首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Resources in a computational grid system fall under the purview of different administrative domains of varying policies for their usages. Commercial grid offers their services (resources) on use-and-pay basis. Resource management in computational grid, offers a market place for the two prominent grid market players i.e. resource provider and resource consumer. It has been observed that, in the grid, the request for the resources may not be uniform throughout. It fluctuates from very high demand at peak time to low or negligible at off-peak time. This information may be used to fetch the resource utilization and cost benefits out of the grid. The provider would prefer to charge extra for its resources at peak time, whereas users may shift their resources usage preference to off-peak time. This work proposes a model in which the resource provider and consumer play a non-cooperative game at different time-zones and act independently to choose their actions. Some characteristic parameters such as cost, execution time and reliability have been considered to facilitate the job execution. Based on the outcome of the game, the grid cluster offering maximum reliability within the desired execution time and/or cost for the job execution. The model has been simulated for performance evaluation with quite encouraging results.  相似文献   

2.
Local spatio-temporal resource variations can strongly influence the population dynamics of small mammals. This is particularly true on islands which are bottom-up driven systems, lacking higher order predators and with high variability in resource subsidies. The influence of resource fluctuations on animal survival may be mediated by individual movement among habitat patches, but simultaneously analysing survival, resource availability and habitat selection requires sophisticated analytical methods. We use a Bayesian multi-state capture-recapture model to estimate survival and movement probabilities of non-native black rats (Rattus rattus) across three habitats seasonally varying in resource availability. We find that survival varies most strongly with temporal rainfall patterns, overwhelming minor spatial variation among habitats. Surprisingly for a generalist forager, movement between habitats was rare, suggesting individuals do not opportunistically respond to spatial resource subsidy variations. Climate is probably the main driver of rodent population dynamics on islands, and even substantial habitat and seasonal spatial subsidies are overwhelmed in magnitude by predictable annual patterns in resource pulses. Marked variation in survival and capture has important implications for the timing of rat control.  相似文献   

3.
Cloud computing can leverage over-provisioned resources that are wasted in traditional data centers hosting production applications by consolidating tasks with lower QoS and SLA requirements. However, the dramatic fluctuation of workloads with lower QoS and SLA requirements may impact the performance of production applications. Frequent task eviction, killing and rescheduling operations also waste CPU cycles and create overhead. This paper aims to schedule hybrid workloads in the cloud data center to reduce task failures and increase resource utilization. The multi-prediction model, including the ARMA model and the feedback based online AR model, is used to predict the current and the future resource availability. Decision to accept or reject a new task is based on the available resources and task properties. Evaluations show that the scheduler can reduce the host overload and failed tasks by nearly 70%, and increase effective resource utilization by more than 65%. The task delay performance degradation is also acceptable.  相似文献   

4.
The performance of mobile devices including smart phones and laptops is steadily rising as prices plummet sharply. So, mobile devices are changing from being a mere interface for requesting services to becoming computing resources for providing and sharing services due to immeasurably improved performance. With the increasing number of mobile device users, the utilization rate of SNS (Social Networking Service) is also soaring. Applying SNS to the existing computing environment enables members of social network to share computing services without further authentication. To use mobile device as a computing resource, temporary network disconnection caused by user mobility and various HW/SW faults causing service disruption should be considered. Also these issues must be resolved to support mobile users and to provide user requirements for services. Accordingly, we propose fault tolerance and QoS (Quality of Services) scheduling using CAN (Content Addressable Network) in Mobile Social Cloud Computing (MSCC). MSCC is a computing environment that integrates social network-based cloud computing and mobile devices. In the computing environment, a mobile user can, through mobile devices, become a member of a social network through real world relationships. Essentially, members of a social network share cloud service or data with other members without further authentication by using their mobile device. We use CAN as the underlying MSCC to logically manage the locations of mobile devices. Fault tolerance and QoS scheduling consists of four sub-scheduling algorithms: malicious-user filtering, cloud service delivery, QoS provisioning, and replication and load-balancing. Under the proposed scheduling, a mobile device is used as a resource for providing cloud services, faults caused from user mobility or other reasons are tolerated and user requirements for QoS are considered. We simulate scheduling both with and without CAN. The simulation results show that our proposed scheduling algorithm enhances cloud service execution time, finish time and reliability and reduces the cloud service error rate.  相似文献   

5.
Cloud federation has paved the way for cloud service providers (CSP) to collaborate with other CSPs to serve users’ resource requests, which are prohibitively high for any single CSP during peak time. Moreover, to entice different CSPs to participate in federation, it is necessary to maximize the profit of all CSPs involved in the federation. Further, federation enables overloaded CSPs to distribute their load among other underloaded member CSPs of federation by migrating the virtual machines (VM). Migration of VM among member CSPs of federation, also enables to increase the reliability and availability of cloud services on occurrence of faults in the datacenters of CSPs. Thus it becomes important for CSPs to form a federation with other CSPs, in such a way that the migration cost of VMs between CSPs of the same federation is minimized and simultaneously profit of CSPs in federation is maximized. In this paper, we model the problem of forming federation among CSPs as a hedonic coalition game, with a utility function depending on profit and migration cost, with the objective of maximizing the former and minimizing the latter. We propose an algorithm to solve this hedonic game and compare its performance with other existing game-theory based cloud federation formation mechanisms.  相似文献   

6.
Task scheduling is one of the most challenging aspects to improve the overall performance of cloud computing and optimize cloud utilization and Quality of Service (QoS). This paper focuses on Task Scheduling optimization using a novel approach based on Dynamic dispatch Queues (TSDQ) and hybrid meta-heuristic algorithms. We propose two hybrid meta-heuristic algorithms, the first one using Fuzzy Logic with Particle Swarm Optimization algorithm (TSDQ-FLPSO), the second one using Simulated Annealing with Particle Swarm Optimization algorithm (TSDQ-SAPSO). Several experiments have been carried out based on an open source simulator (CloudSim) using synthetic and real data sets from real systems. The experimental results demonstrate the effectiveness of the proposed approach and the optimal results is provided using TSDQ-FLPSO compared to TSDQ-SAPSO and other existing scheduling algorithms especially in a high dimensional problem. The TSDQ-FLPSO algorithm shows a great advantage in terms of waiting time, queue length, makespan, cost, resource utilization, degree of imbalance, and load balancing.  相似文献   

7.
The emergence of cloud computing has made it become an attractive solution for large-scale data processing and storage applications. Cloud infrastructures provide users a remote access to powerful computing capacity, large storage space and high network bandwidth to deploy various applications. With the support of cloud computing, many large-scale applications have been migrated to cloud infrastructures instead of running on in-house local servers. Among these applications, continuous write applications (CWAs) such as online surveillance systems, can significantly benefit due to the flexibility and advantages of cloud computing. However, with specific characteristics such as continuous data writing and processing, and high level demand of data availability, cloud service providers prefer to use sophisticated models for provisioning resources to meet CWAs’ demands while minimizing the operational cost of the infrastructure. In this paper, we present a novel architecture of multiple cloud service providers (CSPs) or commonly referred to as Cloud-of-Clouds. Based on this architecture, we propose two operational cost-aware algorithms for provisioning cloud resources for CWAs, namely neighboring optimal resource provisioning algorithm and global optimal resource provisioning algorithm, in order to minimize the operational cost and thereby maximizing the revenue of CSPs. We validate the proposed algorithms through comprehensive simulations. The two proposed algorithms are compared against each other to assess their effectiveness, and with a commonly used and practically viable round-robin approach. The results demonstrate that NORPA and GORPA outperform the conventional round-robin algorithm by reducing the operational cost by up to 28 and 57 %, respectively. The low complexity of the proposed cost-aware algorithms allows us to apply it to a realistic Cloud-of-Clouds environment in industry as well as academia.  相似文献   

8.
Recently, there has been a significant increase in the use of cloud-based services that are offered in software as a service (SaaS) models by SaaS providers, and irregular access of different users to these cloud services leads to fluctuations in the demand workload. It is difficult to determine the suitable amount of resources required to run cloud services in response to the varying workloads, and this may lead to undesirable states of over-provisioning and under-provisioning. In this paper, we address improvements to resource provisioning for cloud services by proposing an autonomic resource provisioning approach that is based on the concept of the control monitor-analyze-plan-execute (MAPE) loop, and we design a resource provisioning framework for cloud environments. The experimental results show that the proposed approach reduces the total cost by up to 35 %, the number of service level agreement (SLA) violations by up to 40 %, and increases the resource utilization by up to 25 % compared with the other approaches.  相似文献   

9.
The science cloud paradigm has been actively developed and investigated, but still requires a suitable model for science cloud system in order to support increasing scientific computation needs with high performance. This paper presents an effective provisioning model of science cloud, particularly for large-scale high throughput computing applications. In this model, we utilize job traces where a statistical method is applied to pick the most influential features to improve application performance. With these features, a system determines where VM is deployed (allocation) and which instance type is proper (provisioning). An adaptive evaluation step which is subsequent to the job execution enables our model to adapt to dynamical computing environments. We show performance achievements by comparing the proposed model with other policies through experiments and expect noticeable improvements on performance as well as reduction of cost from resource consumption through our model.  相似文献   

10.
Barrier islands on the north coast of the Gulf of Mexico are an internationally important coastal resource. Each spring hundreds of thousands of Nearctic-Neotropical songbirds crossing the Gulf of Mexico during spring migration use these islands because they provide the first landfall for individuals following a trans-Gulf migratory route. The effects of climate change, particularly sea level rise, may negatively impact habitat availability for migrants on barrier islands. Our objectives were (1) to confirm the use of St. George Island, Florida by trans-Gulf migrants and (2) to determine whether forested stopover habitat will be available for migrants on St. George Island following sea level rise. We used avian transect data, geographic information systems, remote sensing, and simulation modelling to investigate the potential effects of three different sea level rise scenarios (0.28 m, 0.82 m, and 2 m) on habitat availability for trans-Gulf migrants. We found considerable use of the island by spring trans-Gulf migrants. Migrants were most abundant in areas with low elevation, high canopy height, and high coverage of forests and scrub/shrub. A substantial percentage of forest (44%) will be lost by 2100 assuming moderate sea level rise (0.82 m). Thus, as sea level rise progresses, less forests will be available for migrants during stopover. Many migratory bird species’ populations are declining, and degradation of barrier island stopover habitat may further increase the cost of migration for many individuals. To preserve this coastal resource, conservation and wise management of migratory stopover areas, especially near ecological barriers like the Gulf of Mexico, will be essential as sea levels rise.  相似文献   

11.

In recent years, cloud computing can be considered an emerging technology that can share resources with users. Because cloud computing is on-demand, efficient use of resources such as memory, processors, bandwidth, etc., is a big challenge. Despite the advantages of cloud computing, sometimes it is not a proper choice due to its delay in responding appropriately to existing requests, which led to the need for another technology called fog computing. Fog computing reduces traffic and time lags by expanding cloud services to the network and closer to users. It can schedule resources with higher efficiency and utilize them to impact the user's experience dramatically. This paper aims to survey some studies that have been done in the field of scheduling in fog/cloud computing environments. The focus of this survey is on published studies between 2015 and 2021 in journals or conferences. We selected 71 studies in a systematic literature review (SLR) from four major scientific databases based on their relation to our paper. We classified these studies into five categories based on their traced parameters and their focus area. This classification comprises 1—performance 2—energy efficiency, 3—resource utilization, 4—performance and energy efficiency, and 5—performance and resource utilization simultaneously. 42.3% of the studies focused on performance, 9.9% on energy efficiency, 7.0% on resource utilization, 21.1% on both performance and energy efficiency, and 19.7% on both performance and resource utilization. Finally, we present challenges and open issues in the resource scheduling methods in fog/cloud computing environments.

  相似文献   

12.
Cloud services are on-demand services provided to end-users over the Internet and hosted by cloud service providers. A cloud service consists of a set of interacting applications/processes running on one or more interconnected VMs. Organizations are increasingly using cloud services as a cost-effective means for outsourcing their IT departments. However, cloud service availability is not guaranteed by cloud service providers, especially in the event of anomalous circumstances that spontaneously disrupt availability including natural disasters, power failure, and cybersecurity attacks. In this paper, we propose a framework for developing intelligent systems that can monitor and migrate cloud services to maximize their availability in case of cloud disruption. The framework connects an autonomic computing agent to the cloud to automatically migrate cloud services based on anticipated cloud disruption. The autonomic agent employs a modular design to facilitate the incorporation of different techniques for deciding when to migrate cloud services, what cloud services to migrate, and where to migrate the selected cloud services. We incorporated a virtual machine selection algorithm for deciding what cloud services to migrate that maximizes the availability of high priority services during migration under time and network bandwidth constraints. We implemented the framework and conducted experiments to evaluate the performance of the underlying techniques. Based on the experiments, the use of this framework results in less down-time due to migration, thereby leading to reduced cloud service disruption.  相似文献   

13.
The rapid growth of published cloud services in the Internet makes the service selection and recommendation a challenging task for both users and service providers. In cloud environments, software re services collaborate with other complementary services to provide complete solutions to end users. The service selection is performed based on QoS requirements submitted by end users. Software providers alone cannot guarantee users’ QoS requirements. These requirements must be end-to-end, representing all collaborating services in a cloud solution. In this paper, we propose a prediction model to compute end-to-end QoS values for vertically composed services which are composed of three types of cloud services: software (SaaS), infrastructure (IaaS) and data (DaaS) services. These values can be used during the service selection and recommendation process. Our model exploits historical QoS values and cloud service and user information to predict unknown end-to-end QoS values of composite services. The experiments demonstrate that our proposed model outperforms other prediction models in terms of the prediction accuracy. We also study the impact of different parameters on the prediction results. In the experiments, we used real cloud services’ QoS data collected using our developed QoS monitoring and collecting system.  相似文献   

14.
One of the most intriguing environmental gradients connected with variation in diversity is ecosystem productivity. The role of diversity in ecosystems is pivotal, because species richness can be both a cause and a consequence of primary production. However, the mechanisms behind the varying productivity-diversity relationships (PDR) remain poorly understood. Moreover, large-scale studies on PDR across taxa are urgently needed. Here, we examined the relationships between resource supply and phyto-, bacterio-, and zooplankton richness in 100 small boreal lakes. We studied the PDR locally within the drainage systems and regionally across the systems. Second, we studied the relationships between resource availability, species richness, biomass and resource ratio (N:P) in phytoplankton communities using Structural Equation Modeling (SEM) for testing the multivariate hypothesis of PDR. At the local scale, the PDR showed variable patterns ranging from positive linear and unimodal to negative linear relationships for all planktonic groups. At the regional scale, PDRs were significantly linear and positive for phyto- and zooplankton. Phytoplankton richness and the amount of chlorophyll a showed a positive linear relationship indicating that communities consisting of higher number of species were able to produce higher levels of biomass. According to the SEM, phytoplankton biomass was largely related to resource availability, yet there was a pathway via community richness. Finally, we found that species richness at all trophic levels was correlated with several environmental factors, and was also related to richness at the other trophic levels. This study showed that the PDRs in freshwaters show scale-dependency. We also documented that the PDR complies with the multivariate model showing that plant biomass is not mirroring merely the resource availability, but is also influenced by richness. This highlights the need for conserving diversity in order to maintain ecosystem processes in freshwaters.  相似文献   

15.
With the advances of network function virtualization and cloud computing technologies, a number of network services are implemented across data centers by creating a service chain using different virtual network functions (VNFs) running on virtual machines. Due to the complexity of network infrastructure, creating a service chain requires high operational cost especially in carrier-grade network service providers and supporting stringent QoS requirements from users is also a complicated task. There have been various research efforts to address these problems that only focus on one aspect of optimization goal either from users such as latency minimization and QoS based optimization, or from service providers such as resource optimization and cost minimization. However, meeting the requirements both from users and service providers efficiently is still a challenging issue. This paper proposes a VNF placement algorithm called VNF-EQ that allows users to meet their service latency requirements, while minimizing the energy consumption at the same time. The proposed algorithm is dynamic in a sense that the locations or the service chains of VNFs are reconfigured to minimize the energy consumption when the traffic passing through the chain falls below a pre-defined threshold. We use genetic algorithm to formulate this problem because it is a variation of the multi-constrained path selection problem known as NP-complete. The benchmarking results show that the proposed approach outperforms other heuristic algorithms by as much as 49% and reduces the energy consumptions by rearranging VNFs.  相似文献   

16.
Resource availability largely determines the distribution and behaviour of organisms. In plant–pollinator communities, availability of floral resources may change so rapidly that pollinator individuals can benefit from switching between multiple resources, i.e. different flowering plant species. Insect pollinator individuals of a given generation often occur in different time windows during the reproductive season. This temporal variation in individual occurrences, together with the rapidly changing resource availability, may lead individuals of the same population to encounter and use different resources, resulting in an apparent individual specialisation. We hypothesized, that 1) individual pollinators change their resource use (flower visitation) during their lifetime according to the changing availability of floral resources, and that 2) temporal variation in individual occurrences of pollinators and in resource availability will partly explain individual specialisation. To test these hypotheses, we observed flower visitations of individually marked clouded Apollo butterflies Parnassius mnemosyne during one reproductive season. We found temporal changes in lifetime individual resource use that followed the changes in resource availability, indicating that butterflies can adjust foraging to varying resource availability. Individuals differed considerably in their resource use. This variation was partly explained by temporal variation in both floral resource availability and temporal occurrence of individual butterflies. We suggest the butterfly as a sequential specialist, i.e. short‐term specialist and long‐term generalist. This foraging plasticity can be essential for short‐living insect pollinators in rapidly changing environments. Although flowering dynamics do not fully explain the variability in foraging, our results highlight the importance of temporal dimension in resource use studies. Ultimately, the relative pace of environmental change compared to individual lifespan may be a key factor in resource use plasticity.  相似文献   

17.
Cheng  Feng  Huang  Yifeng  Tanpure  Bhavana  Sawalani  Pawan  Cheng  Long  Liu  Cong 《Cluster computing》2022,25(1):619-631

As the services provided by cloud vendors are providing better performance, achieving auto-scaling, load-balancing, and optimized performance along with low infrastructure maintenance, more and more companies migrate their services to the cloud. Since the cloud workload is dynamic and complex, scheduling the jobs submitted by users in an effective way is proving to be a challenging task. Although a lot of advanced job scheduling approaches have been proposed in the past years, almost all of them are designed to handle batch jobs rather than real-time workloads, such as that user requests are submitted at any time with any amount of numbers. In this work, we have proposed a Deep Reinforcement Learning (DRL) based job scheduler that dispatches the jobs in real time to tackle this problem. Specifically, we focus on scheduling user requests in such a way as to provide the quality of service (QoS) to the end-user along with a significant reduction of the cost spent on the execution of jobs on the virtual instances. We have implemented our method by Deep Q-learning Network (DQN) model, and our experimental results demonstrate that our approach can significantly outperform the commonly used real-time scheduling algorithms.

  相似文献   

18.
Resource utilization function (RUF) models permit evaluation of potential habitat for endangered species; ideally such models should be evaluated before use in management decision-making. We evaluated the predictive capabilities of a previously developed black-footed ferret (Mustela nigripes) RUF. Using the population-level RUF, generated from ferret observations at an adjacent yet distinct colony, we predicted the distribution of ferrets within a black-tailed prairie dog (Cynomys ludovicianus) colony in the Conata Basin, South Dakota, USA. We evaluated model performance, using data collected during post-breeding spotlight surveys (2007–2008) by assessing model agreement via weighted compositional analysis and count-metrics. Compositional analysis of home range use and colony-level availability, and core area use and home range availability, demonstrated ferret selection of the predicted Very high and High occurrence categories in 2007 and 2008. Simple count-metrics corroborated these findings and suggested selection of the Very high category in 2007 and the Very high and High categories in 2008. Collectively, these results suggested that the RUF was useful in predicting occurrence and intensity of space use of ferrets at our study site, the 2 objectives of the RUF. Application of this validated RUF would increase the resolution of habitat evaluations, permitting prediction of the distribution of ferrets within distinct colonies. Additional model evaluation at other sites, on other black-tailed prairie dog colonies of varying resource configuration and size, would increase understanding of influences upon model performance and the general utility of the RUF. © 2011 The Wildlife Society.  相似文献   

19.
Efficient production of algal biofuels could reduce dependence on foreign oil by providing a domestic renewable energy source. Moreover, algae-based biofuels are attractive for their large oil yield potential despite decreased land use and natural resource (e.g., water and nutrients) requirements compared to terrestrial energy crops. Important factors controlling algal lipid productivity include temperature, nutrient availability, salinity, pH, and the light-to-biomass conversion rate. Computational approaches allow for inexpensive predictions of algae growth kinetics for various bioreactor sizes and geometries without the need for multiple, expensive measurement systems. Parametric studies of algal species include serial experiments that use off-line monitoring of growth and lipid levels. Such approaches are time consuming and usually incomplete, and studies on the effect of the interaction between various parameters on algal growth are currently lacking. However, these are the necessary precursors for computational models, which currently lack the data necessary to accurately simulate and predict algae growth. In this work, we conduct a lab-scale parametric study of the marine alga Nannochloropsis salina and apply the findings to our physics-based computational algae growth model. We then compare results from the model with experiments conducted in a greenhouse tank and an outdoor, open-channel raceway pond. Results show that the computational model effectively predicts algae growth in systems across varying scale and identifies the causes for reductions in algal productivities. Applying the model facilitates optimization of pond designs and improvements in strain selection.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号