 14-3-3 polypeptides.  相似文献   

14.
Studies on the replication of the pestivirus bovine viral diarrhea virus (BVDV) were considerably facilitated by the recent discovery of an autonomous subgenomic BVDV RNA replicon (DI9c). DI9c comprises mainly the untranslated regions of the viral genome and the coding region of the nonstructural proteins NS3, NS4A, NS4B, NS5A, and NS5B. To assess the significance of the NS3-associated nucleoside triphosphatase/helicase activity during RNA replication and to explore other functional features of NS3, we generated a repertoire of DI9c derivatives bearing in-frame mutations in different parts of the NS3 coding unit. Most alterations resulted in deficient replicons, several of which encoded an NS3 protein with an inhibited protease function. Three lesions permitted replication, though at a lower level than that of the wild-type RNA, i.e., replacement of the third position of the DEYH helicase motif II by either T or F and an insertion of four amino acid residues in the C-terminal part of NS3. While polyprotein proteolysis was found to be almost unaffected in these latter replicons, in vitro studies with the purified mutant NS3 proteins revealed a significantly impaired helicase activity for the motif II substitutions. NS3 with a DEFH motif, moreover, showed a significantly lower ATPase activity. In contrast, the C-terminal insertion had no negative impact on the ATPase/RNA helicase activity of NS3. All three mutations affected the synthesis of both replication products-negative-strand intermediate and progeny positive-strand RNA-in a symmetric manner. Unexpectedly, various attempts to rescue or enhance the replication capability of nonfunctional or less functional DI9c NS3 derivatives, respectively, by providing intact NS3 in trans failed. Our experimental data thus demonstrate that the diverse enzymatic activities of the NS3 protein-in particular the ATPase/RNA helicase-play a pivotal role even during early steps of the viral replication pathway. They may further indicate the C-terminal part of NS3 to be an important functional determinant of the RNA replication process.  相似文献   

15.
A Kato  K Kiyotani  Y Sakai  T Yoshida  T Shioda    Y Nagai 《Journal of virology》1997,71(10):7266-7272
The Sendai virus V protein is a nonstructural trans-frame protein whose cysteine-rich C-terminal half is fused to the acidic N-terminal half of the P protein via mRNA editing. We recently created a mutant by disrupting the editing motif, which is devoid of mRNA editing and hence unable to produce the V protein, and demonstrated that this V(-) virus replicated normally or even faster with augmented gene expression and cytopathogenicity in cells in vitro, but was strongly attenuated in pathogenicity for mice (A. Kato, K. Kiyotani, Y. Sakai, T. Yoshida, and Y. Nagai, EMBO J. 16:578-587, 1997). Thus, although categorized as a nonessential protein, the V protein appeared to encode a luxury function required for the viral in vivo pathogenesis. Here, we created another version of a V-deficient mutant, VdeltaC, encoding only the N-terminal half but not the V-specific C-terminal half, by introducing a stop codon in the trans-V frame, and then we compared its in vitro and in vivo phenotypes with those of the V(-) and wild-type viruses. The VdeltaC virus was found to be similar to the wild-type virus in vitro with no augmented gene expression and cytopathogenicity, but in vivo, it resembled the V(-) virus, displaying a similarly attenuated phenotype. Thus, the pathogenicity determinant in the V protein was mapped to the C-terminal half. The N-terminal half was likely sufficient to confer normal (wild-type) in vitro phenotypes.  相似文献   

16.
Gene therapy vectors have been developed from autonomous rodent parvoviruses that carry a therapeutic gene or a marker gene in place of the genes encoding the capsid proteins. These vectors are currently evaluated in preclinical experiments. The infectivity of the vector particles deriving from the fibroblastic strain of minute virus of mice (MVMp) (produced by transfection in human cells) was found to be far less (approximately 50-fold-less) infectious than that of wild-type virus particles routinely produced by infection of A9 mouse fibroblasts. Similarly, wild-type MVMp produced by transfection also had a low infectivity in mouse cells, indicating that the method and producer cells influence the infectivity of the virus produced. Interestingly, producer cells made as many full vector particles as wild-type particles, arguing against deficient packaging being responsible for the low infectivity of viruses recovered from transfected cells. The hurdle to infection with full particles produced through transfection was found to take place at an early step following entry and limiting viral DNA replication and gene expression. Infections with transfection or infection-derived virus stocks normalized for their replication ability yielded similar monomer and dimer DNA amplification and gene expression levels. Surprisingly, at equivalent replication units, the capacity of parvovirus vectors to kill tumor cells was lower than that of the parental wild-type virus produced under the same transfection conditions, suggesting that beside the viral nonstructural proteins, the capsid proteins, assembled capsids, or the corresponding coding region contribute to the lytic activity of these viruses.  相似文献   

17.
TT virus (TTV) is a newly discovered human virus with a single-stranded, circular DNA genome. The TTV DNA sequence includes two major open reading frames (ORFs), ORF1 and ORF2. Recently, spliced TTV mRNAs were detected and revealed two additional coding regions, ORF3 and ORF4. We found sequence similarity between the TTV ORF3 protein and hepatitis C virus (HCV) nonstructural 5A (NS5A) protein, which is a phosphoprotein and is thought to associate with various cellular proteins. To test whether the TTV ORF3 protein is phosphorylated, the state of phosphorylation was analyzed with a transient protein production system. The TTV ORF3 protein was phosphorylated at the serine residues in its C-terminal portion. Furthermore, the TTV ORF3 gene generated two forms of proteins with a different phosphorylation state, similar to the HCV NS5A region, suggesting that TTV ORF3 protein has function(s) similar to phosphorylated viral proteins such as the HCV NS5A protein.  相似文献   

18.
The influenza A virus nonstructural protein NS1 is a multifunctional dimeric protein that acts as a potent inhibitor of the host cellular antiviral state. The C-terminal effector domain of NS1 binds host proteins, including CPSF30, and is a target for the development of new antiviral drugs. Here we present crystallographic structures of two mutant effector domains, W187Y and W187A, of influenza A/Udorn/72 virus. Unlike wild-type, the mutants behave exclusively as monomers in solution based on gel filtration data and light scattering. The W187Y mutant is able to bind CPSF30 with a binding affinity close to the wild-type protein; that is, it retains a receptor site for aromatic ligands nearly identical to the wild-type. Therefore, this monomeric mutant protein could serve as a drug target for a high throughput inhibitor screening assays, since its binding pocket is unoccupied in solution and potentially more accessible to small molecule ligands.  相似文献   

19.
Detailed analysis of five NS2 mutants of the autonomous parvovirus minute virus of mice (MVMp) has revealed the following. At low multiplicities of infection, NS2 mutants killed NB324K cells as well as wild-type (wt) MVM did and grew to high titers, while in contrast they grew poorly and did not readily kill murine A9 cells. Following CaPO4 transfection of murine fibroblasts, NS2 mutant infectious clones generated approximately 10-fold less monomer replicative-form DNA than wt and no detectable progeny single-stranded DNA. On nonmurine semipermissive NB324K cells, however, these mutant plasmid clones generated near wt levels of all replicative DNA forms. After infection of highly synchronized murine fibroblasts by NS2 mutant virus at inputs equivalent to those of the wt, mutant monomer replicative-form DNA was decreased 5- to 10-fold compared with that of the wt, and progeny single-stranded DNA accumulation was decreased to an even greater extent. Both total and cytoplasmic NS2 mutant RNA was decreased, but the amount of total viral mRNA generated, relative to accumulated viral DNA in the same experiments, was similar to that seen in wt infection. The accumulation of virus-generated proteins was also decreased in NS2 mutant infection; however, the magnitude of this decrease, compared with that of wt infections, was significantly greater than the concomitant decrease in mutant-generated levels of accumulated cytoplasmic RNA, and this effect was most dramatic for VP2. There was no such disparity between the relative accumulation of mutant-generated RNA and protein in cells permissive for the growth of these mutants. These results suggest that translation of MVM viral RNA is specifically reduced in NS2 mutant infection of restrictive cells. Because the affected viral proteins are required for the efficient production of viral replicative DNA forms, these results reveal a fundamental, although perhaps not the only, role for NS2 in parvovirus infection.  相似文献   

20.
YC Tu  CY Yu  JJ Liang  E Lin  CL Liao  YL Lin 《Journal of virology》2012,86(19):10347-10358
Japanese encephalitis virus (JEV) is an enveloped flavivirus with a single-stranded, positive-sense RNA genome encoding three structural and seven nonstructural proteins. To date, the role of JEV nonstructural protein 2A (NS2A) in the viral life cycle is largely unknown. The interferon (IFN)-induced double-stranded RNA (dsRNA)-activated protein kinase (PKR) phosphorylates the eukaryotic translation initiation factor 2α subunit (eIF2α) after sensing viral RNA and results in global translation arrest as an important host antiviral defense response. In this study, we found that JEV NS2A could antagonize PKR-mediated growth inhibition in a galactose-inducible PKR-expressing yeast system. In human cells, PKR activation, eIF2α phosphorylation, and the subsequent translational inhibition and cell death triggered by dsRNA and IFN-α were also repressed by JEV NS2A. Moreover, among the four eIF2α kinases, NS2A specifically blocked the eIF2α phosphorylation mediated by PKR and attenuated the PKR-promoted cell death induced by the chemotherapeutic drug doxorubicin. A single point mutation of NS2A residue 33 from Thr to Ile (T33I) abolished the anti-PKR potential of JEV NS2A. The recombinant JEV mutant carrying the NS2A-T33I mutation showed reduced in vitro growth and in vivo virulence phenotypes. Thus, JEV NS2A has a novel function in blocking the host antiviral response of PKR during JEV infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号