首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Analysis by polyacrylamide gel electrophoresis of the proteins coded by a λtonB transducing phage, after infection of UV-irradiated bacteria, revealed the presence of at least 7 new polypeptides. Three of these were identified as proteins of the trp operon whilst three others were deleted by a spontaneous mutation in the tonB region carried by the phage. A single polypeptide, molecular weight 40,000 was absent from a phage carrying a proflavine induced mutation in tonB. We conclude that this protein, which was localised in the inner membrane by sarkosyl fractionation of the envelope, is the tonB product.  相似文献   

3.
The 325-residue OmpA protein is one of the major outer membrane proteins of Escherichia coli. It serves as the receptor for several T-even-like phages and is required for the action of certain colicins and for the stabilization of mating aggregates in conjugation. We have isolated two mutant alleles of the cloned ompA gene which produce a protein that no longer functions as a phage receptor. Bacteria possessing the mutant proteins were unable to bind the phages, either reversibly or irreversibly. However, both proteins still functioned in conjugation, and one of them conferred colicin L sensitivity. DNA sequence analysis showed that the phage-resistant, colicin-sensitive phenotype exhibited by one mutant was due to the amino acid substitution Gly leads to Arg at position 70. The second mutant, which contained a tandem duplication, encodes a larger product with 8 additional amino acid residues, 7 of which are a repeat of the sequence between residues 57 and 63. In contrast to the wild-type OmpA protein, this derivative was partially digested by pronase when intact cells were treated with the enzyme. The protease removed 64 NH2-terminal residues, thereby indicating that this part of the protein is exposed to the outside. It is argued that the phage receptor site is most likely situated around residues 60 to 70 of the OmpA protein and that the alterations characterized have directly affected this site.  相似文献   

4.
C K DasGupta  A Guha 《Gene》1978,3(3):233-246
  相似文献   

5.
TolC is a multifunctional outer membrane protein of Escherichia coli that folds into a novel alpha-beta-barrel conformation absent in the other model outer membrane proteins used in assembly studies. The data presented in this work show that the unique folded structure of TolC reflects a unique assembly pathway. During its assembly, the newly translocated nascent TolC monomers are released in the periplasm. Maturation of these nascent monomers, and possibly their oligomerization, in the periplasm precedes their insertion in the outer membrane. The completion of the assembly process is signaled by the development of a characteristic proteinase K-resistant fragment generated by cleavage at a single, periplasmically exposed, protease-sensitive site of the membrane-anchored trimer. None of the assembly steps of TolC is affected by known folding factors, such as SurA, Skp, and lipopolysaccharide, which have profound effects on the assembly of other model trimeric outer membrane proteins. Two assembly-defective TolC mutants were isolated and characterized. One of the mutants (TolC(I106N)) was defective in the folding of nascent monomers, while the other (TolC(S350F)) was impaired in steps involving trimerization and membrane insertion of folded monomers.  相似文献   

6.
7.
The consequences of limiting the rate of elongation of protein synthesis in vitro have been examined. The concentration of Trp-tRNATrp was manipulated by varying the amount of exogenously added tryptophan in extracts from an Escherichia coli mutant in which the tryptophanyl-tRNA-synthetase has a higher KM for tryptophan. The evidence presented supports the hypothesis that variation of the rate of elongation can be a means of regulating gene expression, both directly, by slowing or accelerating the rate of protein synthesis and indirectly, by leading to varying three-dimensional structures of the messenger RNA when progress of the ribosomes is perturbed. The data can be described by assuming that if a specific transfer RNA is limiting, to a first approximation the overall rate of protein synthesis is determined by the relative rate of reading past an individual codon requiring that tRNA raised to the power of how many times that codon appears in the message. This could be explained by a model in which, with a significant probability, the ribosome stops protein synthesis prematurely at these codons, falls off the messenger RNA and is available for further rounds of protein synthesis. In agreement with other work, evidence is also presented that suggests that under the most drastic available limitation of the elongation rate, that is, starvation for a given amino acid, reading through the corresponding “hungry codon” occurs in vitro at a surprisingly high rate, possibly due to mistranslation.  相似文献   

8.
9.
The pigment content of a B800–850 light-harvesting pigment-protein complex isolated from three different stains of Rhodopseudomonas sphaeroides has been determined. In each case the ratio of carotenoid to bacteriochlorophyll present is very nearly 1 : 3 an no specificity with regard to carotenoid type was observed.The fourth derivative of the infra-red absorption bands of the complex was determined and it is concluded that the minimal functional unit of B800–850 complex consists of 1 carotenoid molecule and three bacteriochlorophyll molecules. The data presented here, together with the previous study of Austin, (Austin, L.A. (1976) Ph.D. Thesis, University of California at Berkeley, Lawrence Berkeley Laboratory Report No. LBL 5512) suggest that the 800 nm absorption band represents one of these bacteriochlorophyll molecules while the remaining two bacteriochlorophylls are responsible for the 850 nm band.The absorption spectra and circular dichroism spectra of the complexes suggests that their structure has not been greatly altered during the purification.  相似文献   

10.
We have identified the gene for a major component of the prohead core of bacteriophage T4, the 17K protein. The gene, which we call gene 68, lies between genes 67 and 21 in the major cluster of T4 head genes. All of the genes in this region of the T4 genome have overlapping initiation and termination codons with the sequence T-A-A-T-G. We present the DNA sequence of the gene and show that it codes for a protein containing 141 amino acids with an acidic amino-terminal half and a basic carboxyl terminus. Antibodies prepared against the 17K protein were used to show that it is cleaved by the phage-coded gp21 protease during head maturation and that most of the protein leaves the head after cleavage. A frameshift mutation of the gene was constructed in vitro and recombined back into the phage genome. The mutated phages had a drastically reduced burst size and about half of the particles produced were morphologically abnormal, having isometric rather than prolate heads. Thus, the 17K protein is involved in head shape determination but is only semi-essential for T4 growth.  相似文献   

11.
A Molla  A Charbit  A Le Guern  A Ryter  M Hofnung 《Biochemistry》1989,28(20):8234-8241
LamB, an outer membrane protein from Escherichia coli K12, is involved in the transport of maltose and maltodextrins across the outer membrane and constitutes a receptor for a number of bacteriophages. A recent folding model proposes that LamB spans the outer membrane through a number of transmembranous segments separated by regions exposed either to the cell exterior or to the periplasm. This model is essentially based on predictions of structure and genetic arguments relying on the hypothesis that the mutations studied did not alter the folding of the protein. In order to obtain direct evidence with the unaltered protein, we elicited polyclonal antibodies against synthetic peptides corresponding to several LamB sequences. We chose four regions. Three of them [aa 147-161 (peptide 2), aa 371-385 (peptide 3), and aa 399-413 (peptide 4)] are predicted to face the outside of the cell, and the fourth (aa 19-33 (peptide 1)] is predicted to be periplasmic. By immunoblotting against extracts of various mutants, these antibodies were shown to be specific for LamB and targeted to the selected regions. In some cases, the recognition sites for antibodies were narrowed down to parts of a region. In vivo, on intact cells, anti-peptides 2, 3, and 4 reacted with LamB in an ELISA; this confirmed that regions of peptide 2 and 3 are located, at least in part, at the cell exterior and provided the first proof for a similar, situation of the region of peptide 4. Under the same conditions, anti-peptide 1 did not react with LamB.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Membrane vesicles have been isolated by a modified procedure from Rhodopseudomonas sphaeroides, grown phototrophically under high light intensity. In addition,chromatophores have been isolated from this organism grown phototrophically with low light intensities.Structural, chemical and functional properties of both preparations have been investigated and compared. The orientation of the membrane preparations has been studied by freeze-etch electron microscopy, the localization of cytochrome c2, and light-driven active transport of amino acids and Ca2+. The results demonstrate that the orientation of the vesicle membrane is the same as the cytoplasmic membrane of intact cells; the membranes in chromatophores, however, have an inverted orientation.On a dry weight basis, the membrane vesicles contain less protein, carotenoids and bacteriochlorophyll and more lipids than do chromatophores. Qualitatively, however, the composition of both preparations is similar.It is concluded that the intracytoplasmic structures from which the chromatophores are derived are structurally and functionally similar to (and most likely continuous with) the cytoplasmic membranes from which the vesicles are derived.  相似文献   

13.
Advanced techniques for observing protein localization in live bacteria show that the distributions are dynamic. For technical reasons, most such techniques have not been applied to outer membrane proteins in Gram-negative bacteria. We have developed two novel live-cell imaging techniques to observe the surface distribution of LamB, an abundant integral outer membrane protein in Escherichia coli responsible for maltose uptake and for attachment of bacteriophage lambda. Using fluorescently labelled bacteriophage lambda tails, we quantitatively described the spatial distribution and dynamic movement of LamB in the outer membrane. LamB accumulated in spiral patterns. The distribution depended on cell length and changed rapidly. The majority of the protein diffused along spirals extending across the cell body. Tracking single particles, we found that there are two populations of LamB--one shows very restricted diffusion and the other shows greater mobility. The presence of two populations recalls the partitioning of eukaryotic membrane proteins between 'mobile' and 'immobile' populations. In this study, we have demonstrated that LamB moves along the bacterial surface and that these movements are restricted by an underlying dynamic spiral pattern.  相似文献   

14.
We have directly measured the stoichiometry of maltodextrin-binding sites in LamB. Scatchard plots and computer fitting of flow dialysis (rate-of-dialysis) experiments clearly establish three independent binding sites per LamB trimer, with a dissociation constant of approximately 60 microM for maltoheptaose. The current model for LamB's function as a specific pore is discussed with respect to the symmetry in LamB's kinetic properties and the implications of our results.  相似文献   

15.
A number of T-even-like bacteriophages use the outer membrane protein OmpA of Escherichia coli as a receptor. We had previously analyzed a series of ompA mutants which are resistant to such phages and which still produce the OmpA protein (R. Morona, M. Klose, and U. Henning, J. Bacteriol. 159:570-578, 1984). Mutational alterations were found near or at residues 70, 110 and 154. Based on these and other results a model was proposed showing the amino-terminal half of the 325-residue protein crossing the outer membrane repeatedly and being cell surface exposed near residues 25, 70, 110, and 154. We characterized, by DNA sequence analysis, an additional 14 independently isolated phage-resistant ompA mutants which still synthesize the protein. Six of the mutants had alterations identical to the ones described before. The other eight mutants possessed seven new alterations: Ile-24----Asn, Gly-28----Val, deletion of Glu-68, Gly-70----Cys, Ser-108----Phe, Ser-108----Pro, and Gly-154----Asp (two isolates). Only the latter alteration resulted in a conjugation-deficient phenotype. The substitutions at Ile-24 and Gly-28 confirmed the expectation that this area of the protein also participates in its phage receptor region. It is unlikely that still other such sites of the protein are involved in the binding of phage, and it appears that the phage receptor area of the protein has now been characterized completely.  相似文献   

16.
The 325-residue OmpA protein is one of the major outer membrane proteins of Escherichia coli K-12. A model, in which this protein crosses the membrane eight times in an antiparallel beta-sheet conformation and in which regions around amino acids 25, 70, 110 and 154 are exposed at the cell surface, had been proposed. Linkers were inserted into the ompA gene with the result that OmpA proteins, carrying non-OmpA sequences between residues 153 and 154 or 160 and 162, were synthesized. Intact cells possessing these proteins were treated with proteases. Insertion of 15 residues between residues 153 and 154 made the protein sensitive to proteinase K and the sizes of the two cleavage products were those expected following proteolysis at the area of the insertion. Addition of at least 17 residues between residues 160 and 162 left the protein completely refractory to protease action. Thus, the former area is cell surface exposed while the latter area appears not to be. The insertions did not cause a decrease in the concentration of the hybrid proteins as compared to that of the OmpA protein, and in neither case was synthesis of the protein deleterious to cell growth. It is suggested that this method may serve to carry peptides of practical interest to the cell surface and that it can be used to probe surface-located regions of other membrane proteins.  相似文献   

17.
We have analyzed eight new phage-resistant missense mutations in lamB. These mutations identify five new amino acid residues essential for phage lambda adsorption. Two mutations at positions 245 and 382 affect residues which were previously identified, but lead to different amino acid changes. Three mutations at residues 163, 164, and 250 enlarge and confirm previously proposed phage receptor sites. Two different mutations at residue 259 and one at 18 alter residues previously suggested as facing the periplasmic face. The mutation at residue 18 implicates for the first time the amino-terminal region of the LamB protein in phage adsorption. The results are discussed in terms of the topology of the LamB protein.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号