首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
In immunocompetent individuals, non-typhoidal Salmonella serovars (NTS) are associated with gastroenteritis, however, there is currently an epidemic of NTS bloodstream infections in sub-Saharan Africa. Plasmodium falciparum malaria is an important risk factor for invasive NTS bloodstream in African children. Here we investigated whether a live, attenuated Salmonella vaccine could be protective in mice, in the setting of concurrent malaria. Surprisingly, mice acutely infected with the nonlethal malaria parasite Plasmodium yoelii 17XNL exhibited a profound loss of protective immunity to NTS, but vaccine-mediated protection was restored after resolution of malaria. Absence of protective immunity during acute malaria correlated with maintenance of antibodies to NTS, but a marked reduction in effector capability of Salmonella-specific CD4 and CD8 T cells. Further, increased expression of the inhibitory molecule PD1 was identified on memory CD4 T cells induced by vaccination. Blockade of IL-10 restored protection against S. Typhimurium, without restoring CD4 T cell effector function. Simultaneous blockade of CTLA-4, LAG3, and PDL1 restored IFN-γ production by vaccine-induced memory CD4 T cells but was not sufficient to restore protection. Together, these data demonstrate that malaria parasite infection induces a temporary loss of an established adaptive immune response via multiple mechanisms, and suggest that in the setting of acute malaria, protection against NTS mediated by live vaccines may be interrupted.  相似文献   

2.
Dendritic cells (DCs) are pivotal in the development of specific T-cell responses to control pathogens, as they govern both the initiation and the polarization of adaptive immunity. To investigate the capacities of migrating DCs to respond to pathogens, we used physiologically generated lymph DCs (L-DCs). The flexible polarization of L-DCs was analysed in response to Salmonella or helminth secretions known to induce different T cell responses. Mature conventional CD1b+ L-DCs showed a predisposition to promote pro-inflammatory (IL-6), pro-Th1 (IL-12p40) and anti-inflammatory (IL-10) responses which were amplified by Salmonella, and limited to only IL-6 induction by helminth secretions. The other major population of L-DCs did not express the CD1b molecule and displayed phenotypic features of immaturity compared to CD1b+ L-DCs. Salmonella infection reduced the constitutive expression of TNF-α and IL-4 mRNA in CD1b- L-DCs, whereas this expression was not affected by helminth secretions. The cytokine response of T cells promoted by L-DCs was analysed in T cell subsets after co-culture with Salmonella or helminth secretion-driven CD1b+ or CD1b- L-DCs. T cells preferentially expressed the IL-17 gene, and to a lesser extent the IFN-γ and IL-10 genes, in response to Salmonella-driven CD1b+ L-DCs, whereas a preferential IL-10, IFN-γ and IL-17 gene expression was observed in response to Salmonella-driven CD1b- L-DCs. In contrast, a predominant IL-4 and IL-13 gene expression by CD4+ and CD8+ T cells was observed after stimulation of CD1b+ and CD1b- L-DCs with helminth secretions. These results show that mature conventional CD1b+ L-DCs maintain a flexible capacity to respond differently to pathogens, that the predisposition of CD1b- L-DCs to promote a Th2 response can be oriented towards other Th responses, and finally that the modulation of migrating L-DCs responses is controlled more by the pathogen encountered than the L-DC subsets.  相似文献   

3.
Liver macrophages internalize circulating bloodborne parasites. It remains poorly understood how this process affects the fate of the macrophages and T cell responses in the liver. Here, we report that infection by Trypanosoma brucei induced depletion of macrophages in the liver, leading to the repopulation of CXCL16-secreting intrahepatic macrophages, associated with substantial accumulation of CXCR6+CD4+ T cells in the liver. Interestingly, disruption of CXCR6 signaling did not affect control of the parasitemia, but significantly enhanced the survival of infected mice, associated with reduced inflammation and liver injury. Infected CXCR6 deficient mice displayed a reduced accumulation of CD4+ T cells in the liver; adoptive transfer experiments suggested that the reduction of CD4+ T cells in the liver was attributed to a cell intrinsic property of CXCR6 deficient CD4+ T cells. Importantly, infected CXCR6 deficient mice receiving wild-type CD4+ T cells survived significantly shorter than those receiving CXCR6 deficient CD4+ T cells, demonstrating that CXCR6+CD4+ T cells promote the mortality. We conclude that infection of T. brucei leads to depletion and repopulation of liver macrophages, associated with a substantial influx of CXCR6+CD4+ T cells that mediates mortality.  相似文献   

4.
In contrast to the ability of long-lived CD8+ memory T cells to mediate protection against systemic viral infections, the relationship between CD4+ T cell memory and acquired resistance against infectious pathogens remains poorly defined. This is especially true for T helper 1 (Th1) concomitant immunity, in which protection against reinfection coincides with a persisting primary infection. In these situations, pre-existing effector CD4 T cells generated by ongoing chronic infection, not memory cells, may be essential for protection against reinfection. We present a systematic study of the tissue homing properties, functionality, and life span of subsets of memory and effector CD4 T cells activated in the setting of chronic Leishmania major infection in resistant C57Bl/6 mice. We found that pre-existing, CD44+CD62LT-bet+Ly6C+ effector (TEFF) cells that are short-lived in the absence of infection and are not derived from memory cells reactivated by secondary challenge, mediate concomitant immunity. Upon adoptive transfer and challenge, non-dividing Ly6C+ TEFF cells preferentially homed to the skin, released IFN-γ, and conferred protection as compared to CD44+CD62LLy6C effector memory or CD44+CD62L+Ly6C central memory cells. During chronic infection, Ly6C+ TEFF cells were maintained at high frequencies via reactivation of TCM and the TEFF themselves. The lack of effective vaccines for many chronic diseases may be because protection against infectious challenge requires the maintenance of pre-existing TEFF cells, and is therefore not amenable to conventional, memory inducing, vaccination strategies.  相似文献   

5.

Background

Modifications of adjuvants that induce cell-mediated over antibody-mediated immunity is desired for development of vaccines. Nanocapsules have been found to be viable adjuvants and are amenable to engineering for desired immune responses. We previously showed that natural nanocapsules called vaults can be genetically engineered to elicit Th1 immunity and protection from a mucosal bacterial infection. The purpose of our study was to characterize immunity produced in response to OVA within vault nanoparticles and compare it to another nanocarrier.

Methodology and Principal Findings

We characterized immunity resulting from immunization with the model antigen, ovalbumin (OVA) encased in vault nanocapsules and liposomes. We measured OVA responsive CD8+ and CD4+ memory T cell responses, cytokine production and antibody titers in vitro and in vivo. We found that immunization with OVA contain in vaults induced a greater number of anti-OVA CD8+ memory T cells and production of IFNγ plus CD4+ memory T cells. Also, modification of the vault body could change the immune response compared to OVA encased in liposomes.

Conclusions/Significance

These experiments show that vault nanocapsules induced strong anti-OVA CD8+ and CD4+ T cell memory responses and modest antibody production, which markedly differed from the immune response induced by liposomes. We also found that the vault nanocapsule could be modified to change antibody isotypes in vivo. Thus it is possible to create a vault nanocapsule vaccine that can result in the unique combination of immunogen-responsive CD8+ and CD4+ T cell immunity coupled with an IgG1 response for future development of vault nanocapsule-based vaccines against antigens for human pathogens and cancer.  相似文献   

6.
We previously showed that CD8+ T cells are required for optimal primary immunity to low dose Leishmania major infection. However, it is not known whether immunity induced by low dose infection is durable and whether CD8+ T cells contribute to secondary immunity following recovery from low dose infection. Here, we compared primary and secondary immunity to low and high dose L. major infections and assessed the influence of infectious dose on the quality and magnitude of secondary anti-Leishmania immunity. In addition, we investigated the contribution of CD8+ T cells in secondary anti-Leishmania immunity following recovery from low and high dose infections. We found that the early immune response to low and high dose infections were strikingly different: while low dose infection preferentially induced proliferation and effector cytokine production by CD8+ T cells, high dose infection predominantly induced proliferation and cytokine production by CD4+ T cells. This differential activation of CD4+ and CD8+ T cells by high and low dose infections respectively, was imprinted during in vitro and in vivo recall responses in healed mice. Both low and high dose-infected mice displayed strong infection-induced immunity and were protected against secondary L. major challenge. While depletion of CD4+ cells in mice that healed low and high dose infections abolished resistance to secondary challenge, depletion of CD8+ cells had no effect. Collectively, our results show that although CD8+ T cells are preferentially activated and may contribute to optimal primary anti-Leishmania immunity following low dose infection, they are completely dispensable during secondary immunity.  相似文献   

7.
The chemokine receptor CXCR6 is expressed on different T cell subsets and up-regulated following T cell activation. CXCR6 has been implicated in the localization of cells to the liver due to the constitutive expression of its ligand CXCL16 on liver sinusoidal endothelial cells. Here, we analyzed the role of CXCR6 in CD8+ T cell responses to infection of mice with Listeria monocytogenes. CD8+ T cells responding to listerial antigens acquired high expression levels of CXCR6. However, deficiency of mice in CXCR6 did not impair control of the L. monocytogenes infection. CXCR6-deficient mice were able to generate listeria-specific CD4+ and CD8+ T cell responses and showed accumulation of T cells in the infected liver. In transfer assays, we detected reduced accumulation of listeria-specific CXCR6-deficient CD8+ T cells in the liver at early time points post infection. Though, CXCR6 was dispensable at later time points of the CD8+ T cell response. When transferred CD8+ T cells were followed for extended time periods, we observed a decline in CXCR6-deficient CD8+ T cells. The manifestation of this cell loss depended on the tissue analyzed. In conclusion, our results demonstrate that CXCR6 is not required for the formation of a T cell response to L. monocytogenes and for the accumulation of T cells in the infected liver but CXCR6 appears to influence long-term survival and tissue distribution of activated cells.  相似文献   

8.
Natural killer (NK) cells are a critical part of the innate immune defense against viral infections and for the control of tumors. Much less is known about how NK cells contribute to anti-bacterial immunity. NK cell-produced interferon gamma (IFN-γ) contributes to the control of early exponential replication of bacterial pathogens, however the regulation of these events remains poorly resolved. Using a mouse model of invasive Salmonellosis, here we report that the activation of the intracellular danger sensor NLRC4 by Salmonella-derived flagellin within CD11c+ cells regulates early IFN-γ secretion by NK cells through the provision of interleukin 18 (IL-18), independently of Toll-like receptor (TLR)-signaling. Although IL18-signalling deficient NK cells improved host protection during S. Typhimurium infection, this increased resistance was inferior to that provided by wild-type NK cells. These findings suggest that although NLRC4 inflammasome-driven secretion of IL18 serves as a potent activator of NK cell mediated IFN-γ secretion, IL18-independent NK cell-mediated mechanisms of IFN-γ secretion contribute to in vivo control of Salmonella replication.  相似文献   

9.
Pancreatitis, a known risk factor for the development of pancreatic ductal adenocarcinoma, is a serious, widespread medical condition usually caused by alcohol abuse or gallstone-mediated ductal obstruction. However, many cases of pancreatitis are of an unknown etiology. Pancreatitis has been linked to bacterial infection, but causality has yet to be established. Here, we found that persistent infection of mice with the bacterial pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium) was sufficient to induce pancreatitis reminiscent of the human disease. Specifically, we found that pancreatitis induced by persistent S. Typhimurium infection was characterized by a loss of pancreatic acinar cells, acinar-to-ductal metaplasia, fibrosis and accumulation of inflammatory cells, including CD11b+ F4/80+, CD11b+ Ly6Cint Ly6G+ and CD11b+ Ly6Chi Ly6G cells. Furthermore, we found that S. Typhimurium colonized and persisted in the pancreas, associated with pancreatic acinar cells in vivo, and could invade cultured pancreatic acinar cells in vitro. Thus, persistent infection of mice with S. Typhimurium may serve as a useful model for the study of pancreatitis as it relates to bacterial infection. Increased knowledge of how pathogenic bacteria can cause pancreatitis will provide a more integrated picture of the etiology of the disease and could lead to the development of new therapeutic approaches for treatment and prevention of pancreatitis and pancreatic ductal adenocarcinoma.  相似文献   

10.
ArtinM is a D-mannose-binding lectin extracted from the seeds of Artocarpus heterophyllus that interacts with TLR2 N-glycans and activates antigen-presenting cells (APCs), as manifested by IL-12 production. In vivo ArtinM administration induces Th1 immunity and confers protection against infection with several intracellular pathogens. In the murine model of Candida albicans infection, it was verified that, in addition to Th1, ArtinM induces Th17 immunity manifested by high IL-17 levels in the treated animals. Herein, we investigated the mechanisms accounting for the ArtinM-induced IL-17 production. We found that ArtinM stimulates the IL-17 production by spleen cells in BALB/c or C57BL/6 mice, a response that was significantly reduced in the absence of IL-23, MyD88, or IL-1R. Furthermore, we showed that ArtinM directly induced the IL-23 mRNA expression and the IL-1 production by macrophages. Consistently, in cell suspensions depleted of macrophages, the IL-17 production stimulated by ArtinM was reduced by 53% and the exogenous IL-23 acted synergistically with ArtinM in promoting IL-17 production by spleen cell suspensions. We verified that the absence of IL-23, IL-1R, or MyD88 inhibited, but did not block, the IL-17 production by ArtinM-stimulated spleen cells. Therefore, we investigated whether ArtinM exerts a direct effect on CD4+ T cells in promoting IL-17 production. Indeed, spleen cell suspensions depleted of CD4+ T cells responded to ArtinM with very low levels of IL-17 release. Likewise, isolated CD4+ T cells under ArtinM stimulus augmented the expression of TGF-β mRNA and released high levels of IL-17. Considering the observed synergism between IL-23 and ArtinM, we used cells from IL-23 KO mice to assess the direct effect of lectin on CD4+ T cells. We verified that ArtinM increased the IL-17 production significantly, a response that was inhibited when the CD4+ T cells were pre-incubated with anti-CD3 antibody. In conclusion, ArtinM stimulates the production of IL-17 by CD4+ T cells in two major ways: (I) through the induction of IL-23 and IL-1 by APCs and (II) through the direct interaction with CD3 on the CD4+ T cells. This study contributes to elucidation of mechanisms accounting for the property of ArtinM in inducing Th17 immunity and opens new perspectives in designing strategies for modulating immunity by using carbohydrate recognition agents.  相似文献   

11.

Background

High levels of death and morbidity worldwide caused by tuberculosis has stimulated efforts to develop a new vaccine to replace BCG. A number of Mycobacterium tuberculosis (Mtb)-specific antigens have been synthesised as recombinant subunit vaccines for clinical evaluation. Recently a fusion protein of TB antigen Ag85B combined with a second immunodominant TB antigen TB10.4 was emulsified with a novel non-phospholipid-based liposomal adjuvant to produce a new subunit vaccine, investigated here. Currently, there is no consensus as to whether or not long-term T cell memory depends on a source of persisting antigen. To explore this and questions regarding lifespan, phenotype and cytokine patterns of CD4 memory T cells, we developed an animal model in which vaccine-induced CD4 memory T cells could transfer immunity to irradiated recipients.

Methodology/Principal Findings

The transfer of protective immunity using Ag85B-TB10.4-specific, CD45RBlow CD62Llow CD4 T cells was assessed in sub-lethally irradiated recipients following challenge with live BCG, used here as a surrogate for virulent Mtb. Donor T cells also carried an allotype marker allowing us to monitor numbers of antigen-specific, cytokine-producing CD4 T cells in recipients. The results showed that both Ag85B-TB10.4 and BCG vaccination induced immunity that could be transferred with a single injection of 3×106 CD4 T cells. Ten times fewer numbers of CD4 T cells (0.3×106) from donors immunised with Ag85B-TB10.4 vaccine alone, transferred equivalent protection. CD4 T cells from donors primed by BCG and boosted with the vaccine similarly transferred protective immunity. When BCG challenge was delayed for 1 or 2 months after transfer (a test of memory T cell survival) recipients remained protected. Importantly, recipients that contained persisting antigen, either live BCG or inert vaccine, showed significantly higher levels of protection (p<0.01). Overall the numbers of IFN-γ-producing CD4 T cells were poorly correlated with levels of protection.

Conclusions/Significance

The Ag85B-TB10.4 vaccine, with or without BCG-priming, generated TB-specific CD4 T cells that transferred protective immunity in mice challenged with BCG. The level of protection was enhanced in recipients containing a residual source of specific antigen that could be either viable or inert.  相似文献   

12.
Cytotoxic CD8+ T cells are particularly important to the development of protective immunity against the intracellular protozoan parasite, Trypanosoma cruzi, the etiological agent of Chagas disease. We have developed a new effective strategy of genetic immunization by activating CD8+ T cells through the ubiquitin-fusion degradation (UFD) pathway. We constructed expression plasmids encoding the amastigote surface protein-2 (ASP-2) of T. cruzi. To induce the UFD pathway, a chimeric gene encoding ubiquitin fused to ASP-2 (pUB-ASP-2) was constructed. Mice immunized with pUB-ASP-2 presented lower parasitemia and longer survival period, compared with mice immunized with pASP-2 alone. Depletion of CD8+ T cells abolished protection against T. cruzi in mice immunized with pUB-ASP-2 while depletion of CD4+ T cells did not influence the effective immunity. Mice deficient in LMP2 or LMP7, subunits of immunoproteasomes, were not able to develop protective immunity induced. These results suggest that ubiquitin-fused antigens expressed in antigen-presenting cells were effectively degraded via the UFD pathway, and subsequently activated CD8+ T cells. Consequently, immunization with pUB-ASP-2 was able to induce potent protective immunity against infection of T. cruzi.  相似文献   

13.
Infection of mice with Salmonella enterica serovar Typhimurium (Salmonella) causes systemic inflammatory disease and enlargement of the spleen (splenomegaly). Splenomegaly has been attributed to a general increase in the numbers of phagocytes, lymphocytes, as well as to the expansion of immature CD71+Ter119+ reticulocytes. The spleen is important for recycling senescent red blood cells (RBCs) and for the capture and eradication of blood-borne pathogens. Conservation of splenic tissue architecture, comprised of the white pulp (WP), marginal zone (MZ), and red pulp (RP) is essential for initiation of adaptive immune responses to captured pathogens. Using flow cytometry and four color immunofluorescence microscopy (IFM), we show that Salmonella-induced splenomegaly is characterized by drastic alterations of the splenic tissue architecture and cell population proportions, as well as in situ cell distributions. A major cause of splenomegaly appears to be the significant increase in immature RBC precursors and F4/80+ macrophages that are important for recycling of heme-associated iron. In contrast, the proportions of B220+, CD4+ and CD8+ lymphocytes, as well as MZ MOMA+ macrophages decrease significantly as infection progresses. Spleen tissue sections show visible tears and significantly altered tissue architecture with F4/80+ macrophages and RBCs expanding beyond the RP and taking over most of the spleen tissue. Additionally, F4/80+ macrophages actively phagocytose not only RBCs, but also lymphocytes, indicating that they may contribute to declining lymphocyte proportions during Salmonella infection. Understanding how these alterations of spleen microarchitecture impact the generation of adaptive immune responses to Salmonella has implications for understanding Salmonella pathogenesis and for the design of more effective Salmonella-based vaccines.  相似文献   

14.
Trypanosoma cruzi infection is controlled but not eliminated by host immunity. The T. cruzi trans-sialidase (TS) gene superfamily encodes immunodominant protective antigens, but expression of altered peptide ligands by different TS genes has been hypothesized to promote immunoevasion. We molecularly defined TS epitopes to determine their importance for protection versus parasite persistence. Peptide-pulsed dendritic cell vaccination experiments demonstrated that one pair of immunodominant CD4+ and CD8+ TS peptides alone can induce protective immunity (100% survival post-lethal parasite challenge). TS DNA vaccines have been shown by us (and others) to protect BALB/c mice against T. cruzi challenge. We generated a new TS vaccine in which the immunodominant TS CD8+ epitope MHC anchoring positions were mutated, rendering the mutant TS vaccine incapable of inducing immunity to the immunodominant CD8 epitope. Immunization of mice with wild type (WT) and mutant TS vaccines demonstrated that vaccines encoding enzymatically active protein and the immunodominant CD8+ T cell epitope enhance subdominant pathogen-specific CD8+ T cell responses. More specifically, CD8+ T cells from WT TS DNA vaccinated mice were responsive to 14 predicted CD8+ TS epitopes, while T cells from mutant TS DNA vaccinated mice were responsive to just one of these 14 predicted TS epitopes. Molecular and structural biology studies revealed that this novel costimulatory mechanism involves CD45 signaling triggered by enzymatically active TS. This enhancing effect on subdominant T cells negatively regulates protective immunity. Using peptide-pulsed DC vaccination experiments, we have shown that vaccines inducing both immunodominant and subdominant epitope responses were significantly less protective than vaccines inducing only immunodominant-specific responses. These results have important implications for T. cruzi vaccine development. Of broader significance, we demonstrate that increasing breadth of T cell epitope responses induced by vaccination is not always advantageous for host immunity.  相似文献   

15.
Leukocyte adhesion and transmigration are central features governing immune surveillance and inflammatory reactions in body tissues. Within the liver sinusoids, chemokines initiate the first crucial step of T-cell migration into the hepatic tissue. We studied molecular mechanisms involved in endothelial chemokine supply during hepatic immune surveillance and liver inflammation and their impact on the recruitment of CD4+ T cells into the liver. In the murine model of Concanavalin A-induced T cell-mediated hepatitis, we showed that hepatic expression of the inflammatory CXC chemokine ligands (CXCL)9 and CXCL10 strongly increased whereas homeostatic CXCL12 significantly decreased. Consistently, CD4+ T cells expressing the CXC chemokine receptor (CXCR)3 accumulated within the inflamed liver tissue. In histology, CXCL9 was associated with liver sinusoidal endothelial cells (LSEC) which represent the first contact site for T-cell immigration into the liver. LSEC actively transferred basolaterally internalized CXCL12, CXCL9 and CXCL10 via clathrin-coated vesicles to CD4+ T cells leading to enhanced transmigration of CXCR4+ total CD4+ T cells and CXCR3+ effector/memory CD4+ T cells, respectively in vitro. LSEC-expressed CXCR4 mediated CXCL12 transport and blockage of endothelial CXCR4 inhibited CXCL12-dependent CD4+ T-cell transmigration. In contrast, CXCR3 was not involved in the endothelial transport of its ligands CXCL9 and CXCL10. The clathrin-specific inhibitor chlorpromazine blocked endothelial chemokine internalization and CD4+ T-cell transmigration in vitro as well as migration of CD4+ T cells into the inflamed liver in vivo. Moreover, hepatic accumulation of CXCR3+ CD4+ T cells during T cell-mediated hepatitis was strongly reduced after administration of chlorpromazine. These data demonstrate that LSEC actively provide perivascularly expressed homeostatic and inflammatory chemokines by CXCR4- and clathrin-dependent intracellular transport mechanisms thereby contributing to the hepatic recruitment of CD4+ T-cell populations during immune surveillance and liver inflammation.  相似文献   

16.

Background

CD4+ T cell is acknowledged as a key factor in the initiation phase of liver ischemia reperfusion injury. The purpose of current study is to demonstrate the effect of antecedent near-term anti-CD25 monoclonal antibody treatment on IR-induced liver injury by modulation of CD4+ T cells.

Methods

70% liver warm IR was induced in male C57BL/6 mice after anti-CD25 mAb or non-specific IgG administration. Liver function, histological damage, in vitro Proliferation, FACS, cytokine production, and immunofluorescence were assessed to evaluate the impact of antecedent near-term PC61 treatment on IR-induced liver injury.

Results

After 70% liver ischemia, mice preconditioned with PC61 displayed significantly preserved liver function as characterized by less histological damage and reduced serum enzymes level. Mechanistic studies revealed that the protection effect of anti-CD25 mAb was associated with ameliorated intrahepatic inflammatory milieu and reduced CD4+ T lymphocytes as manifested by the decrease of proinflammatory cytokine production (less expression of TNF-α, IFN-γ, IL-2, and IL-6) and the lower CD4/CD8 proportion.

Conclusions

Our results provide first line of evidence indicating that near-term treatment with anti-CD25 monoclonal antibody might provide protection for livers against IR-induced injury by reducing CD4+ T cells, but not influencing functional Treg population. Therefore, our results demonstrate a potential function of anti-CD25 monoclonal antibody which was neglected in the past, and may be helpful in various clinical conditions, particularly in liver and kidney transplantations.  相似文献   

17.
Long-term protection against Toxoplasma gondii is dependent on robust CD8+ T cell immunity. In the absence of this response, the host is unable to maintain chronicity, which results in recrudescence of infection and possible death. Factors needed for the persistence of protective CD8+ T cells against the parasite need to be evaluated. Previous studies from our laboratory have reported that synergism between γ chain cytokines like IL-7 and IL-15 is critical for the generation of CD8+ T cell response needed for protection during acute infection. In this study we report that the situation is different during the recall response where CD8+ T cell response is almost entirely dependent on IL-15, with IL-7 at best playing a minor role. In the absence of IL-15, CD8+ T cells fail to respond optimally to parasitic re-challenge and hosts are unable to control their replication, which leads to their death. Thus T. gondii infection may represent a unique situation where CD8+ T cell response during secondary challenge is primarily dependent on IL-15 with other γ chain cytokines having nominal effect. These findings provide important information regarding factors involved in the generation of protective immunity against T. gondii with strong implications in developing immunotherapeutic agents against the pathogen.  相似文献   

18.
Insight into the maintenance of naive T cells is essential to understand defective immune responses in the context of aging and other immune compromised states. In humans, naive CD4+ T cells, in contrast to CD8+ T cells, are remarkably well retained with aging. Here, we show that low-affinity TCR engagement is the main driving force behind the emergence and accumulation of naive-like CD4+ T cells with enhanced sensitivity to IL-2 in aged humans. In vitro, we show that these CD45RA+CD25dimCD4+ T cells can develop from conventional naive CD25CD4+ T cells upon CD3 cross-linking alone, in the absence of costimulation, rather than via stimulation by the homeostatic cytokines IL-2, IL-7, or IL-15. In vivo, TCR engagement likely occurs in secondary lymphoid organs as these cells were detected in lymph nodes and spleen where they showed signs of recent activation. CD45RA+CD25dimCD4+ T cells expressed a broad TCRVβ repertoire and could readily differentiate into functional T helper cells. Strikingly, no expansion of CD45RA+CD25dimCD8+ T cells was detected with aging, thereby implying that maintenance of naive CD4+ T cells is uniquely regulated. Our data provide novel insight into the homeostasis of naive T cells and may guide the development of therapies to preserve or restore immunity in the elderly.  相似文献   

19.

Background

The eradication of facultative intracellular bacterial pathogens, like Salmonella typhi, requires the concerted action of both the humoral immune response and the cytotoxic CD8+ T cell response. Dendritic cells (DCs) are considered to orchestrate the cytotoxic CD8+ T cell response via cross-presentation of bacterial antigens onto MHC class I molecules. Cross-presentation of Salmonella by DCs however, is accompanied by the induction of apoptosis in the DCs. Besides antibody production, B cells are required to clear Salmonella infection for other unknown reasons.

Methodology/Principal Findings

Here we show that Salmonella-specific B cells that phagocytose Salmonella upon BCR-ligation reactivate human memory CD8+ T cells via cross-presentation yielding a Salmonella-specific cytotoxic T cell response. The reactivation of CD8+ T cells is dependent on CD4+ T cell help. Unlike the DCs, B cell-mediated cross-presentation of Salmonella does not coincide with apoptosis.

Conclusions/Significance

B cells form a new player in the activation of the cytotoxic effector arm of the immune response and the generation of effective adaptive immunity in Salmonella infection.  相似文献   

20.
The peripheral Foxp3+ Treg pool consists of naturally arising Treg (nTreg) and adaptive Treg cells (iTreg). It is well known that naive CD4+ T cells can be readily converted to Foxp3+ iTreg in vitro, and memory CD4+ T cells are resistant to conversion. In this study, we investigated the induction of Foxp3+ T cells from various CD4+ T-cell subsets in human peripheral blood. Though naive CD4+ T cells were readily converted to Foxp3+ T cells with TGF-β and IL-2 treatment in vitro, such Foxp3+ T cells did not express the memory marker CD45RO as do Foxp3+ T cells induced in the peripheral blood of Hepatitis B Virus (HBV) patients. Interestingly, a subset of human memory CD4+ T cells, defined as CD62L+ central memory T cells, could be induced by TGF-β to differentiate into Foxp3+ T cells. It is well known that Foxp3+ T cells derived from human CD4+CD25- T cells in vitro are lack suppressive functions. Our data about the suppressive functions of CD4+CD62L+ central memory T cell-derived Foxp3+ T cells support this conception, and an epigenetic analysis of these cells showed a similar methylation pattern in the FOXP3 Treg-specific demethylated region as the naive CD4+ T cell-derived Foxp3+ T cells. But further research showed that mouse CD4+ central memory T cells also could be induced to differentiate into Foxp3+ T cells, such Foxp3+ T cells could suppress the proliferation of effector T cells. Thus, our study identified CD4+CD62L+ central memory T cells as a novel potential source of iTreg.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号