首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Using a combination of banding techniques, we examined two atypical 21;22 translocations, 46,XX or XY,t(21;22)(p11;q11). In situ chromosomal hybridization of a probe for the constant region of the lambda light chain locus demonstrated that the 22q11 breakpoints of both rearrangements were proximal to the C lambda gene cluster. These studies permitted us to distinguish the 22q11 breakpoints of these translocations from the breakpoint of the 22q--chromosome of chronic myelogenous leukemia.  相似文献   

4.
The majority of constitutional reciprocal translocations appear to be unique rearrangements arising from independent events. However, a small number of translocations are recurrent, most significantly the t(11;22)(q23;q11). Among large series of translocations there may be multiple independently ascertained cases with the same cytogenetic breakpoints. Some of these could represent additional recurrent rearrangements, alternatively they could be identical by descent (IBD) or have subtly different breakpoints when examined under higher resolution. We have used molecular breakpoint mapping and haplotyping to determine the origin of three pairs of reciprocal constitutional translocations, each with the same cytogenetic breakpoints. FISH mapping showed one pair to have different breakpoints and thus to be distinct rearrangements. Another pair of translocations were IBD with identical breakpoint intervals and highly conserved haplotypes on the derived chromosomes. The third pair, t(4;11)(p16.2;p15.4), had the same breakpoint intervals by aCGH and fosmid mapping but had very different haplotypes, therefore they represent a novel recurrent translocation. Unlike the t(11;22)(q23;q11), the formation of the t(4;11)(p16.2;p15.4) may have involved segmental duplications and sequence homology at the breakpoints. Additional examples of recurrent translocations could be identified if the resources were available to study more translocations using the approaches described here. However, like the t(4;11)(p16.2;p15.4), such translocations are likely to be rare with the t(11;22) remaining the only common recurrent constitutional reciprocal translocation.  相似文献   

5.
Over 20 females have been reported to carry reciprocal X; autosome translocations with breakpoints in Xp21 and to suffer from Duchenne muscular dystrophy (DMD). We have positioned nine of these breakpoints with respect to the Duchenne gene by mapping probes from the DMD region against a panel of somatic cell hybrids, each containing one of the translocation chromosomes from a different female patient; further information has also been obtained by in situ hybridization, including the breakpoint location in a tenth DMD patient. We have also characterized two translocation breakpoints that lie in the same chromosomal region but which are not associated with the expression of DMD. All the DMD-associated translocation breakpoints examined lie at several sites within the DMD locus and between the two non-DMD breakpoints.  相似文献   

6.
7.
8.
9.
10.
The hallmark of chronic myelogenous leukemia (CML) is a translocation between chromosomes 9 and 22 - the Philadelphia (Ph') translocation. The translocation is also found in acute lymphocytic leukemia (ALL) albeit in a lower percentage of patients. The breakpoint on chromosome 22 is located within the BCR gene: in CML, breakpoints are clustered within 5.8 kb of DNA, the major breakpoint cluster region (Mbcr). In ALL, breakpoints have been reported within the Mbcr but also in more 5' regions encompassing the BCR gene. To characterize the latter breakpoints, we have molecularly cloned and mapped the entire gene, which encompasses approximately 130 kb of DNA. Mbcr negative, Ph'-positive ALL breakpoints were not distributed at random within the gene but rather were found exclusively within the 3' half of the first BCR gene intron. In contrast to the Mbcr, which is limited to a region of 5.8 kb, this part of the intron has a size of 35 kb. Translocation breakpoints in this region appear to be specific for ALL, since it was not rearranged in clinically well-defined CML specimens nor in any other tumor DNA samples examined.  相似文献   

11.
The RUNX1/AML1 gene is the most frequent target for chromosomal translocation, and often identified as a site for reciprocal rearrangement of chromosomes 8 and 21 in patients with acute myelogenous leukemia. Virtually all chromosome translocations in leukemia show no consistent homologous sequences at the breakpoint regions. However, specific chromatin elements (DNase I and topoisomerase II cleavage) have been found at the breakpoints of some genes suggesting that structural motifs are determinant for the double strand DNA-breaks. We analyzed the chromatin organization at intron 5 of the RUNX1 gene where all the sequenced breakpoints involved in t(8;21) have been mapped. Using chromatin immunoprecipitation assays we show that chromatin organization at intron 5 of the RUNX1 gene is different in HL-60 and HeLa cells. Two distinct features mark the intron 5 in cells expressing RUNX1: a complete lack or significantly reduced levels of Histone H1 and enrichment of hyperacetylated histone H3. Strikingly, induction of DNA damage resulted in formation of t(8;21) in HL-60 but not in HeLa cells. Taken together, our results suggest that H1 depletion and/or histone H3 hyperacetylation may have a linkage with an increase susceptibility of specific chromosomal regions to undergo translocations.  相似文献   

12.
Zhang Y  Rowley JD 《DNA Repair》2006,5(9-10):1282-1297
Recurring chromosome abnormalities are strongly associated with certain subtypes of leukemia, lymphoma and sarcomas. More recently, their potential involvement in carcinomas, i.e. prostate cancer, has been recognized. They are among the most important factors in determining disease prognosis, and in many cases, identification of these chromosome abnormalities is crucial in selecting appropriate treatment protocols. Chromosome translocations are frequently observed in both de novo and therapy-related acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS). The mechanisms that result in such chromosome translocations in leukemia and other cancers are largely unknown. Genomic breakpoints in all the common chromosome translocations in leukemia, including t(4;11), t(9;11), t(8;21), inv(16), t(15;17), t(12;21), t(1;19) and t(9;22), have been cloned. Genomic breakpoints tend to cluster in certain intronic regions of the relevant genes including MLL, AF4, AF9, AML1, ETO, CBFB, MYHI1, PML, RARA, TEL, E2A, PBX1, BCR and ABL. However, whereas the genomic breakpoints in MLL tend to cluster in the 5' portion of the 8.3 kb breakpoint cluster region (BCR) in de novo and adult patients and in the 3' portion in infant leukemia patients and t-AML patients, those in both the AML1 and ETO genes occur in the same clustered regions in both de novo and t-AML patients. These differences may reflect differences in the mechanisms involved in the formation of the translocations. Specific chromatin structural elements, such as in vivo topoisomerase II (topo II) cleavage sites, DNase I hypersensitive sites and scaffold attachment regions (SARs) have been mapped in the breakpoint regions of the relevant genes. Strong in vivo topo II cleavage sites and DNase I hypersensitive sites often co-localize with each other and also with many of the BCRs in most of these genes, whereas SARs are associated with BCRs in MLL, AF4, AF9, AML1, ETO and ABL, but not in the BCR gene. In addition, the BCRs in MLL, AML1 and ETO have the lowest free energy level for unwinding double strand DNA. Virtually all chromosome translocations in leukemia that have been analyzed to date show no consistent homologous sequences at the breakpoints, whereas a strong non-homologous end joining (NHEJ) repair signature exists at all of these chromosome translocation breakpoint junctions; this includes small deletions and duplications in each breakpoint, and micro-homologies and non-template insertions at genomic junctions of each chromosome translocation. Surprisingly, the size of these deletions and duplications in the same translocation is much larger in de novo leukemia than in therapy-related leukemia. We propose a non-homologous chromosome recombination model as one of the mechanisms that results in chromosome translocations in leukemia. The topo II cleavage sites at open chromatin regions (DNase I hypersensitive sites), SARs or the regions with low energy level are vulnerable to certain genotoxic or other agents and become the initial breakage sites, which are followed by an excision end joining repair process.  相似文献   

13.
14.
Mental retardation is a very common and extremely heterogeneous disorder that affects about 3% of the human population. Its molecular basis is largely unknown, but many loci have been mapped to the X chromosome. We report on two mentally retarded females with X;autosome translocations and breakpoints in Xp11, viz., t(X;17)(p11;p13) and t(X;20)(p11;q13). (Fiber-) FISH analysis assigned the breakpoints to different subbands, Xp11.4 and Xp11.23, separated by approximately 8 Mb. High-resolution mapping of the X- chromosome breakpoints using Southern blot hybridization resulted in the isolation of breakpoint-spanning genomic subclones of 3 kb and 0. 5 kb. The Xp11.4 breakpoint is contained within a single copy sequence, whereas the Xp11.23 breakpoint sequence resembles an L1 repetitive element. Several expressed sequences map close to the breakpoints, but none was found to be inactivated. Therefore, mechanisms other than disruption of X-chromosome genes likely cause the phenotypes.  相似文献   

15.
The Philadelphia chromosome is found in more than 90 percent of chronic myeloid leukemia (CML) patients. In most cases, it results from the reciprocal t(9;22)(q34;q11), with the ABL proto-oncogene from 9q34 fused to the breakpoint cluster region (BCR) locus on 22q11. In 5 to 10 percent of patients with CML, the Ph originates from variant translocations, involving various breakpoints in addition to 9q34 and 22q11. Here we report a rare case of a Philadelphia positive CML patient carrying t(5;9)(q13;q34) and deletion of ABL/BCR on der(9) as a separate event.  相似文献   

16.
17.
There are over 20 females with Duchenne or Becker muscular dystrophy (DMD or BMD) who have X-autosome translocations that break the X chromosome within band Xp21. Several of these translocations have been mapped with genomic probes to regions throughout the large (approximately 2000 kb) DMD gene. In this report, a cDNA clone from the 5' end of the gene was used to further map the breakpoints in four X-autosome translocations. A t(X;21) translocation in a patient with BMD and a t(X;1) translocation in a patient with DMD were found to break within a large 110-kb intron between exons 7 and 8. Two other DMD translocations, t(X;5) and t(X;11), were found to break between the first and the second exon of the gene within a presumably large intron (greater than 100 kb). These results demonstrate that all four translocations have disrupted the DMD gene and make it possible to clone and sequence the breakpoints. This will in turn determine whether these translocations occur by chance in these large introns or whether there are sequences that predispose to translocations.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号