首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Within the gastrointestinal tract ingested lipids are broken down into their constituent mono-acylglycerides and fatty acids by the enzyme family of lipases. In this study we have investigated the interfacial composition and structure of two phospholipid/bile salt (BS) systems that display significant differences in the duration of the lag phase of porcine pancreatic lipase kinetics. The interfacial tension of the single BSs, and their binary mixtures with phospholipid is reported at an n-tetradecane/water interface as a function of phospholipid mole fraction and total surfactant concentration. The structuring of the interface was probed by characterisation of the thin liquid film formation, thickness and stability. Lateral interactions were quantified by measurement of the diffusion coefficient of a probe fluorophore. We conclude that interfacial tension was not a factor in lag time duration as there was no significant difference in the minimum interfacial tension for the phosphatidylcholine (PC)/sodium taurocholate and the PC/sodium taurodeoxycholate system. No correlation was found between lag phase duration and the physiochemical properties of the interface, i.e. lateral diffusion, thin liquid film formation or interfacial tension. This is in agreement with our previous study that the lag time duration was directly related to the phospholipid content of the interface.  相似文献   

2.
The microstructure and permeability of rehydrated 20-100 microm thick partially coalesced (vinyl-actetate acrylic copolymer) SF091 latex coatings and a 118 microm thick model trilayer biocatalytic coating consisting of two sealant SF091 layers containing a middle layer of viable E. coli HB101 + latex were studied as delaminated films in a diffusion apparatus with KNO(3) as the diffussant. The permeability of the hydrated coatings is due to diffusive transport through the pore space between the partially coalesced SF091 latex particles. Coating microstructure was visualized by fast freeze cryogenic scanning electron microscopy (cryo-SEM). The effective diffusion coefficient of SF091 latex coatings (diffusive permeability/film thickness) was determined as the ratio of the effective diffusivity of KNO(3) to its diffusivity in water (D(eff)/D). Polymer particle coalescence was arrested by two methods to increase coating permeability. The first used glycerol with coating drying at 4 degrees C, near the glass transition temperature (T(g)). The second method used sucrose or trehalose as a filler to arrest coalescence; the filler was then dissolved away. D(eff)/D was measured as a function of film thickness; content of glycerol, sucrose, and trehalose; drying time; and rehydration time. D(eff)/D varied from 3 x 10(-4) for unmodified SF091 coatings to 6.8 x 10(-2) for coatings containing sucrose. D(eff)/D was reduced by the flattening of latex particles against the surface of the solid substrate, as well as by the presence of the colloid stabilizer hydroxyethylcellulose (HEC). When corrected for the flattened particle layer, D(eff)/D of HEC-free coatings was as high as 0.20, which agreed with the value predicted from analysis of cryo-SEM images of the coat surface. D(eff)/D decreased by one-half in approximately 5 days in rehydrated SF091 coatings, indicating that significant wet coalescence occurs after glycerol, sucrose, or trehalose are leached from the films. D(eff)/D of SF091 latex trilayer coatings containing viable E. coli HB101 cells decreased as cell loading was increased from 2.2 x 10(-2) for 64 g dry cell weight per liter of coat volume to 5 x 10(-3) for 151 g DCW/L of coat volume. The reduction in coating permeability with increasing cell loading is predicted by Maxwell's equation for D(eff)/D in periodic composites.  相似文献   

3.
Brain extracellular space (ECS) constitutes a porous medium in which diffusion is subject to hindrance, described by tortuosity, lambda = (D/D*)1/2, where D is the free diffusion coefficient and D* is the effective diffusion coefficient in brain. Experiments show that lambda is typically 1.6 in normal brain tissue although variations occur in specialized brain regions. In contrast, different theoretical models of cellular assemblies give ambiguous results: they either predict lambda-values similar to experimental data or indicate values of about 1.2. Here we constructed three different ECS geometries involving tens of thousands of cells and performed Monte Carlo simulation of 3-D diffusion. We conclude that the geometrical hindrance in the ECS surrounding uniformly spaced convex cells is independent of the cell shape and only depends on the volume fraction alpha (the ratio of the ECS volume to the whole tissue volume). This dependence can be described by the relation lambda = ((3-alpha)/2)1/2, indicating that the geometrical hindrance in such ECS cannot account for lambda > 1.225. Reasons for the discrepancy between the theoretical and experimental tortuosity values are discussed.  相似文献   

4.
Interaction of enkephalin peptides with anionic model membranes.   总被引:2,自引:0,他引:2  
According to the model for passive transport across the membranes, the total flow of permeant molecules is related to the product of the water-membrane partition coefficient and the diffusion coefficient, and to the water-membrane interfacial barrier. The effect of membrane surface charge on the permeability and interaction of analgesic peptide ligands with model membranes was investigated. A mixture of zwitterionic phospholipids with cholesterol was used as a model membrane. The lipid membrane charge density was controlled by the addition of anionic 1-palmitoyl-2-oleoylphosphatidylserine. Two classes of highly potent analgesic peptides were studied, c[D-Pen(2),D-Pen(5)]enkephalin (DPDPE) and biphalin, a dimeric analog of enkephalin. The effect of increased surface charge on the permeability of the zwitterionic DPDPE is a relatively modest decrease, that appears to be due to a diminished partition coefficient. On the other hand the binding of the dicationic biphalin ligands to membranes increases proportionally with increased negative surface charge. This effect translates into a significant reduction of biphalin permeability by reducing the diffusion of the peptide across the bilayer. These experiments show the importance of electrostatic effects on the peptide-membrane interactions and suggest that the negative charge naturally present in cell membranes may hamper the membrane transport of some peptide drugs, especially cationic ones, unless there are cationic transporters present.  相似文献   

5.
The passive permeation of glucose and a small zwitterionic molecule, methyl-phosphoethanolamine, across two-component phospholipid bilayers (dimyristoyl phosphatidylcholine (DMPC)/dipalmitoyl phosphatidylcholine (DPPC) mixtures) exhibit a maximum when gel domains and fluid domains coexist. The permeability data of the two-phase bilayers cannot be fitted to single-rate kinetics, but are consistent with a Gaussian distribution of rate constants. In pure DMPC and DPPC as well as in their mixtures, at the temperature of the maximum excess heat capacity, the logarithm of the average permeability rate constants are linearly correlated with the mole fraction of DPPC in the total system. In addition, in the 50:50 mixture, the excess heat capacity values as well as the apparent fractions of interfacial lipid correlate with the logarithm of the excess permeabilities in the two-phase region. These results suggest that small polar molecules can cross the membrane at the interface between gel and fluid domains at a much faster rate than through the homogeneous phases; the acyl chains located at the domain interface experience lateral density fluctuations that are inversely proportional to their average length, and large enough to allow rapid transmembrane diffusion of the solute molecules. The distribution of the permeability rate constants may reflect temporal and spatial fluctuations of the lipid composition at the phase boundaries.  相似文献   

6.
Summary Partition coefficients of distribution of proteins were measured in two systems: i) 3-phenoxy-2-hydroxypropyl derivatives of bead cellulose (PHPC)/water solution — coefficients P; and ii) Aqueous polyethylene glycol (PEG)/dextran (DXT) two-phase system — coefficient K. Following proteins were used for the measurements: lysozyme, trypsin, chymotrypsin, ovalbumin, bovine serum albumin and immunoglobulin G. The obtained P and K values were correlated with previous data about hydrophobicity of the above proteins available in the literature. The literary data concerned: i) the efficacy of energy transfer from tryptophan residues of proteins to cis-parinaric acid applied as hydrophobic probe, estimated by fluorescent spectroscopy; ii) the hydrophobic ratio indicating the ratio between the hydrophobic and hydrophilic parts (in volumes) of protein molecules deduced from their primary structure; and iii) the interfacial tension at 0.2% protein-water solution/corn oil interface. Significant corrlations were obtained for P and efficacy of energy transfer (r=0.964; p<0.01) and for K and interfacial tension (r=0.936; p<0.05). When P and K were fitted as exponential function of three independent variables (i.e., efficacy of energy transfer, hydrophobic ratio and interfacial tension) good agreement between the measured and computed data was obtained. The increases in efficacy of energy transfer, hydrophobic ratio and decrease in interfacial tension were found to be accompanied by increase in P. In contrary, K behaved always similarly as efficacy of energy transfer, hydrophobic ratio and interfacial tension.  相似文献   

7.
The dynamics of protein adsorption at an oil/water interface are examined over time scales ranging from seconds to several hours. The pendant drop technique is used to determine the dynamic interfacial tension of several proteins at the heptane/aqueous buffer interface. The kinetics of adsorption of these proteins are interpreted from tension/log time plots, which often display three distinct regimes. (I) Diffusion and protein interfacial affinity determine the duration of an initial induction period of minimal tension reduction. A comparison of surface pressure profiles at the oil/water and air/water interface reveals the role of interfacial conformational changes in the early stages of adsorption. (II) Continued rearrangement defines the second regime, where the resulting number of interfacial contacts per protein molecule causes a steep tension decline. (III) The final regime occurs upon monolayer coverage, and is attributed to continued relaxation of the adsorbed layer and possible build-up of multilayers. Denaturation of proteins by urea in the bulk phase is shown to affect early regimes.  相似文献   

8.
We have used a bubble column apparatus to study interfacial inactivation of enzymes. The amount of enzyme inactivated was proportional to the area of organic solvent exposed, as is characteristic of the interfacial mechanism. Tests were made with a series of 12 solvents of log P close to 4.0, but with different functional groups. With - and β-chymotrypsin, inactivation was much less severe with amphiphilic molecules like decyl alcohol, than with less polar compounds (heptane as the extreme case). This corresponds to a correlation with aqueous–organic interfacial tension, and presumably reflects a more polar interface as seen by the enzyme adsorbing from the aqueous phase. A 50% mixture of decyl alcohol and heptane behaved similarly to pure decyl alcohol, which would be expected to accumulate at the interface. With pig liver esterase, the correlation was rather weak, however. Accumulated data for interfacial inactivation by alkanes was examined for the above enzymes, and also papain, trypsin, urease and ribonuclease. The differing sensitivities did not show a clear correlation with any enzyme property, although there was some relationship to adiabatic compressibility, thermal denaturation temperature and mean hydrophobicity.  相似文献   

9.
The effect of the oxidation of linoleic acid on the interfacial adsorptivity of lysophosphatidylcholine (LPC)/free fatty acid (FFA)/ovalbumin (OA) complexes was investigated by 31P-NMR. The interfacial adsorptivity of the complexes was evaluated by the mean droplet size, phosphorus signal and relaxation time of an emulsion composed of each complex. The interfacial adsorptivity of the LPC/FFA/OA complexes became lower with the oxidation of linoleic acid, which formed a complex with LPC and OA. Reduction of the T2 relaxation time and peak broadening of Ser-P68 for OA correlated well with the formation of fine emulsions from an LPC/linoleic acid/OA complex. The bilayer vesicles composed of LPC and linoleic acid with a low POV value were destroyed by coupling with protein and show high interfacial adsorptivity. On the other hand, the vesicles composed of LPC and linoleic acid with a high POV value remained in liposome and show low interfacial adsorptivity. These results suggest that the affinity of bilayer vesicles composed of LPC and FFA mainly promoted the interfacial adsorption of an LPC/FFA/OA complex, and that the region of Ser-P68 in OA was adsorbed at the interface when the complex formed a fine emulsion.  相似文献   

10.
Mixed surfactants have potential applications in various fields. The understanding and prediction of their macro- and microscopic properties are of great importance in the designing of these materials. We used molecular dynamics (MD) and experiments to study the interfacial tension and the microscopic structures of the sodium dodecyl sulfate (SDS)/C4mimBr mixed surfactant at the water/hexane interface. The interfacial tension, density profile, radial distribution function (RDF), orientation distribution of the tails and order parameters have been examined. It seems that the addition of C4mimBr decreased the interfacial tension; a higher C4mimBr concentration resulted in a thicker interface, a smaller droplet, and more disordered SDS tails. The competition between free volume and electrostatic shielding seems to be the primary mechanism behind these phenomena.  相似文献   

11.
Wang L  Liu XY 《Biophysical journal》2008,95(12):5931-5940
The effect of agarose on nucleation of hen egg white lysozyme crystal was examined quantitatively using a temperature-jumping technique. For the first time, to our knowledge, the inhibition of agarose during the nucleation of lysozyme was quantified in two respects: a), the effect of increasing interfacial nucleation barrier, described by the so-called interfacial correlation parameter f(m); and b), the ratio of diffusion to interfacial kinetics obtained from dynamic surface tension measurements. It follows from a dynamic surface tension analysis that the agarose network inhibits the nucleation of lysozyme by means of an enhancement of the repulsion and interfacial structure mismatch between foreign bodies and lysozyme crystals, slowing down the diffusion process of the protein molecules and clusters toward the crystal-fluid interface and inhibiting the rearrangement of protein molecules at the interface. Our results, based on ultraviolet-visible spectroscopy, also show no evidence of the supersaturation enhancement effect in protein agarose gels. The effects of nucleation suppression and transport limitation in gels result in bigger, fewer, and perhaps better quality protein crystals. The understandings obtained in this study will improve our knowledge in controlling the crystallization of proteins and other biomolecules.  相似文献   

12.
13.
In photosynthesis and respiration ATP synthesis is powered by a transmembrane protonmotive force. Membrane bound proton pumps and proton translocating ATPsynthases are coupled by lateral proton flow. Whether it leads through the aqueous bulk phases (chemiosmotic theory) or whether it is confined to the membrane or the membrane water interface, is still controversial. Another related controversy is whether or not proton diffusion along the interface between a phospholipid membrane and water is enhanced over the one in bulk water. Thylakoid membranes of plant chloroplasts are intrinsically closely apposed (≈5 nm). To study lateral proton diffusion along the narrow interfacial domain between adjacent thylakoid membranes, we stimulated the proton pumps by a flash of light. This generates an alkalinization jump. In the absence of ADP the membrane is relatively proton tight. Therefore, the alkalinization jump relaxes into the medium. The relaxation kinetics as function of pH and added buffers were studied by flash spectrophotometry. The results were compared with a theory dealing with the diffusion of protons, hydroxyl ions, and mobile buffers plus the action of fixed buffers. We came to the conclusion that the lateral diffusion coefficient both, for H+ and for OH- was less or of same magnitude as in bulk water.  相似文献   

14.
Surfactant dysfunction plays a major role in respiratory distress syndrome (RDS). This research seeks to determine whether the use of natural surfactant, Curosurf? (Cheisi Farmaceutici, Parma, Italy), accompanied with pressure oscillations at the level of the alveoli can reduce the surface tension in the lung, thereby making it easier for infants with RDS to maintain the required level of functional residual capacity (FRC) without collapse. To simulate the alveolar environment, dynamic surface tension measurements were performed on a modified pulsating bubble surfactometer (PBS) type device and showed that introducing superimposed oscillations about the tidal volume excursion between 10 and 70 Hz in a surfactant bubble lowers interfacial surface tension below values observed using tidal volume excursion alone. The specific mechanisms responsible for this improvement are yet to be established; however it is believed that one mechanism may be the rapid transient changes in the interfacial area increase the number of interfacial binding sites for surfactant molecules, increasing adsorption and diffusion to the interface, thereby decreasing interfacial surface tension. Existing mathematical models in the literature reproduce trends noticed in experiments in the range of breathing frequencies only. Thus, a modification is introduced to an existing model to both incorporate superimposed pressure oscillations and demonstrate that these may improve the dynamic surface tension in the alveoli.  相似文献   

15.
The adhesion, wettability, atomic bonding and electronic structure of γ-TiAl(110)/TiC(100) and γ-TiAl(110)/VN(100) interfaces were performed and investigated using first-principle calculations. Surface energy of γ-TiAl, TiC and VN with low crystal indices was calculated and compared, respectively. The three Al-terminated γ-TiAl(110)/ceramic(100) interface models were investigated to illustrate the interfacial bonding nature. The structure of Al atom placed on the top of the metalloid C and N atoms at the interface is the preferred interfacial structure with the larger work of adhesion. The electronic structure results show that the structure with metalloid site exists with the stronger polar covalent bonding between the interfacial Al and metalloid atom. The interfacial structure with metal site exhibits a mixture of the metallic features with some degree of covalent features. The simulation results are in agreement with the experimental results, in which the γ-TiAl/TiC interface exhibits the better wettability and stronger bonding than the γ-TiAl/VN interface.  相似文献   

16.
A method for mapping tissue permeability based on time-dependent diffusion measurements is presented. A pulsed field gradient sequence to measure the diffusion encoding time dependence of the diffusion coefficients based on the detection of stimulated spin echoes to enable long diffusion times is combined with a turbo spin echo sequence for fast NMR imaging (MRI). A fitting function is suggested to describe the time dependence of the apparent diffusion constant in porous (bio-)materials, even if the time range of the apparent diffusion coefficient is limited due to relaxation of the magnetization. The method is demonstrated by characterizing anisotropic cell dimensions and permeability on a subpixel level of different tissues of a carrot (Daucus carota) taproot in the radial and axial directions.  相似文献   

17.
A new approach is described for the analysis of lateral diffusion in biological membranes. It is shown that a suitably defined first moment of the concentration distribution on a spherical surface decays as a single exponential with a relaxation rate proportional to the diffusion coefficient and inversely proportional to the square of the radius of the sphere. The approach is illustrated with an example of fluorescence redistribution after photobleaching of membrane proteins in a spectrin-deficient spherocytic mouse erythrocyte membrane.  相似文献   

18.
Lung surfactant (LS) is a mixture of lipids and proteins that line the alveolar air-liquid interface, lowering the interfacial tension to levels that make breathing possible. In acute respiratory distress syndrome (ARDS), inactivation of LS is believed to play an important role in the development and severity of the disease. This review examines the competitive adsorption of LS and surface-active contaminants, such as serum proteins, present in the alveolar fluids of ARDS patients, and how this competitive adsorption can cause normal amounts of otherwise normal LS to be ineffective in lowering the interfacial tension. LS and serum proteins compete for the air-water interface when both are present in solution either in the alveolar fluids or in a Langmuir trough. Equilibrium favors LS as it has the lower equilibrium surface pressure, but the smaller proteins are kinetically favored over multi-micron LS bilayer aggregates by faster diffusion. If albumin reaches the interface, it creates an energy barrier to subsequent LS adsorption that slows or prevents the adsorption of the necessary amounts of LS required to lower surface tension. This process can be understood in terms of classic colloid stability theory in which an energy barrier to diffusion stabilizes colloidal suspensions against aggregation. This analogy provides qualitative and quantitative predictions regarding the origin of surfactant inactivation. An important corollary is that any additive that promotes colloid coagulation, such as increased electrolyte concentration, multivalent ions, hydrophilic non-adsorbing polymers such as PEG, dextran, etc. added to LS, or polyelectrolytes such as chitosan, also promotes LS adsorption in the presence of serum proteins and helps reverse surfactant inactivation. The theory provides quantitative tools to determine the optimal concentration of these additives and suggests that multiple additives may have a synergistic effect. A variety of physical and chemical techniques including isotherms, fluorescence microscopy, electron microscopy and X-ray diffraction show that LS adsorption is enhanced by this mechanism without substantially altering the structure or properties of the LS monolayer.  相似文献   

19.
An integrated methodology is developed for the theoretical analysis of solute transport and reaction in cellular biological media, such as tissues, microbial flocs, and biofilms. First, the method of local spatial averaging with a weight function is used to establish the equation which describes solute conservation at the cellular biological medium scale, starting with a continuum-based formulation of solute transport at finer spatial scales. Second, an effective-medium model is developed for the self-consistent calculation of the local diffusion coefficient in the cellular biological medium, including the effects of the structural heterogeneity of the extra-cellular space and the reversible adsorption to extra-cellular polymers. The final expression for the local effective diffusion coefficient is: D(Abeta)=lambda(beta)D(Aupsilon), where D(Aupsilon) is the diffusion coefficient in water, and lambda(beta) is a function of the composition and fundamental geometric and physicochemical system properties, including the size of solute molecules, the size of extra-cellular polymer fibers, and the mass permeability of the cell membrane. Furthermore, the analysis sheds some light on the function of the extra-cellular hydrogel as a diffusive barrier to solute molecules approaching the cell membrane, and its implications on the transport of chemotherapeutic agents within a cellular biological medium. Finally, the model predicts the qualitative trend as well as the quantitative variability of a large number of published experimental data on the diffusion coefficient of oxygen in cell-entrapping gels, microbial flocs, biofilms, and mammalian tissues.  相似文献   

20.
Alphavirus 6K is a short, constitutive membrane protein involved in virus glycoprotein processing, membrane permeabilization, and the budding of virus particles. The amino-terminal region that immediately precedes the transmembrane anchor contains a conserved sequence motif consisting of two interfacial domains separated by Asn and Gln residues. The presence of this motif confers on the 6K pretransmembrane region the tendency to partition into the membrane interface. To study the functional importance of the interfacial sequences, three different Sindbis virus 6K variants were obtained with the following modifications: 9YLW11xAAA, 18FWV20xAAA, and 9YLW11xAAA/18FWV20xAAA. Reconstituted mutant viruses were infectious and showed no defects in glycoprotein processing, although virus budding was hampered. Single 6K expression in Escherichia coli cells showed interfacial mutants to have a diminished capacity to modify membrane permeability and to have lower toxicity. In particular, the 9YLW11xAAA/18FWV20xAAA variant was expressed at high levels and did not enhance membrane permeability significantly, although it retained its integral membrane protein condition. Parallel analyses of membrane permeabilization in baby hamster kidney cells were carried out using a Sindbis virus replicon that synthesized both capsid protein and 6K. Transfection of the construct with wild-type 6K strongly increased permeability to the antibiotic hygromycin B. Replicons encoding 6K interfacial mutants induced lower membrane permeabilization. Again, the greatest impairment was observed for the 9YLW11xAAA/18FWV20xAAA variant, permeabilization activity of which was approximately 10% that of wild-type 6K. These findings show the importance of the interfacial 6K sequence for virus budding and modification of membrane permeability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号