首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
We compared nitrate concentrations, phytoplankton biomass, and phytoplankton community structure in lakes fed by glacier melt and snowmelt (GSF lakes) and by snowmelt only (SF lakes) within North Cascades National Park (NOCA) in Washington State, USA. In the U.S. Rocky Mountains, glacier melting has greatly increased nitrate concentrations in GSF lakes (52–236 µg NO3–N L?1) relative to SF lakes (1–14 µg NO3–N L?1) and thereby stimulated phytoplankton changes in GSF lakes. Considering NOCA contains approximately one-third of the glaciers in the continental U.S., and many mountain lakes that receive glacier meltwater inputs, we hypothesized that NOCA GSF lakes would have greater nitrate concentrations, greater phytoplankton biomass, and greater abundance of nitrogen-sensitive diatom species than NOCA SF lakes. However, at NOCA nitrate concentrations were much lower and differences between lake types were small compared to the Rockies. At NOCA, nitrate concentrations averaged 13 and 5 µg NO3–N L?1 in GSF and SF lakes, respectively, and a nitrate difference was not detectable in several individual years. There also was no difference in phytoplankton biomass or abundance of nitrogen-sensitive diatoms between lake types at NOCA. In contrast to the Rockies, there also was not a significant positive relationship between watershed percent glacier area and lake nitrate at NOCA. Results demonstrate that biogeochemical responses to global change in Western U.S. mountain lake watersheds may vary regionally. Regional differences may be affected by differing nitrogen deposition, climate, geology, or microbial processes within glacier environments, and merit further investigation.  相似文献   

2.
Results of a field survey of southern Wisconsin shallow lakes suggested that watershed (catchment basin) land use has a significant and adverse effect on zooplankton species richness. Zooplankton communities in lakes with no riparian buffer zone, in agriculture-dominated watersheds, contained about half as many species as lakes in least-impact watersheds. In that study, the age of the lake was not taken into account. It is possible that agricultural lakes, often artificial, were so recently-constructed that they had not yet accumulated the equilibrium number of species characteristic of older lakes. In other words, it is possible that the interpretation of the results of the previous study is fatally flawed, if the results were an artifact of lake age, rather than an effect of land use. The major aim of this current study was to determine the ages of agricultural lakes and of lakes in least-impact watersheds, to test for an effect of lake age on zooplankton species richness, using the same sites from the previous study. We used an anova approach to test the null hypothesis that two factors, watershed land use and lake age, had no systematic effect on zooplankton species richness. We determined the age of 35 shallow lakes, using aerial photos, satellite images, and interviews of resource managers and land owners. We identified five artificial agricultural sites and five artificial sites in least-impact prairie watersheds. The artificial sites in this study ranged from 3 to 37 years in age, while natural lakes dated from the melting of the last glacier, about 9500 years ago. Our results suggest, that because artificial lake made up only about a third of the sites, and for the range of lake age and watershed land use, lake age did not have a significant effect on zooplankton species richness, while land use had a highly significant adverse effect. These results pose a larger question for future research. Namely, how quickly do newly-constructed lakes attain the equilibrium number of species seen in the previous study, and what is the quantitative relationship between lake age and zooplankton richness?  相似文献   

3.
Common carp (Cyprinus carpio) is one of world’s most invasive fish and managers have long searched for practical control strategies for this species. In temperate systems, common carp forms large winter aggregations that can be located with telemetry and removed with seine nets. This has been viewed as an excellent management possibility, but its success has been mixed. Using a modeling approach, we demonstrate that the usefulness of winter seining in controlling common carp in temperate North American lakes depends on whether carp populations are driven by one of two distinct recruitment dynamics. In lakes where carp can easily recruit within systems from which they are being removed, such as within productive lakes with poor communities of micropredators, winter seining is unlikely to be effective. Even very high removal rates (90 % adults annually) were not sufficient to reach management goal (biomass <100 kg/ha) in such systems. However, in regions with strong predatory communities where carp can recruit only in outlying, seasonally unstable marshes, removal rates as low as 30 % annually or 50 % every other year were able to reduce carp biomass below the management threshold. Such removal rates are achievable as they fall within the range of empirically measured values. Because many carp populations are driven by external recruitment dynamics, strategically conducted winter removal could be used to control this species in a large number of systems across temperate North America and elsewhere.  相似文献   

4.
Weathering of silicate minerals releases dissolved silicate (DSi) to the soil-vegetation system. Accumulation and recycling of this DSi by terrestrial ecosystems creates a pool of reactive Si on the continents that buffers DSi export to the ocean. Human perturbations to the functioning of the buffer have been a recent research focus, yet a common assumption is that the continental Si cycle is at steady-state. However, we have no good idea of the timescales of ecosystem Si pool equilibration with their environments. A review of modelling and geochemical considerations suggests the modern continental Si cycle is in fact characterised in the long-term by an active accumulation of reactive Si, at least partially attributable to lakes and reservoirs. These lentic systems accumulate Si via biological conversion of DSi to biogenic silica (BSi). An analysis of new and published data for nearly 700 systems is presented to assess their contribution to the accumulating continental pool. Surface sediment BSi concentrations (n = 692) vary between zero and >60 % SiO2 by weight, apparently independently of lake size, location or water chemistry. Using sediment core BSi accumulation rates (n = 109), still no relationships are found with lake or catchment parameters. However, issues associated with single-core accumulation rates should in any case preclude their use in elemental accumulation calculations. Based on lake/reservoir mass-balances (n = 34), our best global-scale estimate of combined lake and reservoir Si retention is 1.53 TMol year?1, or 21–27 % of river DSi export. Again, no scalable relationships are apparent, suggesting Si retention is a complex process that varies from catchment to catchment. The lake Si sink has implications for estimation of weathering flux generation from river chemistry. The size of the total continental Si pool is poorly constrained, as is its accumulation rate, but lakes clearly contribute substantially. A corollary to this emerging understanding is that the flux and isotopic composition of DSi delivered to the ocean has likely varied over time, partly mediated by a fluctuating continental pool, including in lakes.  相似文献   

5.
Global environmental change has altered the nitrogen (N) cycle and enhanced terrestrial dissolved organic carbon (DOC) loadings to northern boreal lakes. However, it is still unclear how enhanced N availability affects pelagic food web efficiency (FWE) and crustacean zooplankton growth in N limited boreal lakes. Here, we performed in situ mesocosm experiments in six unproductive boreal Swedish lakes, paired across a DOC gradient, with one lake in each pair fertilized with N (2011: reference year; 2012, 2013: impact years). We assessed how zooplankton growth and FWE were affected by changes in pelagic energy mobilization (PEM), food chain length (phytoplankton versus bacterial production based food chain, i.e. PP:BP), and food quality (seston stoichiometry) in response to N fertilization. Although PP, PEM and PP:BP increased in low and medium DOC lakes after N fertilization, consumer growth and FWE were reduced, especially at low DOC—potentially due to reduced phytoplankton food quality [increased C: phosphorus (P); N:P]. At high DOC, N fertilization caused modest increases in PP and PEM, with marginal changes in PP:BP and phytoplankton food quality, which, combined, led to a slight increase in zooplankton growth and FWE. Consequently, at low DOC (<12 mg L?1), increased N availability lowers FWE due to mismatches in food quality demand and supply, whereas at high DOC this mismatch does not occur, and zooplankton production and FWE may increase. We conclude that the lake DOC level is critical for predicting the effects of enhanced inorganic N availability on pelagic productivity in boreal lakes.  相似文献   

6.
Nutrient availability, in particular of phosphorus (P), is a key factor for the structure and functioning of shallow lakes, and not least the sediment plays an important role by acting as both a nutrient source and sink. We used 21 years of monthly mass balance and lake water data from six shallow (mean depth = 1.2–2.7 m) and fast flushed (mean hydraulic retention time = 0.6–2.6 months) eutrophic Danish lakes (mean summer P concentrations ranging from 0.09 to 0.61 mg/l) to investigate long-term trends in yearly and seasonal patterns of P retention. To one of the lakes, the external P input was reduced by 70% in the early 1990s, whereas none of the other lakes have experienced major changes in external P loading for more than 20 years. All lakes showed a distinct seasonal pattern with high P concentrations and typically negative P retention during summer (up to ?300% of the external loading from May to August). During winter, P retention was overall positive (up to 50% of the external loading from December to April). Internal P loading from the sediment delayed lake recovery by approximately 10 years in the lake with the most recently reduced external loading, but in all the lakes net release of P from the sediment occurred during summer. P release in the six lakes has not abated during the past decade, indicating that the sediment of eutrophic and turbid shallow lakes remains a net source of P during summer. The seasonal variations in P retention became more pronounced with increasing P levels, and retention decreased with increasing temperature, but increased if clear water conditions were established.  相似文献   

7.
Change in the trophic state of lakes is a topic of primary interest for limnologists and paleolimnologists, but also for governments in many countries. These changes can be the result of the natural evolution of lake ecosystems, but nowadays are most often connected with human activity influencing water bodies. In this article, we reconstruct changes in the lake productivity and trophic state in three dystrophic (humic) lakes located in Northern Poland. Sediments from these lakes, which are part of a national park, were submitted to Cladocera and chemical composition analyses. Currently, the trophic state of these lakes has been described based on the water's chemical composition, and they have been classified as undisturbed ecosystems with a stable trophic state. The main objective of this study was to evaluate whether these lakes have been stable and undisturbed ecosystems during the past centuries and therefore whether they can be classified as natural and pristine. The results of subfossil Cladocera analysis and sedimentary geochemical analysis confirmed the specific nature of studied lakes. However, our results were surprising and showed that during the last 200 years two of the three lakes have undergone distinct trophic changes, while one of them has barely changed at all.  相似文献   

8.
Organisms experience competing selective pressures, which can obscure the mechanisms driving evolution. Daphnia ambigua is found in lakes where a predator, the alewife (Alosa pseudoharengus) either does (anadromous) or does not (landlocked) migrate between marine and freshwater. We previously reported an association between alewife variation and life history evolution in Daphnia. However, differences in alewife migration indirectly influence phytoplankton composition for Daphnia. In ‘anadromous lakes’, Daphnia are present in the spring and experience abundant high-quality green algae. Intense predation by young-of-the-year anadromous alewife quickly eliminates these Daphnia populations by early summer. Daphnia from ‘landlocked lakes’ and lakes without alewife (‘no alewife lakes’) are present during the spring and summer and are more likely to experience high concentrations of sub-optimal cyanobacteria during the summer. To explore links between predation, resources, and prey evolution, we reared third-generation laboratory-born Daphnia from all lake types on increasing cyanobacteria concentrations. We observed several significant ‘lake type × resource’ interactions whereby the differences among lake types depended upon cyanobacteria concentrations. Daphnia from anadromous lakes developed faster, were larger at maturation, produced more offspring, and had higher intrinsic rates of increase in the absence of cyanobacteria. Such trends disappeared or reversed as cyanobacteria concentration was increased because Daphnia from anadromous lakes were more strongly influenced by the presence of cyanobacteria. Our results argue that alewife migration and phytoplankton composition both play a role in Daphnia evolution.  相似文献   

9.
Being both stable carbon sinks and greenhouse gas sources, boreal lake sediments represent significant players in carbon (C) cycling. The release of dissolved organic carbon (DOC) into anoxic water is a widespread phenomenon in boreal lakes with impact on sediment C budgets. The association of OC with iron (Fe) is assumed to play an important role for this anoxic OC release via the dissimilatory reduction of Fe, but also to influence the stabilization of OC in sediments. To investigate the role of Fe–OC association for OC dynamics in different boreal lake sediments, we compared the content of Fe-bound OC [Fe–OC, defined as citrate bicarbonate dithionite (CBD) extractable OC] and the extent of reductive dissolution of solid-phase Fe and OC at anoxia. We found high among-lake variability in Fe–OC content, and while the amount of Fe–OC was high in three of the lakes (980–1920 µmol g?1), the overall contribution of Fe–OC to the sediment OC pool in all study lakes was not higher than 11%. No linkages between the amount of the Fe–OC pool and lake or sediment characteristics (e.g., pH, DOC concentration, sediment OC content, C:N ratio) could be identified. The observed release of OC from anoxic sediment may be derived from dissolution of Fe–OC in the lake sediments with high Fe–OC, but in other lake sediments, OC release during anoxia exceeded the sediment Fe–OC pool, indicating low contribution of reductive Fe dissolution to OC release from these lake sediments. The range of the investigated boreal lakes reflects the high variability in the size of the sediment Fe–OC pool (0–1920 µmol g?1) and CBD-extractable Fe (123–4050 µmol g?1), which was not mirrored in the extent of reductive dissolution of Fe (18.9–84.6 µmol g?1) and OC (1080–1700 µmol g?1) during anoxia, suggesting that Fe-bound OC may play a minor role for sediment OC release in boreal lakes. However, studies of redox-related OC cycling in boreal lake sediments should consider that the amount of Fe–OC can be high in some lakes.  相似文献   

10.
Altitude encompasses broad environmental gradients that influence the isotopic composition of lake water. We selected 55 lakes in the Eastern Alps along an altitudinal gradient [214–2,532 m above sea level (a.s.l.)] to model the isotopic signal of surface water dependent on intrinsic (lake geomorphometry) and extrinsic (air temperature, precipitation) factors. Ordinary and generalised least squared regression were used for statistical analysis. The isotope signal of lake water was lower in spring than in summer and decreased with altitude (?0.21 δ18O ‰/100 m; ?1.5 δ2H ‰/100 m). This pattern largely depended on temperature and a pseudo-latitude effect. The isotopic signal in monthly precipitation (12 stations; altitudinal gradient 90–2,730 m a.s.l.) generally showed the expected pattern of less enriched values with altitude; however, unusual values were related to weather anomalies. The local meteoric water line was similar to the global meteoric water line as shown by overlapping confidence intervals. By discriminating different elevational bands, we could show that high elevation lakes (>1,500 m a.s.l.) experience different patterns of evaporation with respect to low elevation lakes (<1,500 m a.s.l.). Our study showed that lakes have a unique isotopic fingerprint along an altitudinal gradient, potentially useful for tracing ecological processes and for paleoclimatic studies.  相似文献   

11.
Mean global air temperatures have steadily increased during recent decades, resulting in an earlier timing of lake ice breakup. In Sweden’s largest lakes, Vänern and Vättern, the breakup of ice has occurred considerably earlier since 1979 and ice-free winters have become more frequent. Comparison between the years when the lakes were ice covered with those when they remained ice-free in terms of 37 lake variables revealed significant differences in water temperatures, sulphate concentrations and the biomass of diatoms in May after ice breakup (P < 0.01). In particular, the biomass of the genus Aulacoseira increased significantly, which may explain increasing complaints about algae that clog fishing-nets, filter-beds and micro-strainers in waterworks in Vänern and Vättern. We assume that Aulacoseira is mainly affected by changes in climate-driven water circulation patterns. In contrast, other observed water quality changes such as changes in sulphate concentration might rather be attributed to changes in atmospheric deposition. To explain water quality changes in Sweden’s largest lakes it is important to consider changes in both climate and atmospheric deposition as well as catchment measures.  相似文献   

12.
I addressed the question how lake and catchment morphometry influences water chemistry and water quality over a large scale of European lakes, and developed the regression equations between most closely related morphometric and water quality indices. I analysed the data of 1,337 lakes included in the European Environment Agency (EEA) database, carrying out separate analyses for three basic lake types: large lakes (area ≥100 km2, 138 lakes), shallow lakes (mean depth ≤3 m, 153 lakes) and large and shallow lakes (area ≥100 km2 and mean depth ≤8 m, 35 lakes). The study revealed that in Europe, the lakes towards North are larger but shallower and have smaller catchment areas than the southern lakes; lakes at higher altitudes are deeper and smaller and have smaller catchment areas than the lowland lakes. Larger lakes have generally larger catchment areas and bigger volumes, and they are deeper than smaller lakes, but the relative depth decreases with increasing surface area. The lakes at higher latitudes have lower alkalinity, pH and conductivity, and also lower concentrations of nitrogen and phosphorus while the concentration of organic matter is higher. In the lakes at higher altitudes, the concentration of organic matter and nutrient contents are lower and water is more transparent than in lowland lakes. In larger lakes with larger catchment area, the alkalinity, pH, conductivity and the concentrations of nutrients and organic matter are generally higher than in smaller lakes with smaller catchments. If the lake is deep and/or its residence time is long, the water is more transparent and the concentrations of chlorophyll a, organic matter and nutrients are lower than in shallower lakes with shorter residence times. The larger the catchment area is with respect to lake depth, area and volume, the lower is the water transparency and the higher are the concentrations of the nutrients, organic matter and chlorophyll as well as pH, alkalinity and conductivity. The links between lake water quality and morphometry become stronger towards large and shallow lakes. Along the decreasing gradients of latitude, altitude and relative depth, the present phosphorus concentration and its deviation from the reference concentration increases.  相似文献   

13.
1. As future climate change is expected to have a major impact on freshwater lake ecosystems, it is important to assess the extent to which changes taking place in freshwater lakes can be attributed to the degree of climate change that has already taken place. 2. To address this issue, it is necessary to examine evidence spanning many decades by combining long‐term observational data sets and palaeolimnological records. 3. Here, we introduce a series of case studies of seven European lakes for which both long‐term data sets and sediment records are available. Most of the sites have been affected by eutrophication and are now in recovery. 4. The studies attempt to disentangle the effects of climate change from those of nutrient pollution and conclude that nutrient pollution is still the dominant factor controlling the trophic state of lakes. 5. At most sites, however, there is also evidence of climate influence related in some cases to natural variability in the climate system, and in others to the trend to higher temperatures over recent decades attributed to anthropogenic warming. 6. More generally and despite some problems, the studies indicate the value of combining limnological and palaeolimnological records in reconstructing lake history and in disentangling the changing role of different pressures on lake ecosystems.  相似文献   

14.
Lakes have an esthetic significance that is particularly important for attracting tourism. In this context, it is often preferable for lakes to have clear water, so many lake managers attempt to achieve clear lake water by various means. However, the lakes of Kashmir Himalaya are undergoing several complex ecological changes due to, for example, increasing tourism, overfishing, and intensive agriculture, which are making these lakes less clear. One such change is the vigorous growth and development of aquatic weeds in the shallow-water areas of Kashmir Himalayan lakes. We thus, investigated the response of Nymphoides peltatum, a rapidly multiplying clonal species, to water depth, in order to determine whether water depth can be used to control the spread of this proliferating macrophyte. Different traits of the given plant species, such as the mean number of ramets, were significantly higher (F = 55.412, p = 0.000) at depth zone D1 (0–100 cm) than at depth zones D2 (101–200 cm) and D3 (201–300 cm). In all of the lakes, mean spacer length—a tool for facilitating plant spread—was observed to be significantly higher (F = 45.890, p = 0.000) at lower water levels (0–100 cm). Also, the reproductive structures (flowers) of N. peltatum showed significant variation with depth (F = 51.909, p = 0.000) and with the lake examined (F = 9.909, p = 0.001). Thus, the results obtained during the present study indicate the importance of water depth in the management of N. peltatum in various Kashmir Himalayan lakes.  相似文献   

15.
Geothermal heat fluxes into the deepest waters of four caldera lakes were measured. Temperature profiles within the stratification period between July and November 2007 allowed a quantification of the acquired heat. Due to their enormous depth, heat input from the lake bed was locally separated from heat fluxes at the surface. In conclusion, a direct measurement of geothermal heat input could be accomplished. Although enhanced geothermal activity could be suspected in all cases, two lakes showed a geothermal heat flux of 0.29 or 0.27 W/m2 (Lake Shikotsu and Lake Tazawa), as found in other regions not affected by volcanism, while both other lakes (Lake Kuttara and Lake Towada) showed a greatly enhanced heat input of 1 or 18.6 W/m2, respectively. In conclusion, within our investigated set, all lakes acquired more heat from the underground than the continental heat flux average. Hence, the heat flux into the lakes from the ground was not dominated by the temperature gradient implied by the inner heat of the earth. Other effects like the general temperature difference of deep lake water and the groundwater or local sources of heat in the underground deliver more important contributions. Obviously the flow of water in the underground can play a decisive role in the heat transport into the deep waters of lakes.  相似文献   

16.
Winter deicing operations occur extensively in mid- to high-latitude metropolitan regions around the world and result in a significant reduction in road accidents. Deicing salts can, however, pose a major threat to water quality and aquatic organisms. In this paper, we examine the utility of Arcellacea (testate amoebae) for monitoring lakes that have become contaminated by winter deicing salts, particularly sodium chloride. We analysed 50 sediment samples and salt-related water property variables (chloride concentrations; conductivity) from 15 lakes in the Greater Toronto Area and adjacent areas of southern Ontario, Canada. The sampled lakes included lakes in proximity to major highways and suburban roads and control lakes in forested settings away from road influences. Samples from the most contaminated lakes, with chloride concentrations in excess of 400 mg/l and conductivities of >800 μS/cm, were dominated by species typically found in brackish and/or inhospitable lake environments and by lower faunal diversities (lowest Shannon diversity index values) than samples with lower readings. Q-R-mode cluster analysis and detrended correspondence analysis (DCA) resulted in the recognition of four assemblage groupings. These reflect varying levels of salt contamination in the study lakes, along with other local influences, including nutrient loading. The response to nutrients can, however, be isolated if the planktic eutrophic indicator species Cucurbitella tricuspis is removed from the counts. The findings show that the group has considerable potential for biomonitoring in salt-contaminated lakes, and their presence in lake sediment cores may provide significant insights into long-term benthic community health, which is integral for remedial efforts.  相似文献   

17.
Lake Mogilnoe (Kildin Island, the Barents Sea) is a marine stratified lake, a refuge for landlocked populations of marine organisms. Unlike other known marine lakes from polar areas, which communicate with the sea by water percolation at the surface, Mogilnoe has a subterranean connection with the sea like tropical and subtropical anchialine lakes. Similarly to some other marine lakes, Mogilnoe has traditionally been considered to be biologically isolated from the sea and subject to little change. We review the current status of the physical features, zooplankton and benthos of Mogilnoe and trace changes that have occurred in the lake since the start of observations in 1894. The anaerobic bottom water layer has expanded by 100 %, while the upper freshwater layer has diminished by 40 %. The species diversity of zooplankton and macrobenthos has halved. The occurrence of Atlantic cod likens Mogilnoe to some other Arctic marine lakes while the presence of large flocks of sea anemones, scyphomedusae and suberitid sponges makes it similar to tropical anchialine lakes. Lake Mogilnoe is not entirely biologically isolated; accidental introduction of species from the sea does occur. We argue that the idealised model of an isolated steady-state ecosystem can be applied to a marine lake with caution. A model of fluctuating abiotic environment and partial biological isolation portrays the real situation better.  相似文献   

18.

Northern lakes are a source of greenhouse gases to the atmosphere and contribute substantially to the global carbon budget. However, the sources of methane (CH4) to northern lakes are poorly constrained limiting our ability to the assess impacts of future Arctic change. Here we present measurements of the natural groundwater tracer, radon, and CH4 in a shallow lake on the Yukon-Kuskokwim Delta, AK and quantify groundwater discharge rates and fluxes of groundwater-derived CH4. We found that groundwater was significantly enriched (2000%) in radon and CH4 relative to lake water. Using a mass balance approach, we calculated average groundwater fluxes of 1.2 ± 0.6 and 4.3 ± 2.0 cm day−1, respectively as conservative and upper limit estimates. Groundwater CH4 fluxes were 7—24 mmol m−2 day−1 and significantly exceeded diffusive air–water CH4 fluxes (1.3–2.3 mmol m−2 day−1) from the lake to the atmosphere, suggesting that groundwater is an important source of CH4 to Arctic lakes and may drive observed CH4 emissions. Isotopic signatures of CH4 were depleted in groundwaters, consistent with microbial production. Higher methane concentrations in groundwater compared to other high latitude lakes were likely the source of the comparatively higher CH4 diffusive fluxes, as compared to those reported previously in high latitude lakes. These findings indicate that deltaic lakes across warmer permafrost regions may act as important hotspots for CH4 release across Arctic landscapes.

  相似文献   

19.
The Anthropocene presents formidable threats to freshwater ecosystems. Lakes are especially vulnerable and important at the same time. They cover only a small area worldwide but harbour high levels of biodiversity and contribute disproportionately to ecosystem services. Lakes differ with respect to their general type (e.g. land-locked, drainage, floodplain and large lakes) and position in the landscape (e.g. highland versus lowland lakes), which contribute to the dynamics of these systems. Lakes should be generally viewed as ‘meta-systems’, whereby biodiversity is strongly affected by species dispersal, and ecosystem dynamics are contributed by the flow of matter and substances among locations in a broader waterscape context. Lake connectivity in the waterscape and position in the landscape determine the degree to which a lake is prone to invasion by non-native species and accumulation of harmful substances. Highly connected lakes low in the landscape accumulate nutrients and pollutants originating from ecosystems higher in the landscape. The monitoring and restoration of lake biodiversity and ecosystem services should consider the fact that a high degree of dynamism is present at local, regional and global scales. However, local and regional monitoring may be plagued by the unpredictability of ecological phenomena, hindering adaptive management of lakes. Although monitoring data are increasingly becoming available to study responses of lakes to global change, we still lack suitable integration of models for entire waterscapes. Research across disciplinary boundaries is needed to address the challenges that lakes face in the Anthropocene because they may play an increasingly important role in harbouring unique aquatic biota as well as providing ecosystem goods and services in the future.  相似文献   

20.
A Guide to the Natural History of Freshwater Lake Bacteria   总被引:11,自引:0,他引:11  
Summary: Freshwater bacteria are at the hub of biogeochemical cycles and control water quality in lakes. Despite this, little is known about the identity and ecology of functionally significant lake bacteria. Molecular studies have identified many abundant lake bacteria, but there is a large variation in the taxonomic or phylogenetic breadths among the methods used for this exploration. Because of this, an inconsistent and overlapping naming structure has developed for freshwater bacteria, creating a significant obstacle to identifying coherent ecological traits among these groups. A discourse that unites the field is sorely needed. Here we present a new freshwater lake phylogeny constructed from all published 16S rRNA gene sequences from lake epilimnia and propose a unifying vocabulary to discuss freshwater taxa. With this new vocabulary in place, we review the current information on the ecology, ecophysiology, and distribution of lake bacteria and highlight newly identified phylotypes. In the second part of our review, we conduct meta-analyses on the compiled data, identifying distribution patterns for bacterial phylotypes among biomes and across environmental gradients in lakes. We conclude by emphasizing the role that this review can play in providing a coherent framework for future studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号